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Abstract  

Background: Epidemiological studies have examined the association between PM2.5 and 

mortality, but there remains uncertainty about the seasonal variations in PM2.5-related effects and 

the relative importance of species. 

Objectives: to estimate the effects of PM2.5 species on mortality and how infiltration rates may 

modify the association. 

Methods: Using city-season specific Poisson regression, we estimated PM2.5 effects on 

approximately 4.5 million deaths for all causes, CVD, MI, stroke, and respiratory diseases in 75 

U.S. cities for 2000-2006. We added interaction terms between PM2.5 and monthly average 

species-to-PM2.5 proportions of individual species to determine the relative toxicity of each 

species. We combined results across cities using multivariate meta-regression, and controlled for 

infiltration. 

Results: We estimated a 1.18% [95% confidence interval (CI): 0.93, 1.44%] increase in all-

cause mortality, a 1.03% (95% CI: 0.65, 1.41%) increase in CVD, a 1.22% (95% CI: 0.62, 

1.82%) increase in MI, a 1.76% (95% CI: 1.01, 2.52%) increase in stroke, and a 1.71% (95% CI: 

1.06, 2.35%) increase in respiratory deaths in association with a 10-µg/m3 increase in 2-day 

averaged PM2.5 concentration. The associations were largest in the spring. Silicon, calcium, and 

sulfur were associated with more all-cause mortality, while sulfur was related to more respiratory 

deaths. County-level smoking and alcohol were associated with larger estimated PM2.5 effects. 

Conclusions: Our study showed an increased risk of mortality associated with PM2.5, which 

varied with seasons and species. The results suggest that mass alone might not be sufficient to 

evaluate the health effects of particles. 
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Introduction  

Over the past few decades, there has been much research on the adverse effects of ambient 

particulate matter (PM). A number of studies have used fine PM (PM2.5, particles < 2.5 µm in 

aerodynamic diameter) as an exposure metric and estimated the effects of PM2.5 on human health 

(Laden et al. 2006; Ostro et al. 2006; Pope and Dockery 2006; Zanobetti and Schwartz 2009). 

Meanwhile, researchers have found some PM2.5 species significantly modify PM2.5-related 

effects (Franklin et al. 2008; Lippmann et al. 2006; Zanobetti et al. 2009). PM2.5 consists of 

many chemical components that originate from various sources, such as traffic, biomass burning 

and coal combustion. The U.S. National Research Council has emphasized the importance of 

examining the risk of PM species (NRC 2004). Determining the differential toxicity of PM2.5 

species and identifying species with greatest toxicity is of great importance to emission-control 

strategies and regulations. 

The U.S. Environmental Protection Agency (EPA) established the PM2.5 Speciation Trends 

Network (http://www.epa.gov/ttnamti1/speciepg.html) in 2000. Speciation sampling was 

conducted every third or sixth day, which limits statistical power for analysis of responses to 

acute exposure and also prevent the examination of e.g. two-day moving averages of exposure 

which most studies find more strongly associated with mortality and hospital admissions than 

single day exposures. As a result, there are a limited number of studies investigating the toxicity 

of PM2.5 components. These investigations have reported numerous components that may be 

responsible for particle toxicity such as elemental and organic carbon, sulfate, nitrate, and 

metals, including zinc, nickel, iron, potassium, and chromium (Atkinson et al. 2010; Bell et al. 

2009; Franklin et al. 2008; Ostro et al. 2006; Valdes et al. 2012; Zhou et al. 2011). 
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Recently, Krall et al. reported on the association of 1-day average concentrations of species from 

the speciation network and mortality in 72 cities for the years 2000-2005 (Krall et al. 2013). This 

paper addresses a similar question, but with the following differences. First, Krall et al. analyzed 

PM components without controlling for PM mass risks. As pointed out by Mostofsky et al. 

(Mostofsky et al. 2012), it is possible to find associations for components because they are 

highly correlated with mass, and not because they are themselves particularly toxic. Second, it 

focuses on single day exposures. PM2.5 mortality studies have consistently reported that the 

associations are spread over more than one day. Thus when one uses separate time series for 

components which are measured only 1 day in 6 or 1 day in 3, this will bias downward estimates, 

possibly more for some components than others. In addition, the loss of two thirds to five sixths 

of the data substantially reduces power. 

