
 

 

Rationale for Spatial Mapping Approach 

We selected time-invariant rectilinear grids as our spatial unit rather than ZIP code 

regions, because the later vary in time and are difficult to use in an areas with rapid population 

growth, such as Orange, Riverside, and San Bernardino Counties in the 1980-2000 time period.  

Also, for this study, the geographic unit needed to have large enough populations to generate 

stable “proportions of asthma-related discharges”.  Based on 10x10 km grids, 9 of 7020 values 

were outliers because of small grid populations.  Had we used ZIP code regions as the 

geographic unit, the outlier problem would have been exacerbated by having more spatial units 

with small populations.  

In this study, monthly average air pollutant concentrations from monitoring stations 

located typically 20 to 30 km apart are mapped spatially to 10 x 10 km grids.  The spatial 

gradients in monthly average concentrations are small compared to those for daily and hourly 

concentrations. Under these conditions, the results are not particularly sensitive to the choice of 

mapping methods.  We have found that Kriging (with appropriate parameters) and inverse-

distance-squared-weighted interpolation produce very similar results when applied to monthly 

average concentrations on 10 x 10 km grids. We chose inverse distance square weighted 

interpolation using data from the 4 closest stations within 50 km of the point of interest when no 

stations were located within 5 km and assignment of the data from the nearest station when a 

station was located within 5 km of the point of interest.  

As text Figure S1 suggests, the distance from the grid centroids to nearest air quality 

monitoring stations is less than 50 km in all cases.  Table S3 shows the distribution of distances 

from grid centroids to the nearest air quality stations for O3, CO, NO2, and PM10. The 

distributions vary year-to-year, but for O3, 13% of the grids, on average, have data measured 

within the grid, 73% have measured data within 5 to 25 km of the grid, and only 14% have data 
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measured within 25 to 50 km of the grid.  Somewhat larger distances apply to the other 

pollutants because there are few stations.  We believe the spatially-mapped network data are able 

to represent variations in regional air quality.  Small scale variations from traffic or point sources 

are not resolved.  Also, because the spatial coverage of the monitoring network and actual spatial 

gradients of pollutants vary, variations in the accuracy of the spatially mapped estimates are 

expected; however, it’s unlikely that the variations in accuracy are large enough to significantly 

bias the results. 

Details of Assignment of Hospital Discharges to Spatial Grids: 

The finest spatial resolution for which hospital discharge data were available was the 5­

digit postal ZIP code of the patient’s residence; the patient’s street address, 9-digit ZIP code, and 

census block were not available. Three sets of spatial allocation factors were therefore 

developed to distribute Zip code-based discharge data to the exposure grids in the 1980-1984, 

1995-1994, and 1995-2000 time periods.  Each set included separate factors for males and 

females for ages less than 1 year and 1 to 19 years.  A single 5-digit ZIP was allocated spatially, 

based on population-weighting to multiple exposure grids with ESRI ARcGIS9 software tools 

(ESRI, Redlands, CA. Most ZIP code regions were allocated to 1 or 2 grids; the largest ZIP code 

region was allocated to 10 grids. The allocation factors for 1980-1984 were developed using 

block group centroids and the block group to ZIP code equivalency data provided with the 

census. For 1985-1994, the 1990 block group boundaries and block group to ZIP equivalency 

data were used. The allocation factors for 1995-2000 were developed using the 2000 census 

block centroids and ZIP code boundaries. The exposure grids were overlaid on the population 

and ZIP data in the GIS to determine the allocation factors for each ZIP code and period.   
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Spatial allocation of demographic data to exposure grids was based on the smallest 

geographic unit for which census data were available.  The 1980 data were allocated based on 

census block group data and block group centroids.  In 1990, the census block group data and 

geographic boundaries were available; the data were allocated to grids assuming the population 

was uniformly distributed within each census block group. The data were available at the census 

block level in 2000, and were spatially allocated to grids assuming the population was uniformly 

distributed within each census block.  Eight population variables in 1980 and one variable in 

1990 and 2000 were renormalized after the spatial allocation to insure consistency across census 

topics. For example, the population by race was normalized by the total population.  The 

population by sex, age, and race was normalized for consistency with population by race and 

population by sex. The population by residence was renormalized by the total population age 5 

and above, etc. 

