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Research

Perfluorooctanoic acid (PFOA) and perfluoro­
octane sulfonate (PFOS) are perfluorinated 
compounds that have been found in the 
blood of virtually all Americans tested during 
the last decade (Calafat et al. 2007). They do 
not occur naturally but were introduced in 
the environment after World War II.

PFOA is used as a polymerization aid 
in the manufacture of several types of fluo­
ropolymers, which have been used in a wide 
variety of industrial and consumer products, 
such as Teflon and Gore-Tex. PFOA does 
not break down in most environments. The 
half-life of PFOA in humans is estimated to 
be 3.8 years [arithmetic mean; 95% confi­
dence interval (CI), 3.1–4.4 years] (Olsen 
et al. 2007). The median level in the U.S. 
population was 4 ng/mL in 2003 (Calafat 
et al. 2007). The origins of long-chain per-
fluorocarbon exposures stem from manu­
facture or use of industrial products, yet the 
routes of exposure and specific origins are 
rarely clear. PFOA is also widespread in the 
serum of inhabitants of many other countries 
(Lau et al. 2007).

PFOA has been found to be significantly 
associated with elevated uric acid in two cross-
sectional studies of chemical workers (n = 160 
and n = 1,024) (Costa et al. 2009; Sakr et al. 
2007a). There is also evidence in the literature 
for an association of PFOA with cholesterol 
and diabetes in humans. A positive correlation 

of PFOA with cholesterol was observed in six 
occupational studies (Costa et al. 2009; Olsen 
and Zobel 2007; Olsen et al. 2000, 2003; 
Sakr et al. 2007a, 2007b), and two commu­
nity studies (Emmett et al. 2006; Steenland 
et al. 2009b), although in one community 
study and two of occupational studies the 
relationship was not statistically significant. 
PFOA exposure was observed to be associ­
ated with a 2-fold increase in diabetes mor­
tality in one cohort study of highly exposed 
workers compared with nonexposed workers, 
although no association was seen in another 
cross-sectional study of diabetes prevalence 
(Leonard et al. 2008; MacNeil et al. 2009). 
In addition, PFOA has been associated with 
a number of outcomes in animal data, par­
ticularly tumors and neonatal loss (Lau et al. 
2007; U.S. EPA 2005).

PFOS is another perfluorocarbon that is 
widespread in the serum of U.S. residents, 
with a median serum level of 21 ng/mL in 
2003 (Calafat et al. 2007). Although PFOA 
is found at much higher levels among our 
study subjects than in the U.S. general popula­
tion, PFOS levels were similar to U.S. general 
population levels, suggesting that the nearby 
industrial facility was not a significant source 
of PFOS. Until recently, PFOS was used in 
the manufacture of Scotchgard among other 
products. Its half-life in humans has been esti­
mated at 5.4 years (arithmetic mean; 95% CI, 

3.9–6.9 years) (Olsen et al. 2007). In one cross-
sectional study of PFOS and cholesterol, a sta­
tistically significant positive association was 
observed among workers at one plant, but not 
at a second plant (Olsen et al. 1999). There are 
no data of which we are aware regarding an 
association of PFOS and uric acid.

Uric acid is a natural product of purine 
metabolism and has both oxidant and antiox­
idant properties. Considerable epidemiologic 
evidence exists from longitudinal studies, sup­
ported by animal evidence, that elevated uric 
acid is a risk factor for hypertension (Feig 
et al. 2006; Mellen et al. 2006; Shankar et al. 
2006; Sundström et al. 2005). A recent ran­
domized trial found that lowering uric acid 
resulted in lowering blood pressure in adoles­
cents (Feig et al. 2008). On the other hand, 
there is debate about whether uric acid is a 
predictor of cardiovascular disease, indepen­
dent of other known risk factors, and inde­
pendent of its role as a marker of kidney 
disease (Fang and Alderman 2000; Hakoda 
et  al. 2005; Johnson et  al. 2003; Shankar 
et al. 2006; Wannamethee 2005). There is 
also some evidence that uric acid is an inde­
pendent risk factor for stroke, diabetes, and 
metabolic syndrome (Dimitroula et al. 2008; 
Hayden and Tyagi 2004), but protects against 
Parkinson’s disease (Chen et al. 2009).

PFOA has been used in the manufactur­
ing of fluoropolymers at a chemical plant in 
Washington, West Virginia, since 1951. In 
2001, a group of residents from the Ohio and 
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Background: Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are 
compounds that do not occur in nature, have been widely used since World War II, and persist 
indefinitely in most environments. Median serum levels in the United States are 4 ng/mL for PFOA 
and 21 ng/mL for PFOS. PFOA has been associated with elevated uric acid in two studies of chemi-
cal workers. Uric acid is a risk factor for hypertension and possibly other cardiovascular outcomes.