US adults, particularly the elderly who dominate mortality statistics, spend approximately 90% 

of their time indoors (U.S.EPA 1989). While particles penetrate indoors, the infiltration rates 

vary with the extent to which windows and doors are open, which in turn can vary with local 

temperature and may therefore modify the association. Previous studies have reported such 

modification (Franklin et al. 2008; Stafoggia et al. 2008; Zanobetti et al. 2009). In this paper we 

address these issues and in addition examine more species, add an additional year of observation, 

and look at specific causes of death. 
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Materials and Methods  

Study sites  
We included 75 U.S. cities in our study (see Supplemental Material, Table S1). Cities of interest 

were selected based on the availability of daily mortality, PM2.5 mass, and speciation data for at 

least 400 days between 2000 and 2006. 

Environmental data  
We conducted county-level analysis for most cities as the city lies within a single county, and 

used multiple counties for a city whose population extends beyond the boundary of one county 

(Zanobetti and Schwartz 2009). We obtained PM2.5 mass and species concentration data from the 

U.S. EPA Air Quality System Technology Transfer Network 

(http://www.epa.gov/ttn/airs/airsaqs/). PM2.5 mass samples were collected daily in most of the 

cities, while the speciation monitoring sites were operated on a 1-in-3 or 1-in-6 day schedule. 

Most of the cities had a single monitor. For cities with more than one sampling site concentration 

data were averaged. Our analysis focused on organic carbon (OC), elemental carbon (EC), 

sodium (Na), aluminum (Al), silicon (Si), sulfur (S), potassium (K), calcium (Ca), vanadium (V), 

iron (Fe), nickel (Ni), copper (Cu), and zinc (Zn), because these species have been shown to be 

representative of several sources (e.g., motor vehicles, oil combustion, coal combustion, wood 

burning, sea salt, and road dust) and their concentration levels are mostly above the method 

detection limits (Hopke et al. 2006). Furthermore, they have been studied by previous 

epidemiologic and toxicological studies (Bell et al. 2009; Franklin et al. 2008; Ostro et al. 2006; 

Zanobetti et al. 2009; Zhou et al. 2011). Monthly average proportions between each component 

and PM2.5 mass were calculated for each city by dividing monthly concentrations of species by 

the respective mass mean. 
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Daily mean temperature in every city was obtained from the National Oceanic and Atmospheric 

Administration (http://www.noaa.gov/). We used 24-hour average temperature data from the 

closest weather station to the center of the city. Percent green space data were obtained from the 

National Land Cover Database, Multi-Resolution Land Characteristics Consortium 

(http://www.mrlc.gov/). 

Health data  
Daily mortality data were obtained from National Center for Health Statistics 

(http://www.cdc.gov/nchs/). We examined non-accidental deaths due to all causes and specific 

diseases, which were derived from the International Statistical Classification of Disease, 10th 

Revision (WHO 2007) codes as follows: all causes (ICD-10, A00-R99), cardiovascular diseases 

(ICD-10, I01–I59), respiratory diseases (ICD-10, J00–J99), myocardial infarction (ICD-10, I21-

I22), and stroke (ICD-10, I60-I69). 

We investigated several behavioral and other risk factors that have been reported to impact 

health (Baja et al. 2010; Dogra et al. 2007; Dwyer-Lindgren et al. 2013; Mora et al. 2007), 

including diabetes, being overweight or obese (i.e., BMI ≥ 25), smoking, quitting smoking, 

alcohol consumption (having > two drinks per day), asthma, and leisure time physical activity, 

from the Behavioral Risk Factor Surveillance System (BRFSS) (CDC 2006). We applied county-

level weighting methodology to obtain county-level percentages of these variables in 2006. For 

counties that were not available, we used data from the closest metropolitan or micropolitan 

statistical area (MMSA) and applied MMSA-level weighting methodology. 
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Statistical methods  
We applied a two-stage analysis in our study. In the first stage, a city-specific season-stratified 

time-series analysis using Poisson regression in a generalized additive model (GAM) was used to 

estimate the association between daily mortality and the mean of PM2.5 mass on the day of death 

and the day before death in each city and each season (defined as Spring: March – May; 

