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Abbreviations Used 

E. coli – Escherichia coli 

DNA - deoxyribonucleic acid 

ssDNA – single stranded deoxyribonucleic acid 

mRNA – messenger ribonucleic acid 

MMC - mitomycin C 

MCMC – Markov Chain Monte-Carlo 

NIR – Network Identification by multiple linear Regression 

TAO-Gen - Theoretical Algorithm for identifying Optimal GENe interaction networks 
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Abstract  

One of the major unresolved issues in the analysis of gene expression data is the identification 

and quantification of gene regulatory networks. Several methods have been proposed for 

identifying gene regulatory networks, but these methods predominantly focus on the use of 

multiple pairwise comparisons to identify the network structure. In this paper, a method is 

developed for analyzing gene expression data to determine a regulatory structure consistent with 

an observed set of expression profiles. Unlike other methods, this method goes beyond pairwise 

evaluations by using likelihood-based statistical methods to obtain the network that is most 

consistent with the complete data set.  The proposed algorithm performs accurately for moderate-

sized networks with most errors being minor additions of linkages. However, the analysis also 

indicates that sample sizes may need to be increased to uniquely identify even moderate-sized 

networks. The method is used to evaluate interactions between genes in the SOS signaling 

pathway in E. coli using gene expression data where each gene in the network is over-expressed 

using plasmids inserts.  
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Introduction 

Gene expression microarrays (gene chips) have revolutionized biology by generating vast 

amounts of data roughly quantifying the level of mRNA expression for thousands of genes in a 

single sample. The analysis of these data is extraordinarily complex resulting in a shift in biology 

from predominantly qualitative evaluations to quantitative approaches. With microarray 

technologies, scientists are forming global views of the structural and dynamic changes in 

genome activity during different phases in a cell’s development and following exposure to 

external stimulants such as environmental agents or growth factors. These views describe the 

molecular working of a complex information processing system; the living cell.  Numerous 

methods have already been proposed for the analysis of gene expression data. The most 

commonly used methods rely on clustering (Eisen et al. 1995; Tamayo et al. 1999), significance 

testing (Kerr et al. 2000) and sequence motif identification (Pilpel et al. 2001). These methods do 

not readily reproduce gene expression networks but are more focused on the fundamental linkage 

between pairs of genes.  Others have proposed methods to identify gene regulatory networks 

using Boolean networks (Akutsu et al. 2000) where each gene has one of only two states (on and 

off), regression methods (Gardner et al. 2003), Bayesian network models (Friedman et al. 2000; 

Hartemink et al. 2002) and other methods (Johnson et al. 2004).  

The use of genomics data in the evaluation of health hazards and risks has received considerable 

attention focusing on priority setting (Pesch et al. 2004), biomarker identification (Toraason et al. 

2004), hazard identification (Suter et al. 2004) and dose-response analysis (Schonwalder and 

Olden 2003; Simmons and Portier 2002; Waters et al. 2003).  If genomics is to play a direct role 

in dose-response assessment, there will be a need for methods which provide a direct, 
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quantitative assessment of changes in gene expression as a function of dose and changes in 

toxicity as a function of changes in gene expression.  Developing and modeling gene interaction 

networks can be quantitative and provide direct dose-response data for use in risk assessment.  

They also represent an excellent means to identify agents that provide identical changes in 

expression across a broad spectrum of genes and help to link agents based on similar mechanistic 

changes.   

Bayesian networks are well suited for inferring genetic interactions because of their ability to 

model causal influence between genes linked as a network, and because they are an effective 

method for modeling the joint density of all variables in a system. However, the approaches 

suggested to date have generally focused on conversion of gene expression data to discrete states 

and have avoided the use of formal statistical methods for quantifying the joint density of the 

resulting parameters.  

In this paper we develop a method for inferring an “optimal” gene interaction network from 

microarray-based gene expression data.. Unlike other network identification methods, the 

analytical approach presented here uses the actual measured observations on gene expression 

(rather than discretized data) and incorporates prior distributions for all parameters in the gene 

interaction network model. The method encompasses model selection theory from Bayesian 

regression to find gene network structures suitable for given datasets.  Computer simulations 

presented in this paper demonstrate that the proposed method is capable of identifying networks 

given the sample size is sufficiently large.  For small networks, the limited number of replicates 

used for most microarray studies available today are adequate; for larger networks, other options 

are discussed.  
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Material and Method 

Figure 1 illustrates the general structure of a four gene regulatory system where the linkage 

between expression of gene i and expression of its parents (indirect regulators to gene i) is 

described by weighting the function wi(ηi), where the subscript i denotes that this weighting 

function pertains to the control of gene i expression by all genes linked to it and ηi denotes the 

vector of parameters defining the functional relationship. Let N be a directed acyclic graph which 

consists of p vertices (genes). Each edge is also assumed to include information about the linkage 

between genes (i.e., activation, as in the case for the linkage between expression of gene 1 and 

expression of gene 4, or suppression, expression of genes 3 4). In essence, N is a discrete random 

variable which takes on any of the different acyclic network structures that are possible for a set 

of p genes. Define Xi to be the random variable corresponding to the measured relative level of 

gene expression (the expression level of a target gene for an “exposed” group to the expression 

level of the same gene in a “control” group) for gene Gi, 1 ≤ i ≤ p. For a given network, N=n, and 

for each Xi, define the conditional density function )),(|( iiniX XpaXf
i

η , where pan(Xi) denotes the 

set of vertices corresponding to the  parents of expression for gene i in the network n with 

parameters ηi.  All networks in the support space for N are assumed to satisfy the Markov 

property where expression of gene i is independent of all genes not included in pan(Xi). 

