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Research

Over the past decade, time series studies that 
have investigated the association between daily 
variations in particulate matter (PM) air pol-
lution and daily variations in mortality have 
become commonplace (Breitner et al. 2009; 
Kelsall et al. 1997; Roberts 2004). Studies 
conducted in Europe and North America 
have found statistically significant associations 
between increases in daily PM concentrations 
and increases in daily mortality (Samoli et al. 
2008). One common feature of these time 
series studies is that myriad modeling choices 
must be made to arrive at an “optimal” model 
from which an estimate of the association 
between PM and mortality can be obtained. 
This array of choices means there are poten-
tially many candidate models for investigating 
the association between daily PM and mortal-
ity. In some studies, models that are selected 
because they optimize a particular model selec-
tion criterion are used to infer a relationship 
between PM and mortality (Draper 1995; 
Goldberg et al. 2006; Kelsall et al. 1997). In 
this context, concerns have been raised in 
the literature about statistical issues that may 
arise from the process of selecting a single 
model from among a potentially large num-
ber of competing candidates (Clyde 2000; 
Koop and Tole 2004; National Research 
Council 1998). The procedure of selecting 
a single “best” model may ignore the model 
uncertainty, which is inherently involved in 
searching through the set of candidate models 
to determine the best one. Ignoring model 

uncertainty is problematic because it reflects 
statistical variation not captured within the 
single chosen model, and failure to account for 
this variation can increase the chance of erro-
neously concluding a statistically significant 
association between PM and mortality (Clyde 
2000; National Research Council 1998).

Model averaging in both Bayesian and 
frequentist forms has been proposed as 
a means of allowing for model uncertainty 
in time series studies of PM and mortality 
(Clyde 2000; Koop and Tole 2004, 2006; 
Martin and Roberts 2006). Model-averaging 
procedures assign probabilities or weights to 
each candidate model that reflect the degree 
to which the model is supported by the data. 
These probabilities can be used to produce 
“weighted” average estimates of the associa-
tion between PM and mortality that explicitly 
incorporate information from each candidate 
model. This process of explicitly incorporat-
ing each candidate model into the estimation 
process produces estimates that incorporate 
the variation inherent in the model selection 
process. Clyde (2000) and Koop and Tole 
(2004, 2006) implemented Bayesian model-
averaging (BMA) techniques to estimate the 
association between air pollution and mortal-
ity. Martin and Roberts (2006) implemented 
model averaging using a bootstrap-based pro-
cedure and showed that it is competitive with 
BMA in that context. Previous investigations 
have also used the bootstrap in the context of 
time series studies of air pollution, including 

investigations of the effect of concurvity in 
generalized additive models (Figueiras et al. 
2005; Ramsay et al. 2003). 

In this paper, we discuss a double bootstrap 
model-averaging (double BOOT) approach 
that extends and improves the bootstrap 
model-averaging (BOOT) procedure that was 
implemented in Martin and Roberts (2006).

Materials and Methods
Materials. The data used in this report were 
obtained from the publicly available National 
Morbidity, Mortality, and Air Pollution Study 
database (Zeger et al. 2006). The data consist 
of daily time series of mortality, temperature, 
dew point temperature, and PM air pollution 
measures for five United States (U.S.) cities 
for the period 1999–2000. The mortality data 
are daily counts of nonaccidental deaths of 
individuals ≥ 65 years of age. The measure of 
ambient PM used is the ambient 24-hr con-
centration of PM of < 2.5 µm in aerodynamic 
diameter (PM2.5) measured in micrograms 
per cubic meter.

The five U.S. cities included in this study—
Birmingham, Alabama; Orlando, Florida; 
Seattle, Washington; St. Louis, Missouri; and 
Tampa, Florida—were selected because they 
had nearly complete PM2.5 data over the period 
of investigation. For these cities, the number of 
days missing PM2.5 concentrations over the 
730-day period of investigation ranged from 
2 to 18 days. Missing PM2.5 concentrations 
were imputed using the average of the previous 
and subsequent days’ concentrations.