Population and other demographic parameters were estimated for the intra-census years 

by linear interpolation of the gridded data for 1980, 1990, and 2000.  

Sources: 
1. Office of Statewide Health Planning and Development, Healthcare Quality and Analysis 
Division, Patient Discharge Data File Documentation, July 2006. 

2. Office of Statewide Health Planning and Development, Healthcare Quality and Analysis 
Division, data files emailed July 2003, Patient Discharge Data Request #2030417-01. 

3. California Department of Health Services Center for Health Statistics 

4. U.S. Bureau of Census 
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Spatial Correlation 

A typical assumption that is often not stated explicitly is that the observed data consist of 

n independent and identically distributed observations from the random variable O with 

distribution P. In this analysis, we make the assumption that the observed data consist of n=195 

random variables Oi that describe each spatial/geographical unit i, i = 1,…,n, each with 

distribution Pi. Thus, we do not assume that the data from each unit were sampled from one 

common distribution P but, rather sampled from n distinct distributions, Pi, that may be similar, 

in particular, for those units that are spatially close.  Under this assumption, it follows that 

mutual independence between the random variables Oi, conditional on the exposure regimen, is a 

reasonable approximation.   

Based on this approximation, we modeled the observed data as n independent and 

identically distributed observations of the random variable O with distribution P, where P 

represents average of the distributions Pi across units where each observation receives equal 

weight, i.e., P
=
 
1
 

n ∑= 

n
 

i 1
 

Pi . The causal parameter of interest is a parameter of the distribution P 

and is interpreted as an average of the causal effects across the 195 units. 

Rationale for use of Linear Models 

For both the traditional and HRMSM approaches, working models considered were semi-

parametric linear models.  An alternative to the linear fit is a binomial logistic fit for the number 

of asthma-related hospital discharges, conditional on the number of individuals in the 

corresponding grid at the corresponding point in time.  The binomial logistic fit is equivalent to a 
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weighted logistic fit with the outcome being the proportion of asthma-related hospital discharges 

and the weights being the total number of individuals in a given grid at the given time point.  Our 

motivation to use a linear model was twofold: 1) The proportion of asthma discharges had a very 

small range of values (0 to 4.98x10-3) that was not close to spanning the 0 to 1 interval. A main 

factor in selection of the binomial logistic model is to constrain the probabilities between 0 and 

1; however, since the range of the proportions was so small, this was not an important 

consideration. The small range of values also has the effect that we only would focus on a small 

portion of the logistic curve.  Any such small part of the curve can be approximated adequately 

with a line; and 2) The binomial model fit is driven by observations with large weights, that is, 

large populations in a given grid; thus, a small number of observations could influence the fit 

significantly but may not be representative of the whole population (Neugebauer and van der 

Laan 2007). 

History-Restricted Marginal Structural Model Details: 

Marginal Structural Models (MSM) represent the effect of an entire exposure history 

(since the start of the study) that precedes a time-specific outcome.  In this analysis, the entire 

history of O3 is not relevant in estimating the effect of O3 on the proportion of asthma-related 

hospital discharges.  Instead we investigate the effect of the level of O3 at the current quarter 

only on the outcome during that same quarter.  History-restricted MSM (HRMSM) were 

proposed to allow for such a flexible analysis considering only part of the exposure history 

(Feldman et al. 2004; Joffe et al. 2001; Neugebauer, 2007).  In the standard MSM framework, 

the effect of interest would be investigated with a model for the distribution of the counterfactual 

outcomes, Y ( )t  for all possible treatment histories a (t −1)  and time-specific outcomes of a (t−1) 

interest, Y(t). In the HRMSM framework adopted, the effect of interest is instead investigated 
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with a model for the distribution of the counterfactual outcomes Y (t) . We used the following a(t−1) 

HRMSM for the expectation of the counterfactual outcomes, 

E(Y ( −1) (t)) = β0 + β1a(t −1) .a t 

HRMSMs are interpretable causally, directly at the population level, that is, β1  can be 

interpreted as the population-level effect of the same quarter level of O3 exposure on the 

proportion of asthma-related hospital discharges during any given quarter. 

