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Abstract  

Background: Ambient air ozone is a pulmonary irritant that has been associated with respiratory 

health effects including increased lung inflammation and permeability, airway hyper-reactivity, 

respiratory symptoms, and decreased lung function. Ozone exposure estimation is a complex task 

because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure 

estimation, various spatiotemporal methods have been developed worldwide. 

Objectives: The objective of this work was to compare the accuracy of three spatiotemporal 

models to predict summer ground-level ozone in Quebec, Canada. 

Methods: We developed a land use mixed effects regression (LUR) model based on readily 

available data (air quality and meteorological monitoring data, road networks information, 

latitude), a Bayesian Maximum Entropy model incorporating both ozone monitoring station data 

and the land use mixed model outputs (BME-LUR), and a kriging method model based only on 

available ozone monitoring station data (BME kriging). We performed leave-one station out 

cross-validation and visually assessed the predictive capability of each model by examining the 

mean temporal and spatial distributions of the average estimated errors. 

Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest RMSE (7.06 

ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 

= 0.414, RMSE = 9.164). 

Conclusions: Our findings suggest that errors of estimation in the interpolation of ozone 

concentrations with BME can be greatly reduced by incorporating outputs from a LUR model 

developed with readily available data. 
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Introduction  

Tropospheric ozone (O3) is a photochemical pollutant that has increased globally in 

concentration since the 19th century (Bogaert et al. 2009). Short and long-term exposure to 

ambient ozone has been associated with a variety of adverse health outcomes, including 

respiratory, cardiovascular, neurological conditions, and possibly increased mortality (Chen et al. 

2007; EPA 2006; INRS 1997; Jerrett et al. 2009). 

Large population studies designed to assess the health risks of ozone exposure need accurate 

exposure estimates. The assessment of the exposure of a population is a complex task because 

ozone exposure exhibits complex spatiotemporal patterns, which present considerable modeling 

challenges. Modeling methods have been developed worldwide to improve exposure assessment 

of population studies and to capture small spatiotemporal variations in pollutant levels like ozone 

(Briggs 2005; Jerrett et al. 2005; Zou et al. 2009). For instance, land use regression (LUR) 

models are used to predict pollutant concentrations at unmonitored sites based on regression 

models of geo-referenced covariates that predict observed (i.e. measured) data from monitored 

sites (Beelen et al. 2009; Jerrett et al. 2005). Kriging and the Bayesian Maximum Entropy 

(BME) framework are interpolation methods that assign a series of weights to observed 

monitoring station data to compute interpolated values of pollutants at unmonitored sites (Bell 

2006; Bogaert et al. 2009; Christakos and Vyas 1998; de Nazelle et al. 2010). 

The main objective of this work was to compare the accuracy of three spatiotemporal models to 

predict ground-level ozone in Quebec (Canada). The models were: a land use mixed effects 

regression model (LUR) developed with readily available data (air quality and meteorological 

monitoring data, road networks information, latitude) and two spatiotemporal interpolation 
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models:  a  combined land use  Bayesian Maximum  Entropy  model  incorporating both ozone  

monitoring station data  and the  land use  mixed model  outputs  (BME-LUR),  and a kriging 

method based only on available data from ozone monitoring stations (BME kriging).       

Methods  

Data used for the study  

 Ozone monitoring data 

We retrieved hourly ground level ozone observations for 1990 through 2009 from the National 

Air Pollutant Surveillance (NAPS) program (Environment Canada, 2012) (Figure 1). We only 

calculated 8-hour midday (9am – 5pm) ozone concentrations during summer months (May 

through September) because ozone concentrations during the winter and at night are almost null 

in Quebec, and included data for all available days with less than 25% missing data (i.e., days 

with hourly data for at least six of the eight hours). 

In Quebec, the number of ozone monitoring stations increased from two stations in 1990 to a 

total of 50 stations available at the end of 2009. Up to 51 stations were available at some point in 

time during the period, resulting in 156,060 total observations (station days). All stations had a 

limit of detection (LOD) of 1 ppb by 1995, and most stations had a LOD of 10 ppb before 1995. 