Summer: June – August; Fall: September – November; Winter: December – February). We 

controlled for time trend with a natural cubic regression spline with 1.5 degrees of freedom (d.f.) 

per season per year, for day of the week with indicator variables, and for daily temperature on 

the same day (lag 0) and on the previous day (lag 1) with a natural cubic spline with 3 d.f. for 

each. For every species, we calculated the monthly average species-to-PM2.5 proportions for each 

month as a solution to the missing speciation data problem due to the 1-in-6 or 1-in-3 day 

sampling frequency. We then added, one at the time, the interaction terms between PM2.5 and the 

monthly average species-to-PM2.5 proportions of each individual species (Valdes et al. 2012). 

The model is as below: 

LogE(Yt) = Intercept + ns(time, df) + ns(temperaturet, df) + ns(temperaturet-1, df) + day of the  

week + αZ + βpi  + γZ pi                
t-1,t  t-1,t    [1] 

where, E(Yt) is the expected death count at day t, ns is the natural cubic splines, Zt-1,t indicates 2-

day averaged concentration of PM2.5 at day t-1 and t, and pi is the mean monthly proportion of 

species i to mass. 

By using an interaction with the monthly mean ratio we avoid losing most of the daily 

observations, since we are able to use more than one day’s exposure, and control for PM mass. 

While the use of the monthly ratio introduces some error in that variable, much of the variation 
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in species mass is across cities, and between months within cities. For example, organic carbon, 

sulfate and nitrate are products of photochemical reactions whose rates are temperature-

dependent, and this varies substantially across the U.S. and differently by month in different 

locations (Baker and Scheff 2007; de Gouw et al. 2005). It is important to note that if a species 

ratio is not significant in this analysis that does not mean that the species has no effect, it means 

its effect is not different than the average PM effect. A species with low or no toxicity would be 

expected to have a significant negative interaction term. 

In the second stage of the analysis, we conducted a multivariate random effects meta-analysis 

and combined the 300 (i.e., 75 cities * 4 seasons) city-season specific effect estimates to obtain 

an overall association between PM2.5 mass and its interaction with each species with mortality 

across all 75 cities: 

Yi = XBi [2] 

where, Yi is a (300 × 2) matrix, whose first column contains 300 city-season specific coefficients 

for PM2.5 and the second column contains 300 city-season specific coefficients for interaction 

with species i, X is a (300 × 4) matrix for intercept, linear, quadratic and cubic temperature, and 

Bi indicates a (4 × 2) matrix of meta-regression coefficient for PM2.5 and for interaction with 

species i. 

It has been shown that high ventilation is seen at mild temperatures whereas low ventilation is 

seen at high and low temperatures (Koutrakis et al. 2005). Assuming that PM effect would not 

drop consistently as temperature increases, we added a cubic term in the model to allow for a 

plateau. We also examined whether the BRFSS factors modified PM2.5 effects. The model is: 
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^ β = β + β t + β t 2 3is 0 1 is 2 is + β3tis + β4BRFSSi [3]

^ where  βis  is the estimated PM2.5  coefficient for city i  in season s, tis  is the centered temperature 

(i.e., temperature  –  mean temperature) for city i  in season s, and BRFSSi  is  the  BRFSS  variable  in 

city i. To estimate the  effect  of  individual  species, we  performed the  same  meta-regression, but  

with the  coefficient  of  the  interaction term  for species  as  the  outcome  being modeled. Here  again 

we  adjusted for city-season mean temperature  as  a  surrogate  for air exchange. We  also 

investigated spatial  variations  between cities  by focusing on a  single  outcome  and exposure  

season to evaluate the effects in each city by mean exposure in that season for each city.  