We implemented two estimators of HRMSM causal parameters (Neugebauer, 2007): the 

Inverse Probability of Treatment Weighted (IPTW) and G-computation (G-comp).  Both 

estimators rely on the Sequential Randomization Assumption (no unmeasured confounders). 

To obtain the G-computation estimate β=(β0, β1), we used the DSA selected model 

*E Y t | A t ) )for ( ( )  (  −1 ,W (t −1 )  that we obtained in the traditional approach.  We note that in linear 

* *E Y t | A t ) ) (models for ( ( )  (  −1 ,W (t −1 )  when there is no interaction between A(t-1) and W t −1) , 

the G-computation estimate of the coefficient estimate for a(t −1) in the MSM is equivalent to 

*the coefficient estimate for A(t −1)  in the traditional model, E(Y (t) | A(t −1),W (t −1)) . We also 

note that consistent G-computation estimation relies on consistent estimation 

*E Y t | A t ) )of ( ( )  (  −1 ,W (t −1 ) . 

The IPTW estimate for β is obtained by regressing Y(t) on A(t-1) using the HRMSM with 

*weights defined by 1/ g(A(t −1) | W (t −1)). Consistent IPTW estimation relies on consistent 

*estimation of the density g(A(t −1) | W (t −1)) known as the treatment mechanism distribution, 

and the Experimental Treatment Assignment (ETA) assumption which is discussed in more 

*details below.  We used the DSA to select a Gaussian model for g(A(t −1) | W (t −1)) with 
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*constant standard deviation. The weights were estimated as 1/ gn (A(t −1) | W (t −1)), where gn is 

the estimated model for g, and were subsequently truncated between 1/0.1 and 1/0.9 to mitigate 

the poor finite sample performance of IPTW estimation due to the practical violation of the ETA 

assumption, i.e. improve efficiency.      

The ETA assumption, on which the IPTW estimate relies, states that there are no values 

*of W (t −1)  for which treatment is assigned deterministically.  This assumption requires that 

there is experimentation among all possible levels of ozone at time t-1 denoted by A(t-1), or that 

*ozone is not assigned deterministically based on W (t −1) . The IPTW estimates also suffer from 

finite sample bias and poor efficiency when the ETA assumption is violated practically (Wang et 

al. 2006). Practical violations of the ETA assumption are not uncommon for a continuous 

*treatment variable since it is almost inevitable that for given strata defined by W (t −1) , some 

levels of treatment are rare or even non-existent.  A plot of the observed treatment against the 

predicted treatment from the treatment mechanism model can be used to visually check this 

assumption.  When the points are clustered around the y=x line then there is evidence of an ETA 

violation as this indicates that treatment was assigned in a deterministic fashion.  In addition to 

this visual check, we also applied a diagnostic tool that has been developed based on parametric 

bootstrap sampling from an estimated data-generating distribution to assess the bias in IPTW 

estimation due to ETA violation (Wang et al. 2006) (the software is available at: 

http://www.stat.berkeley.edu/~laan/Software/). 

We assumed that the missingness occurred at random; thus, the observations with 

missing values for covariates in the DSA-selected model were dropped from the data prior to 

*fitting the model.  Dropping the observations for which covariate values W (t −1)  are missing 

can be done without loss of consistency if the missingness mechanism is believed to be 
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uninformative.  Due to the small number of missing values and the fact that the data was not self-

reported, this is a reasonable assumption.  

Confidence intervals and p-values for both HRMSM estimates were obtained using 

10,000 bootstrap iterations where re-sampling was based on the 195 independent grids.  Due to 

the computation time required by the DSA procedure, we were not able to repeat the data-

adaptive model selection procedure for each bootstrap sample. Thus, we treated the selected 

*models for the treatment mechanism and E(Y (t) | A(t −1),W (t −1)) as given for the purposes of 

the bootstrap by simply refitting them for each bootstrap sample.  This approach ignored the 

extra variability of our estimators that is introduced by the model selection procedure and thus 

possibly underestimated the variance (Shen and Huang 2004). 