Application of the Markov property and imposition of the acyclic restriction allow 

decomposition of the joint density function into 

∏
=

=
p

i
iiniXpX XpaXfnXXXf

i
1

21 )),(|(),|,...,,( ηη  (equation 1) where η = (η1, η2, … ηp) is the 

set of all parameters in the network. 
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Gene expression data, for the purposes of this analysis, can be expressed as a p by m matrix of 

the form x=[xik]i=1,2,…p, k=1,2 … m  where m is the number of observations (samples analyzed for 

gene expression) taken for each gene and xi=[xik]k=1,2 … m  is the vector of all observations of 

expression for gene i. The observed gene expression levels for the parent set for gene i in vector 

notation is pan(xi)=[ ki j
x ]j=1,2,… ip , k=1,2 … m where pi is the number of parents for gene i. Similarly 

define the random vector X. Then, conditional on the parameters and the model, the likelihood of 

the data, x, is given by ∏∏=
= =

p

i

m

k
iiknikXX xpaxfnxf

i1 1
)),(|(),|( ηη   (equation 2). 

The goal of our analysis is the identification of the "best" network structure using gene 

expression data. Our criterion for the “best” network is defined as the network, n*, from the set of 

all acyclic networks that maximizes the posterior likelihood of the network, 

)|Pr( maxarg* xnNn
N

==  (equation 3).  The posterior probability Pr(N=n|x)  is given by 

i

p

i

m

k
iiknikXi dxpaxffnNxnN

ii
ηηηη∏ ∏∫

= =

=∝=
1 1

)),(|()()Pr()|Pr(  (equation 4) where Pr(N=n) and 

fηi(ηi) are derived from the prior distributions of N and ηi respectively, and the ηi are assumed 

independent.  

Several different methods are available for assigning prior information to the distribution of 

countable networks for a given set of genes. One approach, which is used here, is to assume no 

prior knowledge by choosing N to be uniformly distributed (equal probability) over the space of 

all possible acyclic networks. By this assumption, the solution to equation 3 is identical to 

finding the maximum of the log of the product term in equation 4 over the parameter space; that 

is the solution to equation 3 is identical to 
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⎭⎬
⎫

⎩⎨
⎧∑ ⎥⎦

⎤
⎢⎣
⎡∫ ∏=

= =

p

i
i

m

k
iiknikXi

N

dxpaxffn
ii1 1

)),(|()(lnmaxarg* ηηηη  (equation 5).  This equation is similar to 

the maximum likelihood estimator in classical statistical theory, but weighted over the prior 

densities for the parameters in the model.  A clear benefit of this approach is that one does not 

need to estimate the model parameters while finding the “best” network since the integration 

removes those parameters from the final solution.  A possible criticism of this approach is that 

the assumption of a uniform prior for network structure fails to completely exploit the prior 

knowledge of what networks are of greatest interest.  This is most certainly true, but in light of 

our limited understanding of gene interaction networks, this appears to be a reasonable choice for 

a first step in network identification.  When available, prior knowledge can be incorporated into 

this algorithm or modified algorithms to limit the space of networks to be searched; this is the 

solution to a different problem and will be discussed in a subsequent report.  

Many possible weighting functions ( )iiw η  can be used to relate the relative level of expression 

of gene i to the relative levels of expression of its parents. The analysis presented here uses a log-

linear model
( )∑ +

==
ip

j
ijiiji X

ii ew 1
ln

)(
εβ

η where the notation ij refers to the jth parent of gene i,  

ij piii ×= 1][ββ  and iε  is a random variable with mean 0. From a mechanistic basis, using a model 

linear in the logarithms of the expression levels is equivalent to approximating the full nonlinear 

system by equations in power-law form (Kikuchi et al. 2003; Voit and Radivoyevitch 2000). 

Given prior distributions for the ε’s and the β’s for all genes, the Markov-Chain Monte-Carlo 

(MCMC) method developed by Hastings (Hastings 1970) makes it possible to estimate a solution 

to equation 5 and identify the “best” network.  It is possible, under further restrictions, to obtain a 
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closed form solution to the argument in equation 5. The advantage of this approach in the 

framework of this paper is that the entire network space can be searched exhaustively to find the 

“best” network for small networks like the ones in our simulation studies.   

As is common in Bayesian linear regression theory (Gelman et al. 1995), we assume that 

εi|σi
2~Normal(0,σi

2), βi|σi
2~Normal(bi ,σi

2Ai
-1) and σi

2~Gamma(v0/2, v1/2), v0, v1 ≈ 0. These 

priors don’t assume additional or specific information (in Bayesian parlance, these are 

uninformative priors), thus would be applicable for many cases.  Simple algebra then results in: 

[ ] [ ] [ ]( ) [ ] 21
1

02

1

0

)()(
2
1ln)(ln)(ln1ln

2
)2(

)),(|()(

vm

T
iiiiiiini

T
ini

m

i

m

k
iinikXi

bBAbBxxpaAxpaxv
m

dxpaxff
ii

+
−

−−

=

⎥⎦
⎤

⎢⎣
⎡ −−+−+⎟

⎠
⎞

⎜
⎝
⎛ +

Γ=

∫ ∏

νπ

ηηηη

 

(equation 6) where Γ  is the gamma function,  Ai=ln[pan(xi)]ln[ pan(xi)]T and 

Bi=ln[xi]ln[pan(xi)]TAi
-1. Given N=n, this equation allows for the direct calculation of Pr(N=n|x). 

This formula is specific to these priors but similar formulae might be derived for other cases. 