The  effect  estimates  for PM2.5  were  expressed as  the  percent  change  in mortality associated with 

a  10 µg/m3  increase  in the  2-day averaged concentration of  PM2.5  mass, for comparability with 

most  previous  studies.  We  expressed the  effect  of  species  on mortality as  the  estimated percent  

increase  in mortality at  the  10th  and 90th  percentile  of  distribution of  species-to-PM2.5  proportion 

for each species, holding the PM2.5  increase constant at 10  µg/m3.  

Data  management  was  performed with  SAS  version 9.1 (SAS  2006), and regression analysis  

with R version 3.0.0 (R 2013).   

Results  

In this study, we examined 4,473,519 all-cause deaths, of which 1,429,968 were CVD, 308,235 

MI, 255,430 stroke and 436,800 respiratory deaths. 

Table 1 summarizes daily mortality, PM2.5, temperature in all cities. On average, there were 28 

non-accidental deaths per day. Daily death count by season was higher in the winter (n=31) and 
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spring (n=28). Among the causes of interest, CVD killed the most people on average (9/day), 

followed by respiratory diseases (3/day). The overall mean concentration of PM2.5 was 13.3 

µg/m3. PM2.5 mean concentration was highest in the summer (15.0 µg/m3) and lowest in the 

spring (11.6 µg/m3). Some of the species exhibited strong seasonal variability. For example, 

sulfur varied from 798 ng/m3 in the winter to 1669 ng/m3 in the summer, with larger variations in 

some cities. 

The distributions of monthly average proportions of PM2.5 species are shown in Table 2. OC had 

the largest mean proportion (37.9%), followed by sulfur (8.78%) and EC (6.31%). The mean 

proportions for all the metals were less than 1% of mass concentration.  

Table 3 presents the estimated percent increase mortality for a 10 µg/m3 increase in 2-day 

averaged PM2.5 across the 75 cities. We found statistically significant associations between PM2.5 

and mortality. A 1.18% (95% CI: 0.93, 1.44%) increase in all-cause mortality was associated 

with a 10 µg/m3 increase in the 2-day averaged concentration of PM2.5. The greatest effect 

estimate effect was observed for stroke mortality [1.76% (95% CI: 1.01, 2.52%)], followed by 

respiratory deaths [1.71% (95% CI: 1.06, 2.35%)]. We observed seasonal variations in PM2.5 

effects (see Supplemental Material, Figure S1). For a 10-µg/m3 increase in 2-day averaged 

PM2.5, the percent increases in all mortality categories were greatest in the spring. 

Figure 1 shows the effect estimates of PM2.5 on all-cause mortality in each city by mean spring 

PM2.5 in each city. We observed differential effects across cities. 

Figure 2 shows the adjusted estimated percent increases in mortality for a 10-µg/m3 increase in 

2-day averaged PM2.5 at the 10th or 90th percentile of distribution of the proportions of species. 
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For all-cause mortality, interaction terms between PM2.5 and species silicon, calcium, and sulfur 

had a p-value less than or equal to 0.1. We found that a 10-µg/m3 increase in 2-day averaged 

PM2.5 was associated with an increase in all-cause mortality of 3.55% (95% CI: 1.35, 5.81%)] at 

90th percentile of distribution of the sulfur-to-PM2.5 proportion versus 2.16% (95% CI: 1.27, 

3.06%) at the 10th percentile of the sulfur-to-PM2.5 ratio (see Supplemental Material, Table S2; 

same below). We also found silicon [3.25% (95% CI: 1.91, 4.62%) vs. 1.87% (95% CI: 1.42, 

2.32%)] and calcium [3.42% (95% CI: 2.08, 4.77%) vs. 1.75% (95% CI: 1.34, 2.16%)] were 

associated with higher estimated effects of PM2.5 on all-cause mortality. In addition, sulfur was 

associated with higher estimated PM2.5 effect on respiratory deaths. The percent increase in 

respiratory mortality at the 90th percentile of the sulfur-to-PM2.5 proportion was 8.96% (95% CI: 

1.55, 16.90%), vs. 4.44% (95% CI: 1.46, 7.51%) at the 10th percentile. 