Details of Model Selection for Table 3  

Figure S7_a shows the cross-validated (CV) risk for the fit of the model reported in Table 

3 in the main text.  The x-axis indicates the size of the model (maximum of 11 allowed for this 

analysis=10 variables + intercept); the y-axis indicates the CV risk for the best model of size N.  

The optimal model is that with the lowest CV risk (size 9).  The CV risk curve for a model with 

no interaction (order=1) and two-way interactions (order=2) are shown.  In general, for any 

model size, the differences in CV risk between interaction orders are very small. 

Figure S7_b presents the details of the models selected at each step of the DSA process. 

All variables listed in Table S2 below, plus quarterly average 1-hour daily maximum O3 

(O3Dmax) could have entered the modeling at any step.  The only pollutant selected is O3, and it 

is first selected at a model of size 6 (broken arrow).  Based on Figure S7_a, model 9 is the 

optimal model (dotted arrow in Figure S7_b).  Note that the two additional models, sizes 10, 11 

do not include any other pollutant or meteorological variables.  The CV risk declines from 
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1.005∗10-7 for model size 2 to 9.51∗10-8 for model size 9 and increases to 9.64∗10-8 for model 

size 11. O3Dmax produces a small change in the CV risk when selected as part of the best 6­

variable model (CV risk model size 5: 9.62∗10-8; CV risk model size 6: 9.59∗10-8) and remains 

in all other models thereafter. 
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Table S1: Variables with Univariate Association with Asthma and Ozone Exposurea 

Demographic Variables 

% completed 1-3 years of high school % foreign borne 

% completed high school 	 % Hispanic 

% completed 1-3 years college	 % White 

% complete college or greater	 % native born but not in California 

% females not in the labor force % residence in another state for 5-years  

prior to given quarter 

% household income < $19,900 % residence in same house for 5-years prior  

   to given quarter 

% household income $20,000-$39,999 Median household income 

% household income > $100,000 % female 

Pollutant and Weather Variables 

Quarterly average 24-hour CO2 (ppm)	 Quarterly average 24-hour NO2 

Previous year quarterly average 24-hour CO2 (ppm) Previous year quarterly average 

    24-hour NO2 

Quarterly average 24-hour average PM10 

Previous year quarterly average 24-hour average PM10 

Quarterly average 24-hour average relative humidity (%) 

Previous year quarterly average 24-hour average relative humidity (%) 

Quarterly average 24-hour average temperature (F) 

Previous year Quarterly average 24-hour average temperature (F) 

Time Variables	 Quarter number (0-35) Quarter indicator 

 Year number 
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Table S2: Variables Selected for Possible Inclusion in Statistical Models 
Demographic Variables 
Percent Asian 
Percent African American 
Previous year CO 24-hr average (ppm) 
Percent Completed From Preschool to 8 Grades of Elementary School 
Percent completed 1 to 3 Years of High School 
Percent Graduated High School 
Percent Completed 1 to 3 Years Undergraduate Work in College 
Percent Graduated College or More 
Percent Female, Not In Labor Force 
Percent Male, Not In Labor Force 
Percent Female, In Labor Force 
Percent Male, In Labor Force 
Percent Female 
Percent Foreign Born (“Foreign”) 
Percent Hispanic 
Percent household Income $0-$19,999 
Percent household Income $20,000-$39,999  (“income2”) 
Percent household Income $40,000-$74,999 
Percent household Income $60,000-$99,999 
Percent household Income > $100,000 
Median Household Income  (“median_income”) 
Percent Native, Born In Different State or Abroad 
Percent Born in California 
Percent Other Race (2variables:  “person 1”, “other” 
Percent 1-2 persons in household 
Percent > 5 persons in household 
Percent Above poverty level 
Previous Year Proportion asthma-related hospital discharges 
Percent Residence in Different House, Same County 5 years prior 
Percent Residence in state other than California 5 years prior 
Percent Residence in same house 5 years prior 
Percent Residence in Different House and County, Same State 5 years prior 
Percent White  (“white”) 
Pollutant and Weather Variables 
CO 24-hr average (ppm) 
Previous Year CO 24-hr average (ppm) 
NO2 24-hr average (ppb) 
Previous Year NO2 24-hr average (ppb) 
PM10 24-hr average (ug/m3) 
Previous Year PM10 24-hr average (ug/m3) 
SO2 24-hr average (ppb) 
Previous Year SO2 24-hr average (ppb) 
Relative Humidity 24-hr average (%) 
Previous Year Relative Humidity 24-hr average (%) (“Rhavgl4”) 
Temperature 24-hr average (deg F) (“Tavg”) 
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Previous Year Temperature 24-hr average (deg F) 
Time Variables 
Quarter Number (0-35) 