Any single gene in a p = 4 gene network has 8 possible sets of parents (no parents, 3 single 

parents, 3 double parents, all other genes), hence the total number of networks including cyclic 

networks would be 84=4096 networks of which 543 are acyclic.  As p increases, the total number 

of networks increases as the squared power of p(2p(p-1)) resulting in a very large network space to 

evaluate for larger networks (e.g.~4x10469 for a 40 gene network).  Many different types of 

searching algorithm could be used to limit the number of networks to be evaluated for equation 

6; through trial and error, the following modified simulated annealing algorithm (Press et al. 

1989) appears to work. We will refer to this method as the TAO-Gen (Theoretical Algorithm for 

identifying Optimal GENe interaction networks) algorithm. 
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The TAO-Gen algorithm has 7 basic steps:  

1. Search Conditions: Restrict to ξ < p, the maximum number of parents for any one 

gene and calculate the value of equation 6 for all ∑ = −
ξ

0 1i ip C  parent combinations, 

where pCi  is the binomial coefficient (When p is relatively small, ξ= p-1 can be 

chosen and the entire network space is evaluated in this step. When p is even 

moderately large (>10), assuming ξ=4 or 5 will substantially reduce the 

computational burden).  Specify a number t (0≤t≤1) governing the probability of 

local versus global switching in step 4 (t=0 implies only global switching, t=1 

implies only local switching). 

2. For the initial step, k=0, randomly select an order in which genes enter the 

network, Gk={Gk1 Gk2 Gk3 … Gkp}, and build a starting network choosing the 

parents for each gene that maximize equation 6 while keeping the network acyclic 

(i.e. choose the parents for Gk1 that are optimal first, then parents for Gk2 that are 

optimal, etc.) 

3. Calculate the posterior likelihood (equation 4) for this network and denote it Lk .  

4. Generate a uniform random number )1,0(1 uniformu ∈  to determine the type of 

permutation. if u1 < t, the permutation occurs between two randomly chosen genes, 

j and l, switching the two genes for the next permutationGk+1, j=Gk, l and Gk+1,l=Gk, 

j). Otherwise, make the second half of the set of genes, starting from randomly 

chosen gene j, appear first in the order (Gk+1,1=Gk, j+1, Gk+1,2=Gk, j+2, …, 

Gk+1,m-j+1=Gk, 1, …, Gk+1,m=Gk, j ). Thus form a new gene order, Gk+1.  
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5. Calculate a new posterior likelihood of the network Lk+1 associated with the order 

Gk+1, as in step 2 and 3. If Lk+1>Lk, then keep Gk+1. Otherwise generate a uniform 

random number )1,0(2 uniformu ∈  and if u2≤Lk+1/Lk, keep Gk+1 else set Gk+1=Gk. 

6. Return to step 4 and iterate. 

7. Choose the network with the highest posterior probability from the sequence {G0, 

G1, …}. 

This algorithm combines aspects of the Metropolis algorithm used for Markov-Chain Monte-

Carlo sampling (Hastings 1970) with the simulated annealing algorithm used for optimization 

(Press et al. 1989). In essence, it represents a new form of genetic algorithm aimed at networks in 

which mutations occur in each cycle as either base-pair switches or large translocations.  It may 

be possible, under certain fixed conditions, to analytically determine the degree to which the 

TAO-Gen algorithm reduces the number of networks to be evaluated and the efficiency with 

which it finds the correct solution.  This is left as a separate exercise; instead, simulation studies 

were used to address these issues as discussed in the Results section. 

Gene Expression Dataset 

Gardner et al. (Gardner et al. 2003) developed a gene-regulatory network for a nine-gene 

subnetwork of the SOS pathway in E. coli.  The nine genes (all gene names and locators, in 

parentheses following gene name, are from the EcoGene database 

http://bmb.med.miami.edu/EcoGene/EcoWeb) they focused on were; the principal mediators of 

the SOS response, recA (recombinase gene A, locator EC10823) and lexA (lambda excision gene 

A, locator EC10533);  genes with known involvement in the SOS response, ssb (single strand 

binding gene, locator EC10976), recF (recombinase gene F, locator EC10828), dinI (damage 
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inducible gene I, locator EC12670), umuDC (UV mutator gene, locator EC11057); and three 

sigma factor genes whose function in SOS response is not clearly identified, rpoD (RNA 

polymerase factor subunit D, locator EC10896), rpoH (RNA polymerase factor subunit H, 

locator EC10897), and rpoS (RNA polymerase factor subunit S, locator EC10510).  To quantify 

the subnetwork, they applied a set of nine transcriptional perturbations to E. coli cells where each 

perturbation overexpressed a different one of the nine genes in the SOS network.  Using an 

arabinose-controlled episomal expression plasmid, they grew the cells in batch cultures for 5.5 

hours after the addition of arabinose then measured relative change in message for their 9 target 

genes using quantitative real-time PCR.  In addition to the nine perturbed cultures, they also 

produced two additional cultures, one in which a double plasmid (lexA/recA) was incorporated 

into the cells and another in which 0.75 µg/ml of mitomycin C (MMC) was added to the culture 

to stimulate gene expression of recA.  The resulting data set with 11 samples of relative changes 

in gene expression for the 9 target genes is given in Table S1 in Gardner et al.  In addition to the 

9 target genes, the 9 plasmid constructs were added to the modeling as fixed stimulators of each 

of their respective genes to mimic changes in gene expression induced by insertion of the 10 

plasmid constructs.    A separate stimulation by MMC was also included, but with links to all 

genes in the network to determine if the predominant linkage to recA assumed by Gardner et al. 

was evident in the data.  The exact model linking genes for sample k (k=1, 2, … 11) is given by 

( )
∑ +++
==
ip

j
jiijikiiki XMI

ii ew 1
)ln()ln( εβγα

η where ii j
β  is as described previously, ikI  is an indicator variable 

equal to 1 if gene i has an inserted plasmid in sample k and is equal to 0 otherwise, iα is the 

magnitude of increase in gene expression induced in the ith gene by the plasmid when it is 

present, Mk is the relative change (relative to the standard of 0.5 µg/ml) in MMC exposure for 
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sample k, and iγ  is the magnitude of change in gene expression for gene i as a function of the 

relative change in MMC. 