Figure 3 indicates the relationship between effect estimates and city-season temperature, which 

serves as a surrogate for ventilation and thus particle penetration indoors. We observed an 

inverted U-shape relationship with a plateau at high temperatures. The p-value for cubic term is 

0.06 in meta-regression without BRFSS factors and is 0.07 controlled for smoking and alcohol 

consumption. The all-cause mortality effect estimates first increase as temperature increases and 

peak around a seasonal average of 10 ˚C. After that, they decrease until they reach a plateau at 

around 28 ˚C. 

County-level percent of green space, diabetes, obesity, asthma, or physical activity did not 

modify the effect of PM2.5 on mortality. However, among the behavioral factors, we found the 

effects of PM2.5 were higher in areas where people smoked more or had two drinks or more per 

day. Specifically, an IQR increase in the prevalence of smokers (8.8%) was associated with a 
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34% increase in estimated PM2.5 effects, while an IQR increase in the prevalence of heavy 

drinkers (7.0%) was associated with an increase of 40% in the estimated effects of fine particles. 

Discussion  

In this nationwide time-series study, we estimated the effects of PM2.5 mass and species on daily 

mortality across 75 U.S. cities, covering over 4 million deaths. We found an increase in PM2.5 

concentration at lag day 0-1 was statistically significantly associated with increased risk of all-

cause mortality, CVD, MI, stroke, and respiratory mortality. We also found that PM2.5-related 

effects were modified by certain species. Furthermore, analysis by season indicated that effect 

estimates were highest in the spring. To investigate this seasonal pattern we included city-season 

specific temperature in the meta-regression analysis. These seasonal variations may affect the 

characteristics of PM2.5 mixture and mediate its effects on health outcomes (Bell et al. 2007). 

Controlling for this potential confounder and for PM2.5 mass, we found that a species related to 

coal combustion (i.e., sulfur) was associated with higher risks for all cause but particularly 

respiratory mortality. Sulfur is also a marker of regional pollution thus it may not only reflect 

exposures to power plant emissions. Changes in the proportion of OC mass in PM2.5 did not 

modify its effect on mortality for any cause, suggesting this species has average toxicity. We 

found higher silicon or calcium proportions were associated with increased estimated PM2.5 

mortality risks. These crustal elements are often elevated near roads and can be a surrogate for 

increased road dust, which in addition to those elements contains various organic compounds, 

compounds from tire and brake wear, etc. (Rogge et al. 1993). Thus they may be a marker for 

pollution from traffic other than EC. 
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The BRFSS factors we examined were on the county level. The distributions of prevalence of 

smoking and heavy drinkers (i.e., > two drinks/day) in different cities were approximately 

normal distributed with a mean around 30% and 60%, respectively (see Supplemental Material, 

Figure S2). We found that cities with more smokers or heavy drinkers had larger estimated 

effects of PM2.5. These have not previously been identified as susceptibility factors for the effects 

of particles on health, and this requires greater attention. 

The magnitudes of effects in our study are comparable to those reported by other studies. For 

example, a study that included 112 U.S. cities reported a 0.98% (95% CI: 0.75, 1.22%) increase, 

a 0.85% (95% CI: 0.46, 1.24%) increase, a 1.18% (95% CI: 0.48, 1.89%) increase, a 1.78% 

(95% CI: 0.96. 2.62%) increase, and a 1.68% (95% CI: 1.04, 2.33%) increase in all-cause, CVD, 

MI, stroke, and respiratory mortality, respectively, for a 10-µg/m3 increase in 2-day averaged 

PM2.5 (Zanobetti and Schwartz 2009). Our estimates are slightly higher than the above ones and 

are closer to those by a 27-city study, which found a 1.21% (95% CI: 0.29, 2.14%) increase in 

all-cause mortality, a 1.78% (95% CI: 0.20, 3.36%) increase in respiratory mortality and 1.03% 

(95% CI: 0.02, 2.04%) increase in stroke mortality for a 10 µg/m3 increase in previous day’s 

PM2.5 (Franklin et al. 2007). Our study and these two studies used city-season specific models to 

allow for seasonal differences in the effects of temperature and day of the week. 