Methods. We investigated model averaging 
in the context of additive Poisson log-linear 
models. Under these models, the daily mortal-
ity counts are modeled as independent Poisson 
random variables with mean µt on day t

log(µt) = confounders(α)t + θPM2.5t,j,� [1]

where confounders(α)t represent other time-
varying variables related to daily mortal-
ity, and PM2.5t,j is the PM2.5 concentration 
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on day t–j, for a specific time lag j; α is a 
tuning parameter—as α increases, so too 
does the flexibility of the smooth functions 
used to adjust for the effects of the con-
founders. Adjusting for confounders is 
important to avoid spurious findings of an 
association between PM2.5 and mortality (Bell 
et al. 2004). Commonly used confounders 
include weather variables, such as tempera-
ture and dew point temperature, and time 
(Dominici et al. 2003). Our focus in Model 
[1] on a PM2.5 exposure measure, which cor-
responds to a specific lag of PM2.5, is consis-
tent with recent time series studies (Dominici 
et al. 2006, 2007; Peng et al. 2009). Models 
of the same general form as Model [1] are 
commonly used in time series studies of the 
adverse health effects of PM (Dominici et al. 
2007; Peng et al. 2006; Roberts 2005).

Using Model [1] involves selecting a value 
of α and a lag of PM2.5. For example, if p 
values of α and q lags of PM2.5 were thought 
plausible, then K = p × q candidate models 
could be fitted and assessed with respect to 
some model selection criterion. If the K can-
didate models are fitted and a single “best” 
model chosen, the common practice of 
reporting the statistical characteristics of the 
winning model effectively ignores the statisti-
cal variation suffered as a result of the model 
selection procedure itself. 

In the paragraphs that follow, we describe 
Akaike’s information criterion (AIC; Akaike 
1973) and outline the bootstrap (BOOT) 
method used by Martin and Roberts (2006) 
and our extension that refines this method. 

AIC is commonly used for model selec-
tion in time series studies of the association 
between PM and mortality (Goldberg et al. 
2006; Samoli et al. 2008). It takes a measure 
of the lack of fit of a model and adds a penalty 
for the number of parameters in the model. 
Specifically, AIC is defined as

AIC = –2(maximum log-likelihood) 
	 + 2(number of parameters).	 [2]

To use AIC for model selection, the model 
with the smallest value of AIC among the 
candidate models is selected. Further details 
on AIC, including a discussion of its deriva-
tion, can be found in numerous articles (e.g., 
Burnham and Anderson 2004). In the con-
text of the models considered in this paper, 
the number of parameters is an increasing 
function of α.

The BOOT method used by Martin and 
Roberts (2006) proceeds through the follow-
ing steps:
1. 	Fit the K candidate models defined by 

Model [1]. Select as “best” the model 
with the smallest value of AIC, which is 
denoted M*. We also define Mi to represent 

candidate model i fitted to the observed 
mortality time series data, for i = 1, 2,…, K.

2. 	Extract the mean adjusted, standardized 
Pearson residuals (Davison and Hinkley 
1997a) and the estimated mean mortality 
counts from the best model M*, which 
was obtained in step 1. In our context, 
the mean adjusted, standardized Pearson 
residuals ξt are defined as
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[3]
	 where T is the length of the mortality time 

series, yt is the observed mortality count on 
day t, ût is the estimated mean mortality 
count on day t, and ht is the leverage for 
the observation on day t. 

3. 	Use the stationary bootstrap to gener-
ate B resamples of the residuals ξ1,…, ξT 
obtained in step 2. The stationary boot-
strap is implemented using the approach 
of Politis and Romano (1994). Under this 
approach, the stationary bootstrap resa-
mples blocks of data of random length, 
where the length of each block has a geo-
metric distribution.

4. 	Create B bootstrap replicate mortality time 
series by adding the estimated mean mor-
tality counts from step 2 to each of the 
B resampled residual series generated in 
step 3. This process is carried out using the 
following formula:

	 d t* = µ̂t + √
—
µ̂t ξt*,  t = 1, …, T,	 [4]

	 where ξ1*,…, ξT* is a resampled resid-
ual series, and d1*,…, dT* is the resultant 
bootstrap replicate mortality time series. 
The d1*,…, dT* are rounded to the nearest 
integer before proceeding to step 5.

5. Using each of the B bootstrap replicate 
mortality time series, repeat step 1 with 
the observed mortality time series data 
replaced by the bootstrap replicate mortal-
ity time series, each time tabulating which 
of the K models is “best” based on AIC.

6. 	Assign a weight wi equal to the proportion 
of the B times that the model was selected 
as best in step 5, to each of the K candidate 
models.