Simulation Results 

Data were simulated for a given network by sampling from the assumed error distributions and 

priors for a given model situation.  To simulate a network, genes highest on the parental list were 

simulated first and the simulated values were used to simulate daughters, etc.  Different starting 

points and different priors were used to estimate parameters in both the simulated data and the 

SOS data; these had no impact on the final results provided the priors chosen were uninformative. 

Results 

The TAO-Gen algorithm was applied to RT-PCR data on 9 genes (recA, lexA, ssb, recF, dinI, 

umuDC, rpoD, rpoH, and rpoS) from the SOS pathway in E. coli as described above.  Data 

consisted of 11 separate relative changes in gene expression; 9 samples for which a plasmid was 

inserted for one of the nine genes, a single construct for a combination of 2 genes (lexA and 

recA), and a modification of the culture (1.5x increase in mitomycin-C) in wild-type cells.  

Figure 2 illustrates the optimal gene interaction network identified by the TAO-Gen algorithm 

for these data.  It is generally believed that the SOS regulon in E.coli is predominantly under the 

control of the products of the genes lexA and recA.  Figure 3 illustrates a literature-based linkage 

map between genes in the SOS response for the repair of DNA damage. When genotoxins, like 

UV radiation and MMC, damage DNA base nucleotides, the replication process is activated and 

a region of single-stranded DNA (ssDNA) is formed.  RecA (the product of recA) coats ssDNA 

signaling the SOS response.  RecA/ssDNA stimulates degradation of LexA (the products of 

lexA), which is a repressor of RecA in the normal repair process.  This inactivation of LexA 
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affects other genes involved directly in SOS response, such as dinI, and downstream genes 

involved in DNA replication, cell division and mutagenesis, such as rpoS {Beuning, 2004 #154; 

Janion, 2001 #159;Lindner, 2004 #160;Lusetti, 2002 #156;McKenzie, 2000 #157;Rangarajan, 

2002 #158; }.  The results from the TAO-Gen algorithm are given in Figure 2 and support this 

role for LexA with significant repressor activity on umuDC, dinI and ssb. In contrast, RecA, the 

gene product of recA, is expected to serve as an activator of the SOS regulon.  Figure 2 indicate 

that recA serves as a central node in the regulation of genes in the SOS pathway, showing 

significant activation of lexA, recF, umuDC, rpoH and ssb and significant repression of rpoD.  

There are four remaining significant linkages; ssb and rpoS repress and activate rpoD 

respectively, recF activates umuDC and rpoH activates ssb.  Table 1 provides summary 

information on the parameter estimates estimated by treating the identified network (Figure 2) as 

known and quantifying the linkages between genes by the method of Toyoshiba (Toyoshiba et 

al.). With the exception of the plasmid-induced change in recF, all linkages in Figure 2 are 

statistically significant (p<0.05). 

An indicator variable was used to separate data with and without plasmid insertion for each gene.  

For all nine genes, plasmid inserts increased mRNA levels ranging from a nonsignificant 

(p=0.31) 1.06-fold increase for recF to a significant (p<0.01) 28-fold increase for rpoH.  

Changes in the level of MMC had significant effects on 8 of the nine genes, the sole exception 

being lexA which did not appear to be directly impacted by changes in MMC.  This finding is in 

contrast to what was believed to be the presumed transcriptional target of MMC, recA.  It was 

previously suggested that all other MMC-induced changes in transcription are mediated through 

recA.  In this analysis, the largest impacts of MMC on transcription were for rpoH and rpoS 

(approximately a 2.3-fold increase in activity for each doubling of the MMC level) followed by 
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effects on recA, dinI and umuDC (approximately a 1.9-fold increase in activity for each doubling 

of MMC level).   

Our “best” network (Figure 2) and the literature-based network (Figure 3) support the notion that 

the activation of the SOS system is through activation of recA.  Increases in recA result in 

activation of umuDC and ssb, critical components in the activation of repair of single-strand 

DNA damage.  An increase in recA also induces an increase in lexA which serves to suppress the 

activity induced by recA in umuDC and ssb. rpoH appears to serve as an independent activator of 

ssb with signaling from recA and possibly other genes not included in the network.  Finally, 

while rpoS and rpoD seem to be linked to the network, they appear to be under control of other 

genes in the network rather than exerting control over the SOS response.  Recent papers 

hypothesized possible roles for roles for RpoS, LexA and RecA in global stress gene regulation, 

but clear conclusions are not yet available (Gerard et al. 1999; Gill et al. 2000). 

With such a small number of samples (11) relative to the number of genes involved (9), it is 

likely that the resulting model is overly sensitive to any one dataset.  To evaluate this, we applied 

the TAO-Gen analysis to 11 datasets in which one sample from the original data was eliminated.  

In general, removing a sample resulted in deletion of a connection rather than inclusion of new 

connections.  Removing the dinI plasmid insert had no impact on the resulting network, 

removing the double plasmid insert only added a single additional connection between rpoH and 

rpoS, and removing the MMC sample (no plasmid insert) removed only one linkage (rpoH-rpoS).  