Methods: We conducted a cross-sectional study of PFOA and PFOS and uric acid among 54,951 
adult community residents in Ohio and West Virginia, who lived or worked in six water districts 
contaminated with PFOA from a chemical plant. Analyses were conducted by linear and logistic 
regression, adjusted for confounders.

Results: Both PFOA and PFOS were significantly associated with uric acid. An increase of 0.2–0.3 
mg/dL uric acid was associated with an increase from the lowest to highest decile of either PFOA or 
PFOS. Hyperuricemia risk increased modestly with increasing PFOA; the odds ratios by quintile 
of PFOA were 1.00, 1.33 [95% confidence interval (CI), 1.24–1.43], 1.35 (95% CI, 1.26–1.45), 
1.47 (95% CI, 1.37–1.58), and 1.47 (95% CI, 1.37–1.58; test for trend, p < 0.0001). We saw a less 
steep trend for PFOS. Inclusion of both correlated fluorocarbons in the model indicated PFOA was 
a more important predictor than was PFOS.

Conclusion: Higher serum levels of PFOA were associated with a higher prevalence of hyper
uricemia, but the limitations of cross-sectional data and the possibility of noncausal mechanisms 
prohibit conclusions regarding causality.
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West Virginia communities in the vicinity 
of the Washington Works plant filed a class 
action lawsuit against the plant, alleging health 
damage due to contamination of human 
drinking water supplies with PFOA. The set­
tlement of this lawsuit led to a baseline survey 
called the C8 Health Project. This survey was 
conducted in 2005–2006; data were gathered 
from 69,000 current and former residents 
of Ohio and West Virginia who had lived, 
worked, or attended school in six contami­
nated water districts surrounding the chemical 
plant. The C8 Health Project included blood 
draws and subsequent measurement of serum 
PFOA and serum PFOS, as well as clinical 
chemistries, including uric acid.

In the present study, we analyzed the 
data of adults ≥ 20 years of age to determine 
whether associations exist between PFOA 
or PFOS and uric acid in this population. 
The exposure metrics in this study are serum 
PFOA and PFOS measured in 2005–2006, 
and the outcome is concurrent uric acid level.

Materials and Methods
Study population. Study subjects participated 
in the C8 Health Project (Frisbee et al. 2009; 
Steenland et al. 2009a). The purpose of the C8 
Health Project was to collect health data from 
residents covered under the legal settlement of 
a class action lawsuit, which included a battery 
of blood tests and measurement of serum levels 

of PFOA and PFOS. The C8 Health Project 
began in August 2005 and completed enrolling 
subjects in August 2006. Subjects were eligible 
to participate in the C8 Health Project if they 
had consumed public drinking water supplied 
by any of six contaminated water districts or 
from a small number of private wells known 
to be contaminated, and if they could provide 
documentation that they had lived, worked, 
or attended school in a contaminated water 
district for at least 1 year before 3 December 
2004. The six water districts all had docu­
mented PFOA contamination of public water 
(≥ 0.05 ng/mL). Figure 1 shows the approxi­
mate boundaries of the six water districts. 
Subjects filled out an extensive questionnaire 
(Frisbee et al. 2009) and came to local survey 
stations to donate a blood sample.

The C8 Health Project collected data 
on 69,030 subjects; of these, 54,591 were 
≥ 20 years of age and were included in our 
study. To estimate the participation rate 
among current residents in 2005–2006 
among adults ≥ 20 years of age, we used cen­
sus data. Estimates of the population residing 
in the six water districts were made based on 
population estimates for census block groups 
in 2005. Block groups are smaller than cen­
sus tracts but larger than census blocks. To 
find the population of each water district, we 
determined which block groups were entirely 
within the water district. We then determined 

which block groups intersected the boundar­
ies of the water districts. For those that inter­
sected, we then calculated the ratio of water 
district area to block group area within each 
block group and multiplied the ratio by the 
block group population. We then summed 
the populations for the entire water district 
and then summed across all six water districts. 
Finally we determined the numbers of cur­
rent residents (63% of total participants) in 
the water districts who participated in the C8 
Health Project in 2005–2006, and divided 
these residents (33,001) by the population 
(40,721) to find a participation rate of 81% 
among current residents ≥ 20 years of age.