7.	 Use the weights obtained in step 6 to com-
pute a “bootstrap weighted” estimate for 
the effect of PM2.5 on mortality: w1 θ̂1+…+ 
wK θ̂K, where θ̂i is the estimated effect of 
PM2.5 on mortality obtained from Mi.
In step 3, the stationary bootstrap is used 

to allow the resampled residuals to mimic the 
dependence structure of the original residual 
process under the notion that, although adja-
cent data points might suffer dependence, 

blocks of sufficient length may be close to 
independent of one another. Based on our 
earlier work, the stationary bootstrap is imple-
mented using a mean block length of size 10 
(Martin and Roberts 2006). Lahiri (2003) 
provides additional information on the use of 
resampling methods for dependent data. It is 
important to note that the replicate mortality 
time series generated in step 4 are not Poisson 
distributed, but this issue is not of particular 
concern because the observed mortality time 
series will also not be Poisson distributed. 
Indeed, some studies explicitly allow for the 
non-Poisson nature of the observed mortal-
ity time series via quasi-likelihood estimation 
(Goldberg et al. 2006; Samoli et al. 2008). 
In our context, the overdispersion estimated 
within the framework of a Poisson general-
ized linear model was mild. Thus, we did not 
consider a quasi-likelihood approach neces-
sary. Further information on residual-based 
resampling for generalized linear models can 
be found in Davison and Hinkley (1997b).

Our extension to BOOT described above 
(termed “double BOOT”) uses a second boot-
strap layer after step 6. The second bootstrap 
layer involves generating another B bootstrap 
replicate mortality time series that are based 
on the weights wi found for each model in the 
first bootstrap layer. For each of the K candi-
date models, this procedure involves generat-
ing Bwi replicate mortality time series using 
model Mi as the basis for the bootstrap proce-
dure described above, for each i = 1, 2,…, K. 
As before, based on this new set of B repli-
cate mortality time series, updated weights 
are constructed for each model based on the 
proportion of times it was selected as best 
based on AIC. 

The procedure for implementing double 
BOOT is as follows:
1.	 Perform steps 1–6 above of the BOOT 

method.
2.	 For each of the i = 1 to K candidate 

models, construct Bwi replicate mor-
tality time series using the procedure 
described in steps 2–4 of BOOT with M* 
replaced by Mi. This process will produce 
B = Bw1 +…+ BwK second-layer bootstrap 
replicate mortality time series.

3.	 Fit the K candidate models to each of the 
B replicate mortality time series, each time 
noting which of the K models is “best” 
based on AIC.

4.	 Assign a weight wi* to each of the K candi-
date models. For each model, the weights 
are calculated as the proportion of the B 
times the model was selected as best in the 
preceding step.

5.	 Use the weights wi* to compute a double-
bootstrap weighted estimate for the effect 
of PM2.5 on mortality: w1* θ̂1 +…+ wK* 
θ̂K, where θ̂i is the estimated effect of 
PM2.5 on mortality obtained from Mi.
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Bootstrap-after-bootstrap model

A rationale for this proposed extension 
to BOOT can be provided through a simple 
example. Consider a setting where there are 
only two candidate models, and model 1 is 
judged as best based on AIC. Now suppose 
the original BOOT procedure is implemented 
resulting in weights of w1 = 0.51 and w2 = 
0.49 being assigned to models 1 and 2, 
respectively. The original BOOT procedure 
simply uses these weights to produce an aver-
age effect estimate. However, the weights of 
0.51 and 0.49 can be interpreted as the data 
providing essentially equal support for the 
two candidate models. This outcome poses 
the question of whether it is desirable for the 
bootstrap replicate mortality time series to 
be constructed solely on the basis of model 1 
when, in fact, according to the evidence given 
by the weights, the two models are almost 
equally supported by the data. Double BOOT 
offers a solution to this problem by perform-
ing a second layer of bootstrapping that uses 
a bootstrap data-generating process to weight 
each of the original candidate models accord-
ing to their prevalence (measured through 
wi) as “best” models among the original B 
bootstrap replicate series. The logic used here 
could be extended to the case of many com-
peting models where it seems reasonable to 
perform a second layer of bootstrapping based 
on how well each candidate model is sup-
ported by the data, rather than a single layer 
where the bootstrapping is based on a single 
model that essentially assumes full support 
from the available data. The difference in the 
double BOOT weights compared with the 
original BOOT weights would depend on a 
number of factors, including the number of 
candidate models that are “close” in terms of 
support offered by the data and the similar-
ity of these models in terms of model struc-
ture. Irrespective of the change in the double 
BOOT weights, we believe the reweighting to 
be important—inherent to the success of the 
bootstrap is the premise that the data-generat-
ing process should mimic the true underlying 
process as closely as possible. In the case of 
something as complex as a model-selection 
process, the weights effectively measure a state 
of belief about the set of candidate models. 
Thus, our bootstrap resamples mimic that 
state of belief by generating data sets arising 
from a variety of candidate models in propor-
tion to our confidence that such models are 
the correct ones.