Measured 8-hour daily ozone levels were recorded as 0 ppb for 373 observations (station days) 

during the study period, of which 355 observations were recorded before 1995 when less 

sensitive instruments were in use. However, these data were retained in analyses as they 

represented only 0.02% of the observations used to develop the three models. 
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We extracted road density data from the Digital Mapping Technology inc. (DMTI) Road Layer 

Dataset (2010) and retained major roads, primary and secondary highways, and freeways from 

all road layers. We measured the total kilometers of such roads within a 1 km buffer around the 

ozone stations and the road density was expressed in km/πkm2. 

 Meteorological data 

We obtained meteorological data from the National Climatic Data and Information Archive of 

Environment Canada for the period of 1990-2009 (National Climatic Data and Information 

Archive, 2011), between May and September. We extracted mean 8-hour temperature (from 9 

am to 5 pm for days with at least 75% of the data available) and daily precipitation records for all 

weather stations in Quebec. Locations of all available meteorological stations are presented in 

Figure 1. 

Development of models  

The following section describes the three models developed to predict exposure to ground-level 

ozone concentrations (8-hour average) in Quebec and the method used for comparing their 

predictive ability. 

 Land use regression mixed effects model 

We developed a linear mixed effects regression (LUR) model to predict ozone concentrations 

measured at monitoring sites with the R software (2010). Temperature, precipitation, day of year, 

year, road density in a one km buffer, and latitude were the variables used in the model. 

Temperature and precipitation data were from the closest weather station to each ozone-

monitoring site. We shifted and rescaled these variables to produce coefficients of a similar 
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range  and to render the  intercept  interpretable. Specifically, we  subtracted 121 from  the  numeric  

day of  the  year to shift  its  range  from  121–274 to 0–153,  subtracted  1990  from  the  year to 

convert  its  range  from  1990–2009 to 0–19, and subtracted 4,995.9 (the  minimum  value) from  the  

latitude  variable  to standardize  its range  to  0–583.3  km  (such that  a  latitude  of  0  represents  that  

latitude of the southerly most ozone monitoring station.)     

We  used linear splines  to model  temperature  (one  knot  at  18ºC), road density  (one  knot  at  15  

km/πkm2),  and latitude  (one  knot  at  50 km) because  their relationships  with ozone  were  not  

linear.  We  determined the  number and location of  the  knots  by visual  inspection, and selected 

linear splines  over cubic  splines  to increase  simplicity,  as  the  results  were  nearly as  good  (i.e. the  

root  mean square  difference  between the  prediction of  the  two models  was  <0.81  ppb). 

Therefore, associations  with  ozone  were  represented by two model  coefficients  (one  for each 

linear segment) for each of these variables.   

We  nested  values  within stations, which were  treated as  a  random  intercept. Thus, we  estimated 

average 8-hour daily ozone concentrations for each observed station-day as follows:    

              

             

O3 = β0 + β1Xlow_temperature + β2Xhigh_temperature + β3Xprecipitation + β4Xdayofyear + β5Xyear + β6Xlow_road + 

β7Xhigh_road + β8Xlow_latitude + β9Xhigh_latitude + ustation + ε ,                                                                 [1]  

 BME-LUR and BME kriging analysis 

We developed both BME kriging and BME-LUR models for a territory involving census districts 

of population density greater than 5 people per square km in 2006 (Statistics Canada 2007). This 

was to ensure that a large proportion of the Quebec population would be covered by the study 

area, without including areas with very low population. We created a buffer of 50 km around our 
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study area  to avoid any edge  effects  caused by lack of  data  just  outside  a  census  district. 

Therefore, the  selected study region was  situated between approximately 42 to 50 decimal  

degrees  North latitude  and 65 to 80 degrees  East  longitude  encompassing a  total  area  of  103,110 

km2  (Figure 1).   

‘‘Hard”  data  used to develop the  BME  kriging and BME-LUR models  were  the  measured ozone  

concentration  data  provided by  the  ozone  monitoring stations  for all  eligible  station-days  during 

1990  to 2009. “Soft”  data  refers  to  information that  can be  used to improve  estimates  by 

compensating for the  limited amount  of  measured data. Usually, soft  information is  based on 

some  a priori  knowledge  of  the  physical  processes  that  affect  the  spatiotemporal  distribution of  

the  pollutant.  For our analysis,	
  the soft data were ozone levels (and their respective normal

errors) estimated from	
   the land use mixed effects regression model for 1km	
  x 1km grid	
  

cells	
  within the study	
  area for May	
  – Sept,	
  2005, the year used as the reference year for

cross-­‐validation	
  (see below).  