All other sample removals resulted in 2 to 5 changes in the network with no more than 1 

additional linkage in any case.  Three linkages (recA to lexA, lexA to umuDC and recF to umuDC 

remained unchanged for all sample deletions, all others were simply eliminated once or twice for 
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specific sample deletions with the exceptions of recA to rpoH which was removed in 4 sample 

deletions, and rpoS to rpoD which was removed in one sample deletion and switched direction 

for three sample deletions.  All additional linkages (there were 6 sample deletions with one 

additional linkage in each case) included at least one of the stationary phase regulators (rpoH, 

rpoS, rpod) suggesting the linkage between this class of genes and the SOS pathway may be too 

distant to quantify.  In general, with the exception of linkages to and between the stationary 

phase regulators, the model was fairly stable across deletions of single samples from the dataset. 

Discussion 

The network presented in Figure 2 is substantially smaller than that proposed by Gardner et al.  

Using their NIR algorithm, they identified a network with 45 linkages (excluding changes due to 

MMC or the plasmids) as compared to our network with only 13 gene linkages.  There are 

significant differences between the NIR and TAO-Gen algorithms that directly impact these 

findings.  In the NIR algorithm, parents for each gene are discovered independently of the other 

genes by finding the five parents that maximize the usual likelihood of the data given the model.  

The choice of 5 parents is somewhat arbitrary and the use of the data multiple times for each 

gene overstates the information available.  In addition, each gene is allowed to be a parent of 

itself creating a singularity in the model that results in most of the other parents having no 

significant impact on any given gene expression level.  Of the 36 linkages (six parents were 

chosen for recF) identified by the NIR algorithm, all 9 genes have significant linkages with 

themselves as parents.  Of the remaining 27 linkages, only 9 are significant (p<0.05 by a Wald 

test) as follows: ssb activates recA and recF, recA suppresses lexA and rpoH, dinI activates recA, 

umuDC and rpoS, rpoH suppresses rpoD, and rpoS suppresses recF.  The TAO-Gen algorithm, 

in contrast, restricts the network to acyclic linkages and uses the full likelihood (all of the data 
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simultaneously) to find the best network.  Of the nine significant linkages identified by the NIR 

algorithm, the TAO-Gen algorithm identified only the suppression of lexA and rpoH by recA.  

The significant findings by the NIR algorithm do not identify recA as a key controlling gene in 

the network whereas the TAO-Gen algorithm does.   

Mathematically the data obtained by Gardner et al. does not have sufficient statistical support to 

identify a cyclical network.  The data required to estimate parameters in a cyclical network must 

contain observations at different time points to estimate the dynamic characteristics of a cyclic 

network.  In order to directly compare the Gardner et al. network to the one shown in Figure 2, 

the Gardner et al. network was made acyclic by removing the linkages for genes as their own 

parents and by removing the linkage between dinI and lexA.  Applying the Bayesian estimation 

algorithm (Toyoshiba et al.), the posterior log-likelihood for this model had a mean value of 

329.2 compared with 354.7 from the model identified by the TAO-Gen algorithm, suggesting a 

considerably better fit of the model in Figure 2 to the data.  Using the “known model” suggested 

by Gardner et al. the resulting mean of the posterior log-likelihood was 311.0 also suggesting a 

serious lack of fit.   

So is the model presented in Figure 2 a better representation of the gene interaction network for 

the SOS pathway in E. coli?  The resulting network has identified the significant gene linkages 

seen in the data.  It correctly identifies recA as playing the major role in control of this pathway 

and provides estimates of the steady-state linkage between these genes.  The interpretation of the 

values estimated for the parameters linking genes in Figure 2 does not preclude that the network 

could be dynamic with substantial feedback; such a possibility is likely.  But given the data 

available, this network identifies the key linkages that exist as the network changes from one 



 

 

20

20

steady-state to another.  What this means can be explained by example.  The activation of recF 

by recA has a mean value of 0.393.  This implies that, if the steady state expression of recA 

doubles, then the steady state expression of recF would fold increase by the exponential of 

0.393·ln(2) or 1.32 fold.  Singular changes in any gene in the network can easily be used to 

calculate new steady-state conditions for the network. 

Illustrating that one can achieve a network from a given data set does not assess the reliability of 

a new algorithm.  A better method is to evaluate the probability of choosing the correct network 

using data from a known network.  Monte Carlo simulation was used to generate 100,000 

artificial gene expression arrays from the network in Figure 1 using four different sets of model 

parameters as defined in Table 2.  When the algorithm is applied to these data, the resulting 

optimal network is identical to the network shown in Figure 1 in all four cases.  This illustrates 

that the algorithm is consistent for extremely large data sets.  To assess the behavior of the 

algorithm for small samples, the four sets of 100,000 artificial arrays were subdivided into 1000 

datasets of 100 arrays, 2000 datasets of 50 arrays, 4000 datasets of 25 arrays and 10,000 datasets 

of 10 arrays.  For each dataset, the algorithm was applied and an optimal network chosen; the 

results appear in Table 2. 

There are 543 possible acyclic networks that can arise from a combination of 4 genes.  Table 2 

summarizes the frequency (out of 543 total networks) seen for various network structures 

(column 3 is the correct structure).  For example, with 100 arrays in the sample, the correct 

network is chosen 922/100=92% of the time for parameter set A (row 1 of Table 2).  In general, 

with 100 replicate arrays, the search algorithm is better than 92% effective in finding the right 

network.  The most common error in finding an array for this sample size is to add an additional 
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linkage between gene 2 and gene 4 (column 8 in Table 2, 1-8%).  When the sample size is halved 

to 50 arrays, accuracy drops to between 86% and 93% with the same additional linkage being the 

most common mistake (2-9%).  With only 25 arrays, accuracy is still between 70 and 80% with 

most of the errors occurring for the same additional linkage (4-8%), single deletions of linkages 

(3-4%) or reversals of individual linkages (2-3%).  Replicate samples consisting of just 10 arrays 

surprisingly find the correct network 32-38% of the time with 30-40% of the errors being 

additional linkages, single linkage removal or single linkage reversals. The simulations suggest 

the algorithm generally detects networks having very close topologies to the correct one even if 

the sample number is severely diminished. 