The use of the bootstrap to tune another 
initial bootstrap algorithm has a long his-
tory. For example, Efron (1983) used a sec-
ond level of bootstrap resampling to reduce 
the bias of the apparent error rate of a linear 
discriminant rule. Efron termed his method 
a “double bootstrap” because it involved a 
second layer of B resamples to bias correct 
an initial bootstrap bias-corrected estimate. 

Beran (1987) and Hall (1986) discussed the 
use of second-level resampling to correct for 
coverage error in confidence intervals. Hall 
and Martin (1988) proposed a general frame-
work for bootstrap iteration for which the 
second-level resamples were used to estimate 
and correct for the error in the original boot-
strap procedure. Loh (1987) also used a sec-
ond layer of bootstrap resamples to correct 
confidence interval endpoints. However, the 
methods of Beran (1987), Hall (1986), and 
Loh (1987) differ in the way the bootstrap 
critical points are modified. In our approach, 
the first-layer bootstrap resamples are used 
to generate an initial set of weights for the 
set of candidate models. In one way, these 
weights can themselves be considered as out-
puts from the initial bootstrap procedure. 
But, of course, these weights are not “correct” 
because of the way the bootstrap resamples are 
constructed in the generalized linear model 
context. Because the resampling is based on 
model residuals, there is a tendency for the 
initial bootstrap step to favor (i.e., give higher 
weight to) the model from which the original 
residuals were obtained. Our second-layer 
bootstrap resampling is directed at address-
ing this problem, by using the information 
gleaned from the initial bootstrap step as a 
starting point to constructing second-level 
resamples based on residuals not from a single 
model fit, but rather from a weighted set of 
plausible candidate models. Our method is a 
fully frequentist analog of the bootstrap-after-
Bayesian model averaging approach proposed 
by Buckland et  al. (1997). In their paper, 
the authors had observed that a single-layer 
bootstrap model averaging approach tended 
to favor the initial model on which resamples 
were based. They suggested that an initial 
Bayesian model averaging (BMA) step could 
be used to provide a weighted set of models 
from which resamples could be based in a 
second bootstrap model selection step. Our 
method takes a fully frequentist approach by 
adopting bootstrap methods at both steps.

The form of BMA that will be used in our 
paper is based on AIC as described in Clyde 
(2000). In the context of Model [1], BMA 
based on AIC proceeds by assigning each can-
didate model i a posterior probability given 
by the following formula:
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where AICi is the AIC for candidate model 
i and K is the number of candidate models.
The estimated mortality effect is obtained by 
weighting the PM effect estimates obtained 
from each model by its posterior probability.

In the context of our analyses, it is worth 
discussing the interpretation of the weighted 

average effect estimates obtained from BOOT, 
double BOOT, and BMA. These quantities, 
which are obtained by weighting estimates of 
the effect of an increase in PM2.5 on a single 
day’s mortality, may be viewed as weighted or 
model-averaged estimates of the effect of an 
increase in PM2.5 on a single day’s mortality. 
However, care should be taken when using 
model averaged estimates because the inter-
pretation of particular parameters may change 
when other variables, such as copollutants, 
are added to the model (Lukacs et al. 2009; 
Thomas et al. 2007). Indeed, not all research-
ers would agree with the process of averag-
ing estimates obtained using different lags of 
PM2.5. Some advocate that model averaging 
is best suited for making predictions (Thomas 
et al. 2007). In this regard, we also investigate 
the predictive performance of the three model-
averaging procedures considered in this article.