Soft data from the LUR model was composed of an ozone estimate for each location as well as 

an associated error estimate. The error estimated for each modeled point (each center of the 1 km 

x 1 km grid cell) was the sum of squares of the standard errors from the fixed effects and the 

square of the standard deviation of the soft random intercept. For the ozone estimate itself (soft 

data), only the fixed portion of the LUR model was used to create a value, since the mean 

random effect was 0. There were a total of 278,633 possible grid points per day (~ 42 million 

spatio-temporal points were possible overall), with the ozone levels estimated using data from 

the closest meteorological station. Soft data were estimated only when all predictors were 

available. It was impossible for a large portion (~99%) of points to be estimated due to missing 
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precipitation  or  temperature  data  at  the  closest  monitor  (mainly in the  inhabited northern regions  

of  our study area).  However,  this  did not  influence  the  cross-validation analysis  because  the  

analysis was limited to the location of the ozone monitors  that had sufficient soft data.   

We  treated kriging as  a  special  case  of  the  BME  in which we  used only hard data  (i.e. station 

days  with ozone  monitoring station data) without  including soft  data  estimates  from  the  LUR  

model, and thus  refer to this  model  as  BME  kriging. Because  of  the  spatiotemporal  nature  of  the  

model  used, kriging in this  instance  refers  to a  spatiotemporal  interpolation of  ozone, and not  

merely a  spatial  estimate. We  implemented  the  BME-LUR and BME  kriging analysis  to estimate  

daily 8-hour average  ozone  levels  at  a  1 km2  grid using Matlab software  (2007) and the  SEKS-

GUI v. 0.69.5 program (Yu et al. 2007).  

To account  for short-term  and small-scale  patterns  in the  ozone  data  and to remove  any spatio-

temporal  autocorrelative  patterns, we  used a  Gaussian de-trending model  (Yu et  al. 2007) at  a  

distance  of  25 km  and a  temporal  trend of  2 days. This  detrending  is  used to facilitate  the  

interpolation of  the  remaining stochastic  structure  of  the  data. Such detrending algorithms  are  

common in spatial  estimation techniques  such as  kriging. While  several  detrending methods  do 

exist, the  SEKS-GUI provides  the  Gaussian detrending algorithm  as  its  only detrending option. 

From  visual  inspection  of  time  series  of  ozone  levels  at  monitoring stations, and of  spatial  

distributions  of  daily ozone  levels  across  all  stations, Gaussian detrending  appeared to be  a 

sufficient  function to remove  spatiotemporal  trends. The  detrended  data  was  then used as  our  

stochastic spatiotemporal dataset for BME kriging and BME-LUR modeling.      

Ozone  soft  and hard data  was  not  normally distributed. We  thus  corrected soft  and hard data 

using n-scores normalization prior to analysis, as a normal distribution is a necessary condition 
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for accurate  estimation by the  BME  (Yu et  al.  2007).  We  constructed a  spatiotemporal  

covariance  model  to describe  the  stochastic  processes  affecting ozone  levels  after localized de-

trending. We  used the  resulting model  for estimation of  the  ozone  values, followed by de-

normalization and re-trending of the estimated value.  

Cross-validation   

We performed cross-validation to test the predictive ability of the different models and to find 

the best predictive model. Cross-validation was performed using data from 2005 as a sample 

year. We did cross-validation for summer days at each monitoring station for which a LUR 

model estimate could be created (n= 3,986 station days points among 30 stations). In BME-

kriging and BME-LUR, we removed all hard data up to one year prior to each cross-validation 

date at each monitoring station, for the cross-validation at that station. This was done to 

eliminate the effects of temporally near data. This approach allows for the assessment of the 

estimation accuracy in different space-time domains, while avoiding the potentially biased 

interpretation of the estimation results induced by purely temporal autocorrelation (Yu et al. 