The finding that effects were highest in the spring is consistent with previous studies (Zanobetti 

and Schwartz 2009; Zeka et al. 2006). Franklin et al. (2008) found similar pattern using linear 

and quadratic temperature in the meta-regression. Additionally, we included the cubic term, 

which was marginally significant and led to the small plateau at high temperatures. These results 

13
 



 
 

       

 

          

     

         

       

      

      

    

     

  

   

        

    

    

         

       

       

        

 

indicated greater effects for moderate temperatures when windows are more likely to be open 

and particle penetration rates are higher. 

EC is considered as a marker of traffic emissions (Viana et al. 2006). Previous research has 

reported EC was significantly associated with increased risk of mortality due to all causes or 

cardiovascular diseases (Bell et al. 2009; Metzger et al. 2004; Peng et al. 2009). In this study, we 

did observe that increase in the EC-to-PM2.5 proportion increased the association between PM2.5 

and all-cause mortality and CVD mortality in crude meta-regression, but it was no longer 

significant when we controlled for city-season temperature. Similarly, there were two studies that 

also controlled for temperature in the meta-regression and did not find any effect modification by 

EC in the association between PM2.5 and non-accidental mortality or hospital admissions for 

cardiovascular diseases (Franklin et al. 2008; Zanobetti et al. 2009). 

Silicon and calcium, which may be associated with soil or road dust, were observed to modify 

the effects of PM2.5 on all-cause mortality in our study. Crustal elements have been reported to 

have adverse effects on health. For example, Ostro et al. found strong association between 

silicon and mortality (Ostro et al. 2010); Franklin et al. (2008) observed silicon and aluminum 

were modifiers of the PM2.5-mortality effects. There were also studies that showed plausible 

biological mechanisms of inflammatory effects of road dust containing aluminum and/or silicon 

(Becker et al. 2005; Clarke et al. 2000). Additionally, road dust is often coated with organic 

compounds and metals from car exhaust, tire wear, etc. (Rogge et al. 1993), that may contribute 

to its toxicity. 
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Nickel, as a marker of oil combustion, was reported to have effect modification in the 

relationship between PM2.5 and mortality or hospital admissions in previous studies (Franklin et 

al. 2008; Zanobetti et al. 2009), but we did not observe any. On average, nickel only accounted 

for 0.02% of the PM2.5 concentration in this study. The concentrations of nickel are frequently 

lower than the method detection limit (Burnett et al. 2000), which may make us fail to detect its 

effects. Nevertheless, toxicological research has found evidence on its adverse effects (Gao et al. 

2004; Lippmann et al. 2006). For example, Lippmann et al. (2006) found atherosclerotic prone 

mice that were exposed to concentrated air particles had a pronounced acute change in heart rate 

and heart rate variability when nickel was especially high. Lippmann and the New York studies 

which found nickel effects had high exposures due to the residual fuel burn in New York for 

heating. The levels for the entire country are lower. 

We observed the effect of PM2.5 mass on all-cause and respiratory mortality was modified by 

sulfur. This component is a marker of coal combustion emissions, which suggests species 

derived from coal combustion might have great toxicity on mortality, particularly due to 

respiratory diseases. Sulfate is the primary form of sulfur in particles. Sulfate has been 

implicated as a major toxic species in PM2.5 (Amdur 1996) and reported to be associated with 

increased risk of various mortality outcomes in earlier epidemiological studies (Fairley 1999; 

Hoek et al. 2000; Laden et al. 2000; Mar et al. 2000). The importance of sulfates in the air may 

be due to the ability of acid sulfates to solubilize transition metals and thus making them bio-

available (Ghio et al. 1999). There were studies that found sulfate was associated with 

endothelial dysfunction (O' Neill et al. 2005), increased oxidative stress and coagulation (Chuang 

et al. 2007). These toxicology findings provide plausibility to sulfate health effects. 
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One disappointing aspect of this result is that despite the use of 75 cities and almost 4.5 million 

deaths, we were unable to distinguish much difference in toxicity for many of the species we 

examined. This may reflect only modest differences in toxicity, but may also reflect more 

fundamental difficulties in identifying differences between many correlated exposures with 

limited measurements over time. Evidence of the low power to detect differences can be seen in 

the difference between our results for all deaths and results for cardiovascular deaths. The pattern 

of higher estimated effects when PM mass has a larger fraction of silicon, sulfur, and calcium is 

present for cardiovascular deaths as well, but with a third as many deaths, it does not reach 

significance. One option to improve study power might be specifically selecting locations with 

high proportions of the species of interest. 