Results
We used the statistical package R along with 
packages “boot,” “splines,” and “tseries” for 
all the analyses (R Development Core Team 
2009). Computational constraints meant that 
producing estimates of the standard errors 
(SEs) for values presented in Tables 1 and 2 
was not feasible, and the provision of SEs for 
simulated values is not common practice in 
studies of this kind.

Simulation study. We used the 730 days 
of data from Seattle, Washington, along with 
the specification of Model [1] to generate 
mortality time series where the effect of PM2.5 
on mortality was known. Generating mor-
tality time series was achieved by producing 
mortality counts on day t that were Poisson 
distributed with mean µt

log(µt) = confounders(α)t + θPM2.5t,1.� [6]

We considered three different specifica-
tions of confounders(α = 1.2)t

Specification A

St,1(time, df = 8α) + St,2(temp, df = 6α)  
	 + St,3(dew, df = 3α),

Specification B	
St,1(time, df = 4α) + St,2(temp, df = 6α)  
	 + St,3(dew, df = 3α),

Specification C

St,1(time, df = 8α) + St,2(temp, df = 6α)  
	 + St,3(dew, df = 3α) 
	 + St,4(temp13, df = 6α).

In the above equations, θ is the known 
PM2.5 effect, and temp, temp13, and dew rep-
resent the current day’s temperature, tem-
perature of the previous 3 days, and current 
day’s dew point temperature, respectively. 
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The functions St,j() are smooth natural cubic 
spline functions with the indicated degrees 
of freedom. To ensure that the degrees of 
freedom take integer values, the values of 8α, 
6α, 4α, and 3α are rounded to the nearest 
integer. To find realistic representations of the 
St,j(), we fitted Model [6], using each specifi-
cation of confounders(α = 1.2)t to the actual 
Seattle data using a Poisson log-linear general-
ized linear model with an offset term allowing 
the effect of PM2.5 to be set equal to θ. The 
offset term allows a term to be included in a 
generalized linear model with a known, rather 
than an estimated, coefficient value. We used 
the fitted values from these models to generate 

daily Poisson mortality estimates that incor-
porate a known PM2.5 effect θ. Three values 
of θ: 0, 0.0003, and 0.001 were considered.

To implement model averaging, a set 
of candidate models was required. We con-
sidered two sets of candidate models that 
were defined by Model [1] with α taking 10 
equally spaced values ranging from α = 0.3 
to α = 3, confounders(α)t as defined in spec-
ification A, and either three lags of PM2.5 
(PM2.5t,0, PM2.5t,1, PM2.5t,2) or one lag of 
PM2.5 (PM2.5t,1). In the case of three lags of 
PM2.5, we have a set of 10 × 3 = 30 candidate 
models, and in the case of one lag of PM2.5, a 
set of 10 × 1 = 10 candidate models. Similar 

methods for defining the tuning parameter α 
for time and weather variables have been used 
in previous investigations (Dominici et al. 
2004; Roberts 2004). The number of param-
eters estimated in each candidate model is 
equal to the total number of degrees of free-
dom used in the St,j() plus 1 for the intercept 
and 1 for the estimated PM2.5 effect.

For mortality generated using the 
confounders(α = 1.2)t specification A, the 
“true” model is contained among both sets of 
candidate models, but for mortality generated 
using confounders(α = 1.2)t specifications B 
and C, this is not the case. In specification 
B, the degrees of freedom used for time have 
been halved for each value of α compared 
with the candidate models; whereas, specifi-
cation C includes temp13, a variable that is 
not included in any of the candidate mod-
els. These latter two situations are perhaps 
more realistic because in practice no candidate 
model would correspond to the true model.

In the simulations, B = 1,000 was used in 
BOOT and for both layers of double BOOT. 
The simulations were conducted by generat-
ing sets of 1,000 mortality time series defined 
by Model [6] with α = 1.2, one of the con-
founder specifications A, B, or C, and θ and 
then by applying BOOT, double BOOT, and 
BMA using the two sets of candidate mod-
els [i.e., with 3 lags of PM2.5 (30 candidate 
models total) or 1 lag of PM2.5 (10 candidate 
models total)]. Table 1 contains the results of 
these simulations. In the simulations involv-
ing 30 candidate models, it is evident from 
the smaller root-mean-squared error (RMSE) 
values that double BOOT has superior per-
formance to that of both BOOT and BMA. 
The breakdown of RMSE into bias and SE 
components shows that the improvement 
in performance offered by double BOOT is 
principally due to the lower SE of the esti-
mates obtained by this method. In the simu-
lations involving 10 candidate models, the 
methods offer similar performance.