Statistical analysis. All analyses were done 
using the SAS statistical package (version 10; 
SAS Institute Inc., Cary, NC). Analyses were 
conducted using linear regression with uric 
acid as the outcome. Residuals were checked 
for normality. The exposure variables were 
serum PFOA or PFOS. Most analyses used 
categorical exposure variables (deciles, lowest 
decile as reference), to avoid any assumptions 
about the shape of a parametric model, taking 
advantage of the large sample size that permit­
ted adequately precise estimates across multiple 
categories. As a test for linear trend, we used 
the p-value of the parameters for PFOA or 
PFOS as continuous variables. We also con­
ducted some analyses using the log transform 
of the exposure variables (PFOA and PFOS), 
because the log transform appeared to fit the 
data well. Covariates in the model were chosen 
a priori because of their established relationship 
to uric acid, such that they were potentially 
confounding variables. Covariates included 
age (18–39, 40–49, 50–59, 60–69, 70–79, 
≥ 80 years), sex, body mass index (BMI), edu­
cation as a measure of socioeconomic status 
(less than high school, high school, some col­
lege, college plus), smoking (never, current, 
former), current alcohol consumption, and 
serum creatinine as a marker of kidney func­
tion. The log of creatinine was used because it 
provided a better fit to the data (higher likeli­
hood) than either untransformed continuous 
or categorical variables for creatinine. All cova­
riates were statistically significant predictors of 
uric acid, in the predicted direction.

In addition to the linear regressions 
described above, we also ran logistic regres­
sion models for the dichotomous outcome 
hyperuricemia, which was defined as serum 
uric acid > 6 mg/dL for women and > 6.8  
mg/dL for men (Johnson et al. 2003). In these 
models we used quintiles of PFOA (0–11.4, 
11.5–20.6, 20.7–38.9, 39.1–88.6, ≥ 88.7 
ng/mL) or PFOS (0–12.1, 12.2–17.4,  
17.5–23.2, 23.2–31.8, ≥ 31.90 ng/mL). These 
analyses were adjusted for the same covariates 
used in linear regression.

We provided graphical representation of 
the linear regression results by showing the Figure 1. Six water districts contaminated with PFOA.
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predicted trend in uric acid by decile of either 
PFOA or PFOS, given a covariate profile for 
an average subject. We used the median of 
each decile for graphing the x-axis.

Laboratory methods. The analytical method 
for PFOA and PFOS used in this study has 
been described in detail (Flaherty et al. 2005; 
Longnecker et al. 2008). Both fluorocarbons 
are found in the serum fraction of the blood; 
they are not lipophilic (but rather proteino­
philic), and no adjustment is made for lipid 
fractions. Briefly, the method uses liquid 
chromatography separation with detection by 
tandem mass spectrometry. Extraction of the 
serum samples was done using acetonitrile. 
Estimates of precision for PFOA were generally 
within ±10% for multiple replicates of indi­
vidual samples over the range of 0.5–40 ng/mL 
with a more precise relative precision mea­
sure of approximately 1% for highly fortified 
(10,000 ng/mL) samples. Relative precision 
estimates for PFOS were similar. The limit 
of detection for both chemicals is 0.5 ng/mL. 
Less than 1% of values of each chemical were 
less than the limit of detection, and these were 
assigned 0.25 ng/mL.

Fasting blood samples were not required 
and were obtained at any time the participants 
came to the study site, that is, throughout 

the course of the day. Serum was separated 
from red cells and placed in transport tubes 
and refrigerated for shipment to the lab. Uric 
acid was measured in serum via the enzy­
matic uricase method. Uric acid is oxidized by 
uricase to allantoin and hydrogen peroxide. 
3,5-Dichloro-2-hydroxybenzene sulfonate 
coupled with 4-aminoantipyrine and hydro­
gen peroxide, in the presence of peroxidase, 
forms a colored complex that is measured at 
520 nm. The color intensity is proportional to 
the concentration of uric acid in the sample.

Results
Table 1 provides descriptive statistics on uric 
acid, PFOA, PFOS, and covariates in the 
model. The distribution of PFOA among the 
study participants is more highly elevated and 
highly skewed than that of the general U.S. 
population, whereas the distribution of PFOS 
generally conforms to that expected based on 
the U.S. population. Uric acid levels conform 
to what would be expected in an adult popula­
tion. There were few missing data, so the final 
model included 97% of the adult participants.