As noted in the Methods section, the algorithm being used to find the best network is intended as 

an approximation for using the posterior likelihood to identify the best network.  In the last 4 

columns of Table 2, the correct network has the best posterior likelihood in every case for which 

it is the optimal network.  In addition, the algorithm works well at placing the correct network in 

to the top 3, ranging from about 99% for samples involving 100 arrays to 58% for samples 

consisting of 10 arrays.  These simulations suggest that the "best" directed acyclic network does 

not necessarily mean that all the links are real or that they are causal.  On the other hand, they do 

suggest that the limitations inherent to small sample sizes could be reduced by considering not 

only the “best” network, but several of the “best” networks and using other resources, such as 

knowledge of the existing pathways, to decide which makes the most sense. 

These results were expanded to look at an 8 gene network, effectively a combination of 2 four-

gene networks like that in Figure 1, where gene 2 activates gene 5 and gene 3 activates gene 8 

(Figure 4).  In this case, it is computationally impossible to conduct the exhaustive search as in 
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the 4 gene case because the number of acyclic networks is ~ 78x1013.  Instead 1000 datasets were 

randomly generated for each sample case (100, 50, 25, 10) and the TAO-Gen Algorithm was 

applied to identify a “best” network for each dataset. Table 3 shows the numbers of connections 

detected by the algorithm, where the rows and columns correspond to parents and child genes 

respectively. For example the algorithm detected the incorrect path from gene 1 to gene 2 only 

three times in 1000 datasets with 100 samples.  The red elements show the true connections.  For 

100 replicate samples (microarrays), the TAO-Gen algorithm identified the correct network in 

95% of the cases.  As before, the deviations from the correct model were all cases of adding an 

additional linkage or removing a single linkage.  As the sample size dropped to 50, 25 and 10, 

the correct network was identified 76%, 30% and 1% of the time respectively.  While the 

performance in finding the fully correct network became poor, the linkages in the correct 

network were generally properly identified with high frequency again indicating the cases where 

the network was incorrect generally involved single or double alterations in the pathways of the 

network. The simulation using 8 genes accentuates the importance of study design and prior 

knowledge about gene linkages in trying to find the best network to explain the data. 

Many issues remain to be studied.  It is unclear whether the TAO-Gen algorithm works better or 

worse than other algorithms in identifying gene interaction networks.  The main problem arises 

from the fact that other algorithms have not used computer simulations to look at model specifity 

to directly address this issue.  Also, the use of acyclic models to develop gene interaction 

networks is somewhat limited.  A fully dynamic model using time-dependent differential 

equations could be used with the TAO-Gen algorithm provided multi-time point data was 

available; the method would simply need to link models across time as suggested elsewhere 

(Toyoshiba et al.) or use dynamic Bayesian netowrks.  Here we assume samples are independent; 
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in time course data, that would not necessarily be the case and the error structure between 

samples would need to be altered (in equation 4 and subsequent derivations) to account for the 

longitudinal nature of such data.  In any case, the analysis would certainly require more data than 

is generally available.  Perhaps the biggest advantage of using a Bayesian-linked analysis 

algorithm would occur when prior knowledge, based on known biological linkages such as those 

derived from bioinformatic evaluations of transcription sequences, is used to limit the range of 

networks to be explored.  The TAO-Gen algorithm could work in these situations, but would 

need to be modified to use a prior different than the uniform prior used in this case.   

 

Conclusion 

In this paper, we have presented the TAO-Gen algorithm for identifying gene interaction 

networks.  The algorithm was applied to data on the SOS pathway in E. coli to identify gene 

linkages.  The resulting network is shown to be superior to a network derived by the NIR 

algorithm in (Gardner et al. 2003) both biologically and statistically.  Unlike the NIR algorithm, 

this algorithm identified a statistically significant role of recA in controlling the SOS pathway; 

the linkages from recA in the NIR-derived network were generally not significant.  To 

demonstrate the accuracy of the algorithm for varying sample sizes, a simulation study was done.  

It was found that for moderate-sized networks, the algorithm performs accurately with most 

errors being minor additions or deletions of a single linkage.  However, the simulations do 

suggest that sample sizes need to be increased if large networks are to be identified and 

quantified using gene expression data. 
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Table 1: Estimated means, standard deviations and percentage above 0 for all interactions 
in SOS response genes for E. coli Identified as Linked by the TAO-Gen Algorithm (see 

Figure 2)  

From To Type Mean Std % < 0 

lexA Activate 0.435 0.065 0.00 
ssb Activate 0.137 0.056 0.99 

recF Activate 0.393 0.161 0.93 
umuDC Activate 0.365 0.129 0.42 
rpoD Repress -0.356 0.091 99.97 

 

rpoH Activate 0.193 0.093 2.06 
ssb Repress -0.158 0.065 98.86 
dinI Repress -0.287 0.156 96.61 lexA 

umuDC Repress -0.550 0.169 99.85 
ssb rpoD Repress -0.077 0.029 99.46 

recF umuDC Activate 0.512 0.204 0.81 
rpoH ssb Activate 0.031 0.012 0.55 
rpoS rpoD Activate 0.496 0.108 0.02 

recA Activate 0.458 0.080 0.00 
lexA Activate 0.396 0.041 0.00 
ssb Activate 2.443 0.039 0.00 

recF Activate 0.062 0.130 30.95 
dinI Activate 1.188 0.110 0.00 

umuDC Activate 1.007 0.093 0.00 
rpoD Activate 1.409 0.069 0.00 
rpoH Activate 3.319 0.074 0.00 