For the simulations with 30 candidate 
models and confounders(α = 1.2)t = specifica-
tion A, we investigated the use of standard AIC 
model selection (results not shown) by basing 
estimates on the single model selected as “best” 
based on AIC. Performance, as measured by 
RMSE, was substantially worse than that of 
double BOOT, BOOT, and BMA, with the 
average values of RMSE of approximately 1.90 
for each of the three scenarios considered.

As a final comparison we compared the 
predictive performance of the three meth-
ods using both simulated and actual mortal-
ity data. For each mortality time series, we 
randomly removed 100 observations and 
applied BOOT, double BOOT, and BMA 
to the remaining data to obtain predictions 
for the removed observations. The predic-
tions were computed as weighted averages of 

Table 1. Results of simulations that compare the statistical properties of BOOT, double BOOT, and BMA 
for estimating the mortality effect of PM2.5.

Method
Specifications BOOT Double BOOT BMA
No. of candidate models:a K = 30

Mortality model:b confounders(α = 1.2)t = specification A, and 1000θ = 0
RMSEc 1.50 1.38 1.48
Bias/SEd –0.28/1.47 –0.28/1.36 –0.25/1.46

Mortality model: confounders(α = 1.2)t = specification A and 1000θ = 0.3
RMSE 1.54 1.43 1.51
Bias/SE –0.38/1.49 –0.40/1.37 –0.35/1.47

Mortality model: confounders(α = 1.2)t = specification A and 1000θ = 1
RMSE 1.47 1.39 1.44
Bias/SE –0.42/1.41 –0.48/1.30 –0.39/1.39

Mortality model: confounders(α = 1.2)t = specification B and 1000θ = 0.3
RMSE 1.36 1.25 1.34
Bias/SE –0.07/1.36 –0.06/1.25 –0.07/1.34

Mortality model: confounders(α = 1.2)t = specification C and 1000θ = 0.3
RMSE 1.50 1.38 1.48
Bias/SE 0.08/1.50 0.03/1.38 0.10/1.48

No. of candidate models: K = 10
Mortality model: confounders(α = 1.2)t = specification A and 1000θ = 0.3

RMSE 1.34 1.34 1.33
Bias/SE –0.21/1.32 –0.23/1.32 –0.19/1.32

Mortality model: confounders(α = 1.2)t = specification B and 1000θ = 0.3
RMSE 1.28 1.28 1.28
Bias/SE –0.05/1.28 –0.04/1.28 –0.06/1.28

Mortality model: confounders(α = 1.2)t = specification C and 1000θ = 0.3
RMSE 1.33 1.32 1.33
Bias/SE 0.17/1.32 0.15/1.32 0.18/1.32

aThe number of candidate models used in the three model-averaging procedures. bThe specification of 
confounders(α = 1.2)t and θ used in Equation [6] to simulate mortality. c1,000 times the RMSE of the estimates of θ com-
puted over 1,000 simulated mortality time series. d1,000 times the average bias and SE of the estimates of θ computed 
over 1,000 simulated mortality time series.

Table 2. Results of simulations comparing the predictive performance of BOOT, double BOOT, and BMA 
using 30 candidate models. 

Comparisona

Double BOOT 
vs. BMA

Double BOOT 
vs. BOOT

BMA  
vs. BOOT

Modelb 
Confounders(α = 1.2)t = specification A and 1000θ = 0.3 49 71 66
Confounders(α = 1.2)t = specification B and 1000θ = 0.3 61 73 55
Confounders(α = 1.2)t = specification C and 1000θ = 0.3 51 69 58

Cityc 
Birmingham 63 78 50
Orlando 68 64 36
Seattle 72 47 23
St. Louis 24 88 83
Tampa 41 91 82