2009). To perform our cross-validation, we removed a given station day’s hard data and 

estimated it using the remainder of the data (leave-one-out validation). The soft data used for the 

cross-validation did contain the information from all stations (i.e. the station was not removed 

during the construction of the LUR), since removing individual stations from the leave-one-out 

analysis would have had a marginal effect on the construction of the LUR model and subsequent 

soft data, as each station represents approximately 2% of the data (1/50 stations). 

We compared estimation errors (estimated values minus observations) across methods for each 

station day versus the ozone values for that monitoring station at that time. We used root mean-
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square  errors  (RMSE) to estimate  the  total  magnitude  of  error. We  also defined  a  percent  change  

in mean square  error (PCMSE) as  used in de  Nazelle  et  al. (2010), where  the  results  correspond 

to the  percent  increased or decreased estimation accuracy of  the  ozone  concentration prediction 

based on  the  LUR  or BME  kriging models  compared with  corresponding predictions  based on 

the  BME-LUR.  We  assessed visually  for unusual  spatial  or  temporal  patterns  in the  distributions  

of the average estimated errors (estimated versus observed data).   

Lastly, we  compared observed exceedances  of  the  8-hour Canadian Ambient  Air Quality 

Standard  (i.e.,  65 ppb) identified using monitoring  station  data  to exceedances  identified using 

model  estimates. To do so, we  first  transformed  monitored and estimated ozone  data  variables 

into  binary variables  (0  = no exceedance, 1  =  exceedance) and  compared the  estimated 

exceedances to the observed exceedances using Cohen’s kappa measure of agreement.    

Results  

Table 1 presents the description of the data used for the development of the LUR model for the 

years 1990–2009. Predictors and ozone data were available at 39 ozone monitoring stations on 

2,441 days. Since information was not available concurrently at all stations and all days, we used 

29 685 spatiotemporal points (station days) out of 118,560 possibilities (152 days × 20 years × 

39 stations) to develop the model. These 29,685 points are spatiotemporal moments where we 

concurrently had information on ozone levels, temperature, and precipitation. Eight-hour ozone 

concentrations varied from 0 to 104 ppb, eight-hour temperatures varied from -3.5 to 33.9ºC, 

daily precipitation varied from 0 to 123.8 mm/day, and road density from 0 to 25.4 km/πkm2. 

The range of latitude values was between 0 and 583.3 km. 
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The  LUR  model  is  found in Table  2. Considering the  estimated effect  size  (see  footnote  of  Table  

2 for clarification on the  calculation)  of  each variable,  temperature, day of  the  year,  and road 

density were  the  main predictors. In this  model, coefficients  for linear spline  functions  of  

temperature  (≤18ºC and >18ºC) were  positively associated with ozone  concentrations  while  

precipitation, day of  the  year, year, and coefficients  for linear spline  functions  of  low  and high 

road density and of  low  latitude  (<50  km) were  negatively associated with ozone  levels. Overall, 

all  predictors  had a  significant  association, except  the  coefficient  of  the  linear spline  function for 

high latitude. To better visualize the fixed   effects, LOESS  plots  of  bivariate relationships   of  these  

predictor variables  are  presented in the  Supplemental  Material,  Figure  S1. Every coefficient  of  

the  LUR model  was  in agreement  with the  LOESS  plots, and with known processes  of  the  

formation and the  destruction of  ozone, except  for cold temperature. Based on the  LOESS  plot, 

we expected temperatures  between -3.5  and 18°C  to have  no relation with ozone, or the  relation 

to be  slightly negative,  while  in the  LUR model, after controlling for latitude, year and day of  the  

year, the relation between ozone and the lowest temperatures  was slightly positive.   

Table 3 describes hard and soft data used to build BME-LUR and BME kriging models. Hard 

data were observations at monitoring sites for 1990–2009 (n = 103,669 out of 156,060 station 

days with ozone data), while predicted soft data estimates were derived from the fixed effect 

portion of the LUR model and errors estimated from the fixed and random effects of the same 

model for the year 2005 only (152 days). Therefore, we could estimate 90,847 spatiotemporal 

points from the LUR model, considering the availability of temperature and precipitation 

information concurrently, out of around 42 million maximum possible spatiotemporal points 

(152 days × 278,633 possible grids points per day in our study area). For BME kriging and 
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BME-LUR, we used the same de-trending and covariance structures to describe the 

spatiotemporal covariance pattern in the data. The covariance model used to fit the measured 

spatiotemporal covariance of the data consisted of two components: a short-term (2-day 

exponential) long-distance (100-km exponential) trend that described the majority of the 

variability (covariance = 0.9), and a second component (covariance = 0.1) describing the weekly 

(3-day cosinusoidal) trend in covariance in time with a small spatial (i.e. local 12.5 km 

exponential) scale due to the cyclic nature of ozone in urban stations in Quebec, where ozone 

tends to be lower on the weekends and rises during week days. Modeled covariances as derived 

from the information above are presented in the Supplemental Material, Figure S2. 