Plasmid 
insert 

rpoS Activate 0.513 0.100 0.00 
recA Activate 0.979 0.282 0.06 
ssb Activate 0.479 0.108 0.05 

recF Activate 0.637 0.345 3.28 
dinI Activate 0.896 0.282 0.07 

umuDC Activate 0.969 0.252 0.05 
rpoD Activate 0.460 0.221 2.12 
rpoH Activate 1.233 0.204 0.00 

 

rpoS Activate 1.255 0.248 0.00 

MMC 

recA 
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Table 2:  Results from 100,000 Monte Carlo simulations of four hypothetical four-gene networks (A, B, C, D)  

describing the ability of the TAO-Gen algorithm to specify the correct network 
 

Frequency of resulting optimal network structure 
Sample 

Size 
True 

Model 
  

Rank of the posterior likelihood for the true 
network over all possible 543 acyclic networks 

 
       1                2                 3                 4 -10 

A 922 (92%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 68 (7%) 0 (0%) 922 (92%) 52 (5%) 10 (1%) 16 (2%) 
B 977 (98%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (1%) 0 (0%) 977 (98%) 17 (2%) 4 (0.4%) 2 (0.2%) 
C 929 (93%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 71 (7%) 0 (0%) 929 (93%) 50 (5%) 8 (1%) 13 (1%) 

100 
arrays 
1000 
sims D 980 (98%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (1%) 0 (0%) 980 (98%) 13 (1%) 5 (0.5%) 2 (0.2%) 

A 1716 (86%) 4 (0.2%) 3 (0.2%) 6 (0.3%) 4 (0.2%) 165 (8%) 0 (0%) 1716 (87%) 157 (8%) 34 (2%) 70 (4%) 
B 1841 (92%) 8 (0.4%) 0 (0%) 4 (0.2%) 8 (0.4%) 41 (2%) 0 (0%) 1841 (92%) 82 (4%) 20 (1%) 55 (3%) 
C 1745 (87%) 6 (0.3%) 4 (0.2%) 3 (0.2%) 6 (0.3%) 175 (9%) 0 (0%) 1745 (88%) 128 (6%) 41 (2%) 62 (3%) 

50 
arrays 
2000 
sims D 1860 (93%) 4 (0.2%) 0 (0%) 2 (0.1%) 0 (0%) 46 (2%) 0 (0%) 1860 (93%) 68 (3%) 30 (2%) 42 (2%) 

A 2920 (73%) 76 (2%) 72 (2%) 56 (1%) 77 (2%) 328 (8%) 3 (0.1%) 2920 (73%) 423 (10%) 112 (3%) 387 (10%) 
B 3179 (80%) 92 (2%) 55 (1%) 48 (1%) 47 (1%) 192 (5%) 8 (0.2%) 3179 (79%) 348 (9%) 133 (3%) 249 (6%) 
C 2891 (72%) 60 (1%) 100 (2%) 56 (1%) 76 (2%) 296 (7%) 4 (0.1%) 2891 (72%) 404 (10%) 114 (3%) 444 (11%) 

25 
arrays 
4000 
sims D 3086 (77%) 76 (2%) 96 (2%) 48 (1%) 48 (1%) 164 (4%) 8 (0.2%) 3086 (77%) 328 (8%) 149 (4%) 365 (9%) 

A 3198 (32%) 909 (9%) 741 (7%) 230 (2%) 149 (2%) 328 (3%) 497 (5%) 3198 (32%) 1027 (10%) 781 (8%) 2389 (24%) 
B 3768 (38%) 1002 (10%) 1051 (10%) 220 (2%) 309 (3%) 378 (4%) 567 (6%) 3768 (38%) 966 (10%) 821 (8%) 2519 (25%) 
C 3177 (32%) 892 (9%) 691 (7%) 230 (2%) 151 (2%) 398 (4%) 457 (5%) 3177 (32%) 1232 (12%) 769 (8%) 2347 (23%) 

10 
arrays 
10000 
sims D 3768 (38%) 1052 (10%) 1031 (10%) 280 (3%) 259 (3%) 538 (5%) 477 (5%) 3768 (38%) 1146 (11%) 871 (9%) 2371 (24%) 

β 14

β 34

β 23

β 13

A β14=2.0, β13=0.8, β23=0.8, β34=-1.3, σ1= σ2= σ3= σ4=1.0      
B β14=2.0, β13=0.8, β23=0.8, β34=-5.0, σ1= σ2= σ3= σ4=1.0      
C β14=2.0, β13=0.8, β23=0.8, β34=-1.3, σ1= σ2= σ3= σ4=1/3 
D β14=2.0, β13=0.8, β23=0.8, β34=-5.0, σ1= σ2= σ3= σ4=1/3 
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Table 3: Number (percentage) of linkages between two genes identified by the TAO-Gen algorithm in 1000 

Monte Carlo simulations of the hypothetical eight-gene network shown in Figure 3 (red numbers indicate true 
linkages, black numbers indicate non-existent linkages) 