aNumbers indicate the number of simulations (out of 100 total) for which one method performed better than a compari-
son method based on lower PMSE estimates. bThe specification of confounders(α = 1.2)t and θ used in Equation [6] to 
simulate mortality. cThe city from which the actual mortality data corresponds.
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the predictions obtained from each candidate 
model weighted by the weight or probabil-
ity assigned to that model. The performance 
of each method was based on the predictive 
mean squared error (PMSE) computed as 
{(y1 – ŷ1)2 +…+ (y100 – ŷ100)2}/100, where yi 
and ŷi are the actual and predicted mortality 
estimates, respectively. For a given mortality 
time series, we repeated the process of ran-
domly removing 100 data points and com-
puting the PMSE 100 times. Table 2 reports 
the number of times (out of 100) that each 
method had a better predictive performance 
than alternative methods based on lower 
PMSE. It is clear that double BOOT has 
predictive performance superior to that of 
BOOT, with double BOOT having a smaller 
PMSE about 70% of the time. The results 
also provide support for double BOOT ver-
sus BMA, with double BOOT providing the 
same or better predictive performance in two 
of the three model-specific simulations and in 
three of the five city-specific simulations. 

Application. Tables 3 and 4 show the 
results of applying the three model-averaging 
methods and standard AIC to the five cities 
described above. We calculated the SE val-
ues in Table 3 using equation 4 of Burnham 
and Anderson (2004). For these five cities, 
the estimates obtained from the three model-
averaging methods were similar and the con-
clusions drawn about the association between 
PM2.5 and mortality would be essentially the 
same. However, the results also illustrate that 
the estimates obtained from standard AIC can 
be significantly different to those obtained 
from model averaging. The SEs assigned to 
the estimates obtained from standard AIC 
are smaller because these SEs do not take into 
account the model selection process that was 
used to find the single best model.

The reason for the differences in the esti-
mates obtained from the three model-averaging  
methods based on 30 candidate models 
compared with standard AIC is a result of 
the model-averaging methods assigning 
nonnegligible weights to a number of can-
didate models. Within each city, the three 
model-averaging techniques tended to assign 
nonnegligible weights to three models cor-
responding to the three different lags of PM2.5 
but the same level of confounder adjustment 
α. Comparing the weights obtained from 
BOOT and double BOOT illustrates that the 
second bootstrap layer can result in substantial 
changes to the weights assigned to each model. 
For example, for Seattle and Tampa in some 
situations the weights assigned to candidate 
models differ by approximately 40%.

Discussion
We have illustrated that double BOOT 
model averaging can offer benefits over 
BMA and BOOT for both estimation and 

prediction. The benefits were particularly 
noticeable for double BOOT compared with 
BOOT. This increased performance was 
attributable to a reduction in the variance of 
the estimates obtained from double BOOT 
compared with BOOT and BMA. An inter-
esting observation was that the bias of the 
estimates obtained from double BOOT 
was larger than the estimates obtained from 
BOOT and BMA when the “true” model was 
contained among the candidate models. This 
was not the case, however, when the “true” 
model was not among the candidate models 
because the double BOOT procedure tended 
to give less weight to the true model as a con-
sequence of the second bootstrap layer mov-
ing some of the weight from the true model 
to other plausible models. Of course, this 

phenomenon could not occur in the simula-
tions where the “true” model was not among 
the candidate models, and the result was that 
double BOOT had slight improvements in 
terms of lower bias.

A report of particular relevance to the pres-
ent study is that of Buckland et al. (1997) who 
investigated various forms of bootstrap model 
averaging, including the BOOT method in 
the present investigation. Buckland et  al. 
(1997) and Claeskens and Hjort (2008) each 
provide excellent introductory treatments of 
the issues surrounding model selection and 
model averaging. Burnham and Anderson 
(2002) showed that AIC can be derived as a 
Bayesian result and that the AIC-based BMA 
weights used in the present paper correspond 
to posterior model probabilities. Unlike the 

Table 3. Results of applying BOOT, double BOOT, BMA, and standard AIC to five U.S. cities.a

City
Method Birmingham Orlando Seattle St. Louis Tampa
No. of candidate models:b K = 30

BOOT 0.50c (1.55)d 0.17 (2.57) –2.26 (1.42) –1.11 (2.19) 3.01 (1.86)
Double BOOT 0.30 (1.57) –0.08 (2.57) –2.09 (1.43) –0.92 (2.21) 2.93 (1.89)
BMA 0.42 (1.59) –0.13 (2.58) –2.19 (1.41) –1.09 (2.26) 3.09 (1.84)
Standard AIC 1.29 (1.30) 1.69 (2.10) –2.61 (1.34) –1.92 (1.97) 3.22 (1.75)