Table 4 describes the cross-validation results for the three models, for the year 2005 at the 30 

stations available to produce the soft data with all mixed model predictors (n = 3,980). For the 

BME-LUR, on June 25th, estimates at 6 stations, all located in the southeastern portion of the 

study area could not be estimated with the BME-LUR. On that day, all measurements at these 

stations were high (hard data) (75-78 ppb) when compared to the range of values of the 

calculated soft data (28-48 ± 6.6 ppb) for that day. Overall, the BME-LUR was the most 

predictive model (R2 = 0.653), and had the lowest RMSE (7.06 ppb). The LUR model performed 

better and with greater precision (R2 = 0.466, RMSE = 8.747) than the BME kriging model (R2 = 

0.414, RMSE = 9.164). The BME-LUR outperformed the LUR model and BME kriging by 

19.9% and 23.0% using PCMSE, respectively. Finally, the Cohen’s kappa of the BME-LUR (n: 

18 predicted exceedances; kappa = 0.525, 95% CI: 0.495-0.555) obtained from the comparison 

of 8-hour Canadian Ambient Air Quality Standard (65 ppb) monitored (n: 34 observed 

exceedances) and estimated concentrations suggests moderately good agreement between the 
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model and the measurements. The BME-LUR outperformed both BME-kriging (n: 39 predicted 

exceedances; kappa = 0.169, 95% CI: 0.138-0.200) and the LUR model (kappa = 0 as no 

predicted value above 65 ppb). 

A graph of the distribution of errors in the ozone concentration estimates generated by each 

model (i.e., the difference between estimated and observed values) based on the leave-one-out 

analysis also demonstrated that the BME-LUR was the more accurate model (Figure 2). As can 

be observed in Figure 3, the RMSE of the three models appears stochastic in time. Figure 4 also 

shows that the RMSE of the BME-LUR in space (at all stations) was closest to zero in 

comparison to BME-kriging and the LUR. Figure 5 represents a map of predicted mean daily 

ozone levels (9h00-17h00) and standard errors (SE) at one km grid across the greater Montreal 

region for the summers 2006–2009. Levels of ozone are higher around the suburbs of Montreal 

compared to downtown metropolitan areas and concentrations are also greater in places far from 

highways (Figure 5a). Moreover, greater difference between observed and estimated ozone 

concentrations may be found in the northeast of the greater Montreal (Figure 5b). 

Discussion  

Overall, our findings suggest that error of estimation in the interpolation of ozone concentrations 

using the BME method may be improved with the inclusion of a LUR model developed with 

readily available database. 

We found that the estimation of ozone across monitoring sites was more accurate with the BME-

LUR model compared with other models; this difference was close to 20% in R2 and around 2 

ppb in RMSE. These results are consistent with previous work. For instance, Yu et al. (2009), 

which modeled air pollutant concentrations in North and South Carolina (USA), found that the 
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integration of  soft  information by the  BME  method effectively increased the  estimation accuracy 

for ozone  predictions  compared with estimates  derived using  BME  kriging.  Yu et  al.  (2009)  used 

measurements  from  monitoring stations as soft  data,  whereas  we  created  soft  data  from  outputs  

of  a LUR  model.  In Yu et  al. (2009), the  R2  and RMSE  values  were  not  reported, but  the  mean 

and standard deviation of  their  estimation errors  for daily estimates  were  similar to ours  (Yu:  

kriging  =  0.483 ±  7.035 and BME  =  0.177  ±  6.845  ppm;  present  study:  kriging  = 0.414 ±  9.164 

and BME-LUR  = 0.653 ±  7.057).  de  Nazelle  et  al. (2010) also found better predictive  accuracy 

for the  representation of  space-time  ozone  distribution in North Carolina  with a  BME  model  

based on  observed (hard) and modeled  (soft) data  from  a  stochastic  analysis  of  an urban-

intercontinental-scale  atmospheric  chemistry transport  model, compared with  kriging method 

estimates  based on hard  data  only.  We  found that, similar to de  Nazelle  et  al. (2010),  ozone  

estimates  further away from  monitoring stations  were  more  accurate  when soft  data  was  used in  

the  BME  versus  kriging alone. As  in our  work, their PCMSE  values  were  always  negative  