 
To Cell Number 

From Gene 
Number 

1 2 3 4 5 6 7 8 

1 ---- 3 (0.3%) 1000 (100%) 1000 (100%) 4 (0.4%) 1 (0.1%) 4 (0.4%) 5 (0.5%) 
2 0 (0%) ---- 999 (99.9%) 9 (0.9%) 1000 (100%) 1 (0.1%) 3 (0.3%) 7 (0.7%) 
3 0 (0%) 1 (0.1%) ---- 1000 (100%) 0 (0%) 0 (0%) 0 (0%) 1000 (100%) 
4 0 (0%) 0 (0%) 0 (0%) ---- 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
5 0 (0%) 0 (0%) 0 (0%) 3 (0.3%) ---- 0 (0%) 1000 (100%) 999 (99.9%) 
6 2 (0%) 0 (0%) 2 (0.2%) 2 (0.2%) 2 (0.2%) ---- 1000 (100%) 8 (0.8%) 
7 0 (0%) 0 (0%) 0 (0%) 1 (0.1%) 0 (0%) 0 (0%) ---- 1000 (100%) 

100 
Chips 

8 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) ---- 
1 ---- 4 (0.4%) 980 (98%) 1000 (100%) 23 (2.3%) 11 (1.1%) 23 (2.3%) 8 (0.8%) 
2 8 (0.8%) ---- 977 (97.7%) 19 (1.9%) 989 (98.9%) 6 (0.6%) 13 (1.3%) 24 (2.4%) 
3 14 (1.4%) 2 (0.2%) ---- 995 (99.5%) 3 (0.3%) 3 (0.3%) 9 (0.9%) 1000 (100%) 
4 0 (0%) 0 (0%) 5 (0.5%) ---- 0 (0%) 0 (0%) 1 (0.1%) 0 (0%) 
5 2 (0.2%) 9 (0.9%) 14 (1.4%) 7 (0.7%) ---- 4 (0.4%) 991 (99.1%) 973 (97.3%) 
6 10 (1%) 4 (0.4%) 15 (1.5%) 13 (1.3%) 15 (1.5%) ---- 989 (98.9%) 11 (1.1%) 
7 1 (0.1%) 0 (0%) 0 (0%) 7 (0.7%) 7 (0.7%) 2 (0.2%) ---- 998 (99.8%) 

50 
Chips 

8 0 (0%) 0 (0%) 0 (0%) 5 (0.5%) 0 (0%) 0 (0%) 2 (0.2%) ---- 
1 ---- 33 (3.3%) 832 (83.2%) 960 (96%) 26 (2.6%) 18 (1.8%) 26 (2.6%) 50 (5%) 
2 20 (2%) ---- 751 (75.1%) 63 (6.3%) 912 (91.2%) 14 (1.4%) 57 (5.7%) 94 (9.4%) 
3 37 (3.7%) 46 (4.6%) ---- 933 (93.3%) 10 (1%) 5 (0.5%) 46 (4.6%) 962 (96.2%) 
4 1 (0.1%) 0 (0%) 63 (6.3%) ---- 2 (0.2%) 0 (0%) 2 (0.2%) 11 (1.1%) 
5 5 (0.5%) 50 (5%) 59 (5.9%) 34 (3.4%) ---- 9 (0.9%) 905 (90.5%) 811 (81.1%) 
6 9 (0.9%) 10 (1%) 19 (1.9%) 38 (3.8%) 64 (6.4%) ---- 857 (85.7%) 69 (6.9%) 
7 2 (0.2%) 0 (0%) 21 (2.1%) 24 (2.4%) 60 (6%) 19 (1.9%) ---- 964 (96.4%) 

25 
Chips 

8 2 (0.2%) 0 (0%) 13 (1.3%) 9 (0.9%) 0 (0%) 0 (0%) 33 (3.3%) ---- 
1 ---- 51 (5.1%) 516 (51.6%) 702 (70.2%) 63 (6.3%) 30 (3%) 73 (7.3%) 141 (14.1%) 
2 49 (4.9%) ---- 335 (33.5%) 155 (15.5%) 590 (59%) 35 (3.5%) 171 (17.1%) 166 (16.6%) 
3 73 (7.3%) 84 (8.4%) ---- 596 (59.6%) 67 (6.7%) 16 (1.6%) 126 (12.6%) 641 (64.1%) 
4 23 (2.3%) 15 (1.5%) 227 (22.7%) ---- 11 (1.1%) 8 (0.8%) 22 (2.2%) 71 (7.1%) 
5 16 (1.6%) 106 (10.6%) 79 (7.9%) 87 (8.7%) ---- 33 (3.3%) 519 (51.9%) 375 (37.5%) 
6 35 (3.5%) 30 (3%) 73 (7.3%) 93 (9.3%) 95 (9.5%) ---- 408 (40.8%) 187 (18.7%) 
7 9 (0.9%) 18 (1.8%) 74 (7.4%) 79 (7.9%) 168 (16.8%) 51 (5.1%) ---- 693 (69.3%) 

10 
Chips 

8 3 (0.3%) 2 (0.2%) 68 (6.8%) 51 (5.1%) 24 (2.4%) 8 (0.8%) 135 (13.5%) ---- 
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Figure legends 

 

Figure 1: A simple gene interaction network consisting of four genes. 

 

Figure 2: Network linkages of key genes in the SOS response in E. coli as identified by the TAO-Gen 

algorithm. 

 

Figure 3: A literature-based linkage map between genes in the SOS response in E. coli. The map 
represents inducible genes/proteins in the SOS response for repair from DNA damage. Blue lines 
indicate pathways in the normal repair process and red lines with arrows activation/induction due 
to an exposure to damage agents. Recombination & repair, DNA damage-inducible protein, 
Nucleotide excision repair, Error-prone repair and Stationary-phase regulator have family 
molecules in each box.  Pink circles are genes used for the analysis. 

 

Figure 4: A hypothetical 8 gene network used for the Monte-Carlo simulations in Table 3. The 
numbers attached to the arrows show linear parameters, where positive numbers correspond to 
up-regulations and negative numbers down-regulations. 
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