Table 2 shows results of the model for 
PFOA and uric acid, and Table 3 shows the 
results for PFOS and uric acid. A test for lin­
ear trend (using untransformed PFOA and 

PFOS) was highly significant (coefficient ± SE: 
PFOA, 0.00011 ± 0.00002; PFOS, 0.00070 ± 
0.00006; p < 0.0001) in both cases. Figure 2 
shows the actual observed mean values of uric 
acid with deciles of PFOA and PFOS, with­
out covariate adjustment. Figures 3 and 4 dis­
play the model’s predicted values for uric acid 
by decile of PFOA and PFOS, respectively, 
adjusted for covariates. The model-predicted 
values have the same pattern as the observed 
data, although they are slightly higher because 
they are the predicted values for males, which 
have slightly higher levels than the entire 
population, which is the basis for Figure 2. 
Tables 2 and 3, and Figures 2–4, indicate a 
close to monotonic increase in uric acid with 
an increase in either PFOA or PFOS. There is 
an increase in uric acid of 0.2–0.3 µg/dL from 
the lowest to the highest decile for both PFOA 
and PFOS. The exposure–response curve for 
PFOA appears to tail off at the highest expo­
sures, whereas for increasing PFOS, uric acid 
increases approximately linearly. The upper­
most exposure levels of PFOA in this popula­
tion far exceeded expected U.S. levels; this was 
not the case for PFOS.

PFOA and PFOS were correlated in our 
data (Spearman correlation coefficient, 0.31). 
When we included both PFOA and PFOS 

Table 1. Descriptive statistics (n = 54,951) for adults ≥ 20 years of age in the Mid-Ohio Valley in 2005–2006.a

Variable
Mean ± SD  

(interquartile range) Median Percent
Continuous variables
Uric acid (mg/dL) 5.58 ± 1.55 (4.5–6.6) 5.50 NA
PFOA (ng/mL) 86.4 ± 261.3 (13.5–71.4) 27.9 NA
PFOS (ng/mL) 23.4 ± 16.1 (13.6–29.3) 20.2 NA
Age (years) 45.0 ± 15.9 (33–57) 44.0 NA
BMI 28.7 ± 6.5 (24.2–32.0) 27.5 NA
Creatinine (mg/dL) 0.95 ± 0.28 (0.8–1.1) 0.90 NA
Categorical variables used in model
BMI

≤ 24 21.5 ± 1.7 (19.1–23.7) 21.9 25
24–27.4 25.8 ± 1.0 (25.0–26.6) 25.8 25
27.5–31.9 29.5 ± 1.26 (28.4–30.6) 29.4 25
≥ 31.9 37.3 ± 6.35 (33.5–39.5) 35.6 25

Age (years)
18–39 28.6 ± 6.42 (23–34) 29 39.8
40–49 44.8 ± 2.9 (42–47) 45 21.0
50–59 54.3 ± 2.9 (52–57) 54 18.7
60–69 64.1 ± 2.8 (62–66) 64 12.3
70–79 73.7 ± 2.8 (71–78) 73 6.2
≥ 80 83.8 ± 3.7 (81–86) 83 1.9

Smoking status
Never smoker NA NA 48
Current smoker NA NA 26
Former smoker NA NA 26

Current alcohol NA NA 48
Male NA NA 48
Education

< High school NA NA 13
High school NA NA 42
Some college NA NA 32
≥ College NA NA 18

High uric acid (> 6.0 mg/dL for women, > 6.8 mg/dL for men) NA NA 24

NA, not applicable. 
aMaximum percentage of missing any variable was 1.1%.

Table 2. Results from model with PFOA and uric 
acid.a 

PFOA (ng/mL) Estimate SE
0–7.8 0
7.9–11.4 0.09 0.02
11.5–15.4 0.16 0.02
15.5–20.6 0.18 0.02
20.6–27.8 0.21 0.02
27.9–38.9 0.21 0.02
39.0–56.9 0.22 0.02
57.0–88.6 0.22 0.02
88.7–188.6 0.25 0.02
≥ 188.7 0.28 0.02
aModel R2 = 0.40, n = 53,458 (3% of data was lost because 
of missing values). Adjusted for age, creatinine, sex, 
smoking, education, BMI, and current alcohol con-
sumption. All covariates are significant at p < 0.0001 in 
expected directions.

Table 3. Results from model with PFOS and uric 
acid.a 

PFOS (ng/mL) Estimate SE
0–9.0 (referent) 0
9.1–12.1 0.00 0.02
12.2–14.9 0.01 0.02
15.0–17.4 0.06 0.02
17.5–20.1 0.08 0.02
20.2–23.1 0.09 0.02
23.1–26.8 0.12 0.02
26.9–31.8 0.12 0.02
31.9–40.4 0.12 0.02
≥ 40.5 0.22 0.02
aModel R2 = 0.40, n = 53,458 (3% of data lost because of 
missing values). Adjusted for age, creatinine, sex, smok-
ing, education, BMI, and current alcohol consumption. 
All covariates are significant at p < 0.0001 in expected 
directions.
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in the linear regression model, both variables 
continued to show a positive linear trend; the 
trend for PFOA was slightly diminished, but 
the one for PFOS was notably diminished. 
This finding suggests that of the two variables, 
PFOA was the more important. The trend for 
PFOA peaked at a 0.25 µg/dL increase for uric 
acid at the highest decile of PFOA (vs. 0.28 
µg/dL without PFOS in the model), whereas 
the trend for PFOS peaked at 0.13 µg/dL uric 
acid increase for the highest decile of PFOA 
(vs. 0.22 µg/dL without PFOA in the model).