(between -1.486 and -27.699  depending on the  cross-validation radii  of  exclusion points), 

indicating that  the  integration of  observed and modeled prediction was  consistently more  

accurate  than relying solely on observations.  Furthermore, agreement  between modeled  and  

observed  Canadian Ambient  Air Quality Standard exceedances  was  highest  for estimates  based 

on the BME-LUR.  

We  found that  error estimates  from  the  BME-LUR model  were  more  accurate  where  monitoring 

stations  were  clustered in the  region of  the  study, such as  in the  southern (i.e. more  urban)  part  of  

Quebec  (Figure  4).  This  result  is  consistent  with Yu et  al. (2009), which indicated that  the  
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locations  where  the  estimates  exhibit  higher discrepancies  from  the  data  values  were  mostly 

close to regions of data scarcity.   

We showed that the LUR model was slightly more accurate (lower RMSE) than the BME 

kriging model (Table 4). Coefficients of the LUR model indicated that linear spline functions of 

temperature were positively associated with ozone concentrations, while precipitation, day of the 

year, year, and coefficients for linear spline functions of low and high road density and of low 

latitude were negatively associated with ozone levels (Table 2). The LUR model coefficients for 

the spline temperature variable are in line with the expected trend (EPA 2006) and suggest an 

increase of ozone with temperature, which is more pronounced at higher temperatures. With 

regards to road density, both coefficients for linear spline functions of low and high density were 

negative, and this may be explained by the fact that at regional scale, low traffic represents lower 

concentrations of ozone precursors (traffic related pollutant such as NOx), while at the local 

scale, low traffic represents lower destruction of ozone. The other fixed effects of the LUR 

model are also in agreement with the known atmospheric processes of ozone and highlight that 

its formation rely on various factors such as sunlight. Ozone concentrations are also greater with 

altitude and show diurnal and weekly variations with higher levels during weekdays (EPA 2006; 

Finlayson-Pitts and Pitts 1997). Lastly, the negative coefficient found for day of the year variable 

highlight the small intra-annual decrease in ozone levels from May to September in Quebec. 

Nevertheless, the fact that the LUR model was slightly more accurate than BME kriging is 

inconsistent with what was found by Beelen et al. (2009) who developed maps of ozone levels 

across the European Union using a regression model with altitude, distance to sea, major roads, 

high-density residential areas and a combination of meteorological data as predictors. They 
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obtained values of R2 = 0.54/0.38 and RMSE = 8.63/8.74 ppb respectively for the regression and 

kriging models at rural scale. At urban locations, kriging was more accurate than the regression 

model with only the high-density residential predictor (regression/kriging: R2 = 0.38/0.61 and 

RMSE = 7.32/5.84). Kriging methods predict well when a dense and representative monitoring 

network is available (Briggs 2006; Jerrett et al. 2005; Laslett 1994). In our study, BME-LUR was 

more accurate in estimating ozone levels than LUR and BME kriging at urban and suburban 

scales (i.e., island of Montreal and its surrounding area), and LUR was more accurate than BME 

kriging in urban areas only (Figure 4). In Quebec, the monitoring station network is relatively 

sparse and the good correlations between the predictors used in the LUR model and the 

measured ozone concentrations at monitoring stations may at least partially explain the relatively 

weak performance of BME kriging. 