Quarter Indicator 

Year Number (0-17)
 

Table S3: Distribution of Distances from Grids to Nearest Air Aqulity Stations 
Percent of Grids with the  Closest Air Quality Station 

Pollutant  Within 5 to 25 km  Within 25 to 50 km  Within the Grid of Grid Centroid of Grid Centroid 
O3  13 ± 2 73 ± 3 14 ± 5 
CO 9 ± 1 58 ± 5 32 ± 4 
NO2  10 ± 2 58 ± 9 32 ± 10 
PM10  7 ± 3 69 ± 16 23 ± 14 

 

Table S4: Selected Demographic and Pollutant Variables for Persons Birth to 19-Years 

Used in Analysis: Quarters Two (April-June) and Three (July-September) of 1983-2000 

VARIABLE     Spatial Grid Values (median, IQR, range) 


Population 


Males 51.4 (50.5 - 52.5; 35.4 - 69.6) 


Females 48.6 (47.5 - 49.5; 30.4 - 64.6) 


Asthma Discharges – all grids  


Number over time  1,719 (1,497 - 2,013; 1,097-2,882) 

 Number 1st listed discharge 1,540 (1,328 - 1,690; 1026-2,302) 

Proportion of total age-specific population 4.3∗10-4 (4.0∗10-4 - 4.6∗10-4; 3.1∗10-4 – 

6.2∗10-4) 

Residence (%) 

Same house entire period 43.8 (37.3 - 49.8; 12.5,9.2-71.6) 
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Different House, same county 30.4 (25.1 - 35; 9.9,8.6-61.2) 

Different CA county 14.7 (6.5 - 24.8; 18.3,1.3-59.2) 

Different State 9.1 (6.7 - 11.8; 5.1,1.0-58.5) 

Race/Ethnicity (%) 

Percent Hispanic 15.3% (9.6 - 24.7; 0 - 78.9) 

Percent White 74.7% (60.4 - 83.3; 1.9 - 100) 

Percent African American 2.2% (1.0 - 5.1; 0 - 49.8) 

Percent Asian 3.1 (1.1 - 6.6; 0 - 31.6) 

Percent Other 1.6 (0.9 - 2.8; 0 - 33.4) 

Percent Below poverty level (%) 9.5 (6-13.2; 0 - 38.1) 

Place of Birth (%) 

 Born in California    51.5 (45.6 - 57.0; 22.4 – 76.0) 

 Native, Born In Different State or Abroad 34.3 (28.9 - 40.1; 6.5 - 60.8) 

 Foreign Born     11.2 (7.4 - 18.9; 0 - 55.6) 

Temperature 24-hr average (F)   68.4 (65.2 - 73.5; 49.5 - 84.3) 

Relative Humidity 24-hr average (%)   58.5 (52.5 - 64.8; 18.3 - 80.7) 

Pollutants  

 O3 daily max (ppb)    87.8 (69.9 - 110.6; 28.6 - 199.9) 

NO2 24-hr average (ppb)    28.4 (20.1 - 36.7; 4.8 - 61.8) 

 CO 24-hr average (ppm)     0.9 (0.7 - 1.2; 0 - 2.6) 