There are several limitations in this study. First, our ability to capture spatial variability is 

constrained due to the location of U.S. EPA monitors. A previous study showed moderate to low 

monitor-to-monitor correlations between daily concentrations of several species (arsenic, EC, 

and nickel) in the New York City area, which suggest high spatial variability in some speciation 

concentrations (Ito et al. 2004). Differential measurement error between species that are better or 

worse represented by a single monitor may bias differential results. However, in a time-series 

study much of the geographic variability will result in Berkson error (Zeger et al. 2000), which 

will not produce bias. Meanwhile, failing to capture spatial variability might weaken study 

power and attenuate estimates. Second, we failed to capture day-to-day variation in the analysis. 

Although we used monthly average species-to-PM2.5 proportions to gain more power, we still 

lost variation across days. Nevertheless, we believe that the day-to-day variation is random error 

in measurement, which induces little or no bias. 

16
 



 
 

 

 

 

 

  

Third, as mentioned above, there are data limitations, such as the one-in-six and one-in-three 

sampling frequency for the species. Whether one takes the approach of Krall et al. (2013) and 

only analyzes those days, or our approach and gains power by analyzing every day but with more 

error prone monthly means of the species, there is a price that is paid for this lack of data. 

Together with moderate correlation among the species and with total particle mass, this makes 

the task difficult. We do not believe this is likely to produce false positives, and hence we 

believe our findings are well supported. 
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Table 1. Summary of daily mortality counts, PM2.5, and temperature across all 75 cities in 2000–2006  

(mean ± SD). 

Variable Overall Spring Summer Fall Winter 
Mortality (no.) 

All causes 28.0 ± 33.9 28.2 ± 33.9 26.0 ± 31.4 27.1 ± 32.5 30.8 ± 37.2 
CVD 9.0 ± 12.6 9.1 ± 12.6 8.2 ± 11.5 8.5 ± 11.8 10.0 ± 14.1 
MI 1.9 ± 2.9 1.9 ± 2.9 1.8 ± 2.6 1.8 ± 2.7 2.2 ± 3.3 
Stroke 1.6 ± 2.2 1.6 ± 2.2 1.5 ± 2.0 1.6 ± 2.1 1.8 ± 2.4 
Respiratory diseases 2.7 ± 3.6 2.9 ± 3.7 2.3 ± 3.1 2.4 ± 3.2 3.3 ± 4.4 

Temperature (˚C) 14.1 ± 10.0 13.4 ± 7.5 24.0 ± 4.1 15.1 ± 7.3 3.6 ± 8.0 
PM2.5 (µg/m3) 13.3 ± 8.3 11.6 ± 6.5 15.0 ± 8.8 12.8 ± 8.4 13.9 ± 9.0 
PM2.5 speciesa (ng/m3) 

OC 4367 ± 2752 3688 ± 1806 4590 ± 2371 4491 ± 2716 4688 ± 3724 
EC 724 ± 590 602 ± 438 628 ± 459 830 ± 647 842 ± 733 
Na 80 ± 141 93 ± 165 89 ± 152 66 ± 117 71 ± 122 
Al 31 ± 78 31 ± 55 51 ± 128 23 ± 45 15 ± 34 
Si 117 ± 177 123 ± 134 171 ± 273 98 ± 125 69 ± 85 
S 1174 ± 1019 1066 ± 731 1669 ± 1385 1107 ± 960 798 ± 512 
K 79 ± 197 63 ± 49 103 ± 360 69 ± 62 79 ± 103 
Ca 65 ± 77 65 ± 68 74 ± 77 68 ± 88 53 ± 72 
V 2.5 ± 4.0 2.2 ± 3.4 2.7 ± 4.2 2.7 ± 4.4 2.5 ± 3.8 
Fe 102 ± 124 93 ± 127 111 ± 111 108 ± 136 93 ± 121 
Ni 2.5 ± 11.6 2.3 ± 6.0 2.2 ± 6.5 2.2 ± 5.7 3.2 ± 21.4 
Cu 5.1 ± 8.9 4.2 ± 7.3 5.7 ± 11.5 5.0 ± 7.3 5.4 ± 8.6 
Zn 18 ± 57 16 ± 39 16 ± 57 19 ± 53 22 ± 76 