We created maps representing mean ozone levels (9h-17h) and standard error predictions from 

the BME-LUR at one km grid for summers 2006-2009 to visualize how the model would 

estimate ozone in urban and suburban areas of the greater Montreal region. As observed in 

Figure 5, levels of ozone are higher around Montreal Island (suburban areas) compared to 

downtown metropolitan (center of Island) areas and concentrations are also greater in areas far 

from highways. This may be explained by the fact that the efficiency of ozone production 

depends on NOx concentrations. In areas with low NOx concentrations (e.g. in rural areas), ozone 

production increases with higher levels of NOx. In downtown metropolitan areas where the 

highest NOx concentrations may be found, there is net destruction of ozone by reaction with NO 

(EPA 2006). Also, we found greater difference between observed and estimated ozone 

concentrations in the northeast of the greater Montreal as indicated by Figure 5b, and this may be 
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explained by the  possible  incongruity  between soft  and hard data  points, hard data  points  

themselves, or by a possible lack of ozone stations outside the Montreal area.  

As  mentioned previously, 6 stations  could not  be  computed with the  BME-LUR  on June  25th. In-

depth analysis  reveals  that  all  these  stations  had high monitored values  (hard data)  when 

compared to the  range  of  values  of  the  calculated soft  data  for that  day. To our knowledge, this  

issue  has  not  been reported elsewhere  in the  literature  and investigations  of  BME  estimation 

failure should be realized in future studies.    

The developed BME-LUR model presents other limitations. For instance, the meteorological 

variables (temperature and precipitation) used to estimate soft data do not represent the complete 

atmospheric processes of ozone. This would have been more correctly assessed with the use of 

some integrated meteorology models like the Community Multiscale Air Quality (CMAQ) 

modeling system. However, such models do not capture small area estimations such as our LUR 

model predictions (US EPA 2012). Another limitation is that the LUR model predictions were 

only estimated for each one km grid of the territory due to computational constraints, as adding 

soft data at 100 m resolution would have dramatically increase the amount of time needed to run 

the BME-LUR. Computational time required to create maps is another limitation. In this study, 

90 days were needed to create maps of ozone levels for an area of 103,110 km2 at a resolution of 

1 km while running multiple processors on a high-powered computer (2.93 GHz 4-core 

processor and eight concurrent threads with 6 gb RAM). This computational time can be 

improved by reducing the resolution of the study area or the number of soft data points, as well 

as by estimating only points of interest (e.g. residential addresses of interest vs 1 km grid). 
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Despite  the  computational  demands, the  BME-LUR adds  value  to the  ozone  exposure  estimation  

because  it  generates  the  complete  probability distribution of  exposure  at  each point  in space  and 

time  (Yu et  al. 2007) and it  reduces  the  estimation errors. This  may lead to less  biased effect  

measures  and greater statistical  power in health studies  (Baker and Nieuwenhuijsen  2008;  Briggs  

2005; Goldman et al. 2012).     

For  implementation in future  health studies, the  BME-LUR might  be  improved  by including 

additional  predictors  in the  LUR model, such as  population density, land use, topography, and 

industrial  sources  of  precursors  (Hoek et  al. 2008). As  noted by Beelen et  al. (2009), 

stratification  of  the  study area  (e.g. separating urban and rural  areas)  could  also improve  model  

predictions.  

Conclusions  

We aimed at comparing the ability of three spatiotemporal models to predict ground-level ozone 

in Quebec (Canada) to improve ozone health risks assessment. The BME-LUR model appeared 

to be the best model for exposure prediction. This work illustrated the accuracy of the BME-

LUR models to predict air pollutants such as ozone across space and time over LUR and BME 

kriging methods and that error of estimation in the interpolation of ozone concentrations can be 

greatly reduced using outputs from a LUR model that can be developed with readily available 

data. 
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Table 1. Descriptive statistics of variables used for the development of the   LUR  model for years  

1990-2009.  

Variables Number of 
spatiotemporal

pointsa

Mean ± SD Min Max 

8h ozone concentration (ppb) 29,685 31.2 ± 13.1 0.0 104.0 
8h temperature (ºC) 29,685 19.1 ± 5.3 -3.5 33.9 
Precipitation (mm/day) 29,685 3.0 ± 7.1 0.0 123.8 
Road density (km/πkm2) 39 6.4 ± 7.9 0.0 25.4 
Rescaled latitude (km) 39 114.6 ± 134.6 0 583.3 
Abbreviations: SD: standard deviation; Min: Minimum; Max: Maximum. 
a29,685 station days out of 118,560 possible station days (limited by temperature and 

precipitation variables) were used for the development of the LUR model. 
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Table 2. Summary of the  LUR  model for ozone concentrations in the region of study  (1990-

2009)a.  