SO2 24-hr average (ppb)    1.2 (0.6 - 1.9; 0 - 10) 

PM  24-hr average (μg/m3
10 )    45.7 (36.5 - 57.6; 16.3 - 119.7) 
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Table S5: Distribution of Pollutants for Selected Years 
 
 

1980 
Qtr2,3a   Qtr2,3   Qtr2,3   Qtr2,3   Qtr2,3  

   Qtr4,1   Qtr4,1   Qtr4,1   Qtr4,1   Qtr4,  1  
 
Pollutants (ppb)  
O3 1-hr max  1985 108 (86-139; 42-208)b 1990 113 (87-129; 42-174) 1995 90 (72-106; 42-147) 76 (65-97; 34-136) 2000 73 (6 -81; 37-91)  
   53 (46-74; 30-102) 52 (48-56; 32-73) 51 (47-54; 26-65) 44 (40-53; 21-67) 38 (34-43; 17-54) 
 
O3 10 am – 6 pm 80 (64-97; 30-148) 82 (66-93; 31-121) 67 (55-79; 28-107) 60 (52-73; 23-99) 59 (49-66; 26-72) 
   38 (33-50; 18-69) 38 (34-41; 21-49) 38 (33-42; 16-51) 34 (29-38; 11-52) 30 (25-35; 10-43) 
 

1980 
Pollutants (ppb)c   
NO2 24-hr  42 (32-51; 6-97) 36 (29-44; 7-69) 32 (25-39; 5-63) 27 (20-35; 6-63) 24 (20-31; 6-50) 
CO  24-hr  2 (2-3; 0-7)  2 (1-2; 0-5)  1 (1-2; 0-4)  1 (1-1; 0-4)  1 (1-1; 0-3) 
PM10 24-hr  55 (42-69; 22-173) 67 (56-76; 37-115) 48 (40-58; 19-116) 37 (27-50; 7-104) 36 (29-43; 14-69) 
 1985 1990 1995 2000 
SO2 24-hr  5 (3-7; 1-15)  2 (1-3; 0-11)  1 (0-2; 0-9)  2 (1-2; 0-5)  1 (1-2; 0-3) 
aQuarters of year: 1=January-March.; 2=April.-June; 3=July-September; 4=October-December  
bmedian, interquartile range, range 
c For all 4 quarter 
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Figure S1: Example of grid structure for South Coast Air Basin  
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Figure S2:  Spatial distribution of ozone concentration in the SoCAB for selected years. 
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Figure S3: Spatial distribution of PM10 concentration in the SoCAB for selected years. 
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Figure S4: Spatial Distribution of Population of SoCAB for selected years. 
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Figure S5: Temporal changes and spatial distribution for selected variables in SCAQMD.  Years 
1980, 1990, 2000 are based on actual census data. Estimates for inter-census years based on 
linear interpolation. 
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Figure S6:  Pooled ozone distributions for all quarters 1980-2000 
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Figure S7_a:  Cross-validated risk by model size 
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Figure S7_b: Models Selected for each model size considered with no interaction terms based 
on the empirical risk. 
(I=indicator, O3Dmax=quarterly average 1-hour daily maximum O3; see Table A2 remainder of 
variable names (appear in bold type in parentheses).  The intercept-only model constitutes model 
size 1. 

Figure S8_a: Quarterly 1-hours maximum and 8 hour average O3 concentrations (ppb) by 
quarter 1980 – 2000. Box-whisker plots give medians (horizontal lines) and interquartile range 
(rectangle) for concentrations for quarters 2 and 3 (above the median levels) and 1 and 4 quarter.  
Line connects is LOESS smooth. 
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Figure S8_b: Quarterly concentrations of CO (ppm), NO2 (ppb), PM10 (μg/m3) and SO2 (ppb). 

Note the lack of clear seasonal variation for NO2 and the quarter 1,4 increases in PM10 and CO. 
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Figure S9: Distribution of population number by 400 quantiles of quarterly 1-hour maximum O3 
over quarters 2 and 3 years 1983-2000. 
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