No. of candidate models: K = 10
BOOT 1.31 (1.30) –1.52 (2.15) –1.43 (1.31) –0.86 (2.04) 3.26 (1.74)
Double BOOT 1.32 (1.30) –1.52 (2.15) –1.39 (1.32) –0.85 (2.05) 3.31 (1.74)
BMA 1.34 (1.32) –1.54 (2.15) –1.45 (1.30) –1.08 (2.14) 3.33 (1.74)
Standard AIC 1.29 (1.30) –1.53 (2.15) –1.51 (1.29) –0.87 (2.01) 3.19 (1.75)

aThe model specification is Model [6] with α = 1.2 and confounder specification A. bThe number of candidate models 
used in the three model-averaging procedures. c1,000 times the estimated mortality effect of PM2.5. d1,000 times the SE 
of the estimated mortality effect of PM2.5.

Table 4. Weight or posterior probability assigned to candidate models for data from five U.S. cities. 

Candidate modela

City/method Model 1 Model 2 Model 3 Model 4 Model 5
Birmingham j = 0, α = 1.5 j = 1, α = 1.5 j = 2, α = 1.5

Estimateb –0.858 1.293 0.476
BOOTc 22 36 23
Double BOOTc 26 25 20
BMAc 18 24 16

Orlando j = 0, α = 0.6 j = 1, α = 0.6 j = 2, α = 0.6
Estimate –0.730 –1.530 1.692
BOOT 26 24 41
Double BOOT 28 26 32
BMA 25 31 33

Seattle j = 0, α = 0.9 j = 1, α = 0.9 j = 2, α = 0.9
Estimate –2.606 –1.506 –1.849
BOOT 57 15 10
Double BOOT 40 18 16
BMA 51 15 22

St. Louis j = 0, α = 0.3 j = 1, α = 0.3 j = 2, α = 0.3 j = 2, α = 0.9
Estimate 0.193 –0.872 –1.916 –2.201
BOOT 22 23 44 1
Double BOOT 27 24 33 2
BMA 13 14 21 10

Tampa j = 0, α = 0.9 j = 0, α = 1.2 j = 1, α = 0.9 j = 1, α = 1.2 j = 2, α = 1.2
Estimate 3.341 3.219 3.532 3.192 1.345
BOOT 12 52 4 14 10
Double BOOT 16 32 9 18 12
BMA 15 21 20 21 5

Results are reported only for candidate models receiving a weight or probability ≥ 10%.
aThe candidate model to which the weight or probability is assigned; j corresponds to the lag of PM2.5 and α indicates 
the degree of confounder adjustment for models with confounder(α)t specification A. b1,000 times the estimated effect 
of PM2.5 obtained from the given candidate model. cWeight or posterior probability assigned to each candidate model.
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implementation in this report, BMA can also 
be implemented by explicitly assigning prior 
model probabilities (Hoeting et  al. 1999; 
Koop and Tole 2004). In the present setting, 
AIC-based BMA has the advantage of using 
objective prior distributions (Clyde 2000) 
and ease of implementation, compared with 
explicitly assigned prior model probabilities. 
An obvious disadvantage of AIC-based BMA 
is that is does not allow for the incorporation 
of prior information about the importance of 
a variable.

It is important to note that the use of BMA 
applied to time series studies of air pollution 
and mortality, and in particular the approach 
of Koop and Tole (2004), has received some 
criticism in the literature (Crainiceanu et al. 
2008; Thomas et al. 2007). In this study we 
have attempted to avoid these same criticisms 
by ensuring that when illustrating our pro-
posed averaging method we did so over a range 
of plausible candidate models, ensuring that a 
measure of air pollution exposure is included 
in each candidate model, focusing on single-
pollutant models, and also investigating pre-
dictive performance. We are of the view that 
a carefully applied model-averaging procedure 
can provide useful insight into understanding 
air pollution health effects by, for example, 
providing information on how much the data 
support various models, helping practitio-
ners to appreciate and allow for the effects of 
model selection and uncertainty, and in some 
circumstances providing improved estimators 
of air pollution health effects. However, we are 
also of the view that the use of model averag-
ing does not negate the need for careful plan-
ning and data-gathering processes along with 
detailed investigations of models arising from 
a suitably rich set of initial covariates to find 
an initial and sufficiently rich plausible set of 
candidate models. We also believe that future 
comparisons of results obtained from model 
averaging with traditional methods such as 
standard AIC would prove valuable.
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