Fixed effects Coefficients SE Effect sizec 

Constant 39.530 1.577 -
Temperature ≤18ºCb 0.218 0.021 39.461 
Temperature >18ºCb 2.139 0.019 -
Precipitation -0.010 0.001 -1.238 
Day of the year -0.107 0.001 16.371 
Year -0.165 0.018 3.315 
Road density ≤15 km/πkm2b -0.255 0.098 -14.995 
Road density >15 km/πkm2b -1.074 0.219 -
Latitude ≤ 50 kmb -0.123 0.038 1.687 
Latitude >50 kmb 0.003 0.003 -
Abbreviations: SE: Standard error. 
aFor the random effect, the standard deviation of intercept is 2.464 (95%CI: 1.915-3.170); the 

standard deviation of residuals of mixed model is 8.904. bVariables modeled as linear spline 

functions to account for nonlinear relations with ozone. cThe effect size was calculated by βiViMax 

– βiViMin for non-splined variables, and by βiLowerViSpline – βiLowerViMin + βiUpper(ViMax - ViSpline) 

where ViSpline is the value of the knot of the variable of interest, βiLower the coefficient for values 

lower than the knot value, and βiUpper the coefficient for values greater than the knot value. 
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Table 3. Statistics for measured (hard) ozone data (1990–2009) and predicted and error “soft”  

data from the LUR (year 2005) used for BME-LUR and BME kriging models.  

Variables Number of 
spatiotemporal

points

Mean ± SD 
(ppb)

Min 
(ppb)

Max (ppb) 

Hard data (n=51) 103,669a 30.6 ± 12.5 0.0 110 
Soft data at a 1 km 
grid (predicted)

90,847b 46.3 ± 9.3 12.1 76.4 

Soft data (error) 90,847b 6.9 ± 1.8 5.5 63.9 
Abbreviations: SD: standard deviation; Min: Minimum; Max: Maximum.
 
a103,669 out of 156,060 station days with ozone data (limited by ozone data availability only)
 

were used as hard data for BME-LUR and BME kriging models. b90,847 spatiotemporal points
 

with data for temperature and precipitation were estimated as soft data for 2005 out of
 

approximately 42 million maximum possible spatiotemporal points (152 days × 278,633 possible
 

grid points per day in our study area).
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Table 4.   LUR, BME kriging, and BME- LUR  models leave-one-station-out cross-validation   

results for year 2005, n=30 ozone monitoring stations (estimated  points: 3,980).   

Methods R2 RMSE (ppb) PCMSE 
LUR 0.466 8.747 -19.9% 
BME kriging 0.414 9.164 -23.0% 
BME-LUR 0.653 7.057 -
Abbreviations: RMSE: Root mean-square errors; PCMSE: percent change in mean square error. 
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Figure legends  

Figure 1. Geographical location of ozone monitoring (black circles) and meteorological stations 

(grey squares) in the study region (dark grey). Locations are for monitor used at any time during 

the study period. 

Figure 2. Ozone mapping error estimates from the leave-one-station-out cross-validation [where 

error = estimated – measured (observed) ozone concentration (in ppb) at each monitoring station] 

based on the LUR (long dashes, mean ± standard deviation = 0.282 ± 8.93 ppb), BME kriging 

(short dashes, 0.130 ± 9.804 ppb), and BME-LUR (solid line, 1.339 ± 7.086 ppb) models for the 

year 2005. 

Figure 3. Mean temporal ozone error estimates (RMSE) based on the leave-one-station-out 

cross-validation for LUR (long dashes), BME kriging (short dashes), and BME-LUR (solid line) 

models for the year 2005. 

Figure 4. Spatial distribution of mean ozone error estimates (RMSE) in the study area (year 

2005) based on the leave-one-station-out cross-validation for LUR, BME kriging, and BME-

LUR models. 

Figure 5. Mean ozone levels (9h00-17h00) (a) and standard errors (SE) (b) predicted from the 

BME-LUR at one km grid across the greater Montreal region in Quebec (Canada) for the 

summers 2006-2009. 
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Figure 5.  
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