aMethod detection limits for species can be found at https://aqs.epa.gov/aqsweb/codes/data/Parameters-

SPECIATION.csv 
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Table 2. Distributions of monthly species-to-PM2.5 proportions (%) across all 75 cities.a 

Species Mean ± SD 10th 25th 50th 75th 90th 

OC 37.9 ± 16.9 24.6 29.1 35.5 44.1 53.6 
EC 6.31 ± 3.45 2.86 3.96 5.51 7.49 10.1 
Na 0.82 ± 1.31 0.07 0.20 0.45 0.96 1.90 
Al 0.28 ± 0.44 0.03 0.07 0.15 0.31 0.64 
Si 1.07 ± 1.22 0.30 0.45 0.70 1.20 2.12 
S 8.78 ± 3.80 4.54 6.83 8.96 11.1 12.7 
K 0.64 ± 0.52 0.31 0.40 0.53 0.72 0.98 
Ca 0.62 ± 0.67 0.17 0.26 0.44 0.73 1.24 
V 0.02 ± 0.03 0.00 0.01 0.01 0.03 0.05 
Fe 0.89 ± 0.72 0.33 0.47 0.70 1.07 1.57 
Ni 0.02 ± 0.06 0.00 0.00 0.01 0.02 0.04 
Cu 0.04 ± 0.05 0.01 0.02 0.03 0.05 0.08 
Zn 0.15 ± 0.18 0.04 0.06 0.10 0.15 0.24 
aThe 3-7th columns indicate 10th, 25th, …., 90th percentiles of the monthly species-to-PM2.5 

proportions. 
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Table 3. Estimated percent difference in mortality (95% CI) in association with a 10-µg/m3 increase in PM2.5 at lag 0-1 by cause of 

death and season. 

Mortality Overall Spring Summer Fall Winter 
All causes 1.18 (0.93, 1.44) 2.85 (2.23, 3.47) 0.85 (0.42, 1.28) 1.17 (0.72, 1.63) 0.46 (0.07, 0.85) 
CVD 1.03 (0.65, 1.41) 2.47 (1.52, 3.43) 1.03 (0.38, 1.67) 0.87 (0.33, 1.42) 0.39 (-0.36, 1.14) 
MI 1.22 (0.62, 1.82) 2.08 (0.72, 3.46) 1.23 (-0.19, 2.66) 0.81 (-0.32, 1.95) 0.41 (-1.12, 1.96) 
Stroke 1.76 (1.01, 2.52) 3.31 (0.49, 6.22) 1.16 (-0.42, 2.76) 1.31 (0.05, 2.58) 1.59 (0.16, 3.03) 
Respiratory diseases 1.71 (1.06, 2.35) 4.03 (2.85, 5.21) 1.09 (-0.58, 2.78) 0.58 (-0.39, 1.57) 0.86 (-0.11, 1.84) 



 
 

   

     

     

  

   

  

 

  

Figure legends  

Figure 1. Spatial variations in estimated PM2.5 effects between cities. 

Figure 2. Estimated percent difference in mortality for a 10-µg/m3 increase in PM2.5 at lag 0-1 

and an increase of 10th or 90th percentile of distribution of monthly species-to-PM2.5 proportions, 

controlled for city-season specific temperature (* indicates a p-value ≤ 0.1 for the interaction 

term, ** indicates a p-value ≤ 0.05 for the interaction term). 

Figure 3. Relationship between estimated effects of PM2.5 on all-cause mortality and 

temperature (controlled for smoking and alcohol consumption). 
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Figure 1.    
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Figure 2.   
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