Analyses of hyperuricemia as an outcome 
(> 6.0 mg/dL for women, > 6.8 mg/dL for 
men) by quintile of PFOA yielded odds ratios 
(ORs) of 1.00, 1.33 (95% CI, 1.24–1.43), 1.35 
(95% CI, 1.26–1.45), 1.47 (95% CI, 1.37–
1.58), and 1.47 (95% CI, 1.37–1.58). The test 
for linear trend, via determining the statistical 
significance of the coefficient for a continu­
ous variable PFOA, was significant [coefficient 
(SE), 0.00023 (0.0004); p < 0.0001], although 
the trend in OR appeared to plateau rather 
than increase in a strictly linear fashion. The 
corresponding ORs for PFOS quintiles were 
lower: 1.00, 1.02 (95% CI, 0.95–1.10), 1.11 
(95% CI, 1.04–1.20), 1.19 (95% CI, 1.11–
1.27), and 1.26 [95% CI, 1.17–1.35; test for 
trend, continuous variable PFOS, coefficient 
(SE), 0.0050 (0.0007); p < 0.0001]. When 
we entered both PFOA and PFOS into the 
logistic model for hyperuricemia, we observed 
the same pattern of results, with a slightly less 
steep trend (OR for top quintile: PFOA, 1.42; 

95% CI, 1.32–1.53; PFOS, 1.13; 95% CI, 
1.05–1.22). We observed no significant inter­
action between PFOA and PFOS.

Only 119 people (0.2%) had creatinine 
> 2.50 mg/dL, which suggests kidney disease 
that can affect uric acid; excluding these par­
ticipants from the analyses did not change the 
results. A broader exclusion cut point of 1.50 
mg/dL excluded 739 and again had no effect 
on results. Inclusion of a variable for taking 
cholesterol medication (15% took medica­
tion) was not a significant predictor of uric 
acid. Among those who were not taking such 
medication, we found that measured total 
cholesterol was a significant positive predictor 
of higher uric acid but had little effect on the 
ORs for PFOA or PFOS.

We found no significant interactions 
between PFOA and age, creatinine, or BMI. 
We found a significant interaction for sex; 
although both sexes had showed a significant 
positive exposure–response relation, it was 
more consistently linear for females than for 
males. For hyperuricemia, the ORs for females 
were 1.20 (95% CI, 1.08–1.33), 1.26 (95% 
CI, 1.13–1.41), 1.35 (95% CI, 1.21–1.51, 
and 1.42 (95% CI, 1.26–1.58), whereas for 
males the corresponding ORs were 1.31 (95% 
CI, 1.19–1.45), 1.26 (95% CI, 1.15–1.39), 
1.37 (95% CI, 1.25–1.51), and 1.34 (95% 
CI, 1.22–1.48).

We also analyzed a subset of participants 
who had a PFOA level ≤ 20 ng/mL, dividing 
them into quartiles of PFOA exposure, so that 

the referent group had levels similar to those 
of the U.S. general population. Those with 
5–9.9 ng/mL (n = 2,012), 10–14.9 ng/ mL 
(n = 6,841), and 15–20 ng/mL (n = 7,387) had 
predicted increases in uric acid of 0.14 (95% 
CI, 0.07–0.20), 0.21 (95% CI, 0.15–0.27), 
and 0.24 mg/dL (95% CI, 0.18–0.31) above 
those with PFOA levels < 5 ng/mL.

Discussion
We observed a positive association between 
PFOA and uric acid, although the absolute 
magnitude of the change in uric acid from 
lowest to highest decile was modest. We 
observed a significant positive association in 
two previous studies of workers exposed to 
high levels of PFOA. No details were given 
for one of these studies (Sakr et al. 2007a), 
whereas in the other study of 160 workers the 
exposure–response coefficient was about twice 
as high as our own (per unit PFOA) (Costa 
et al. 2009).

We also observed an elevated risk of 
hyperuricemia among subjects in the top 
quartile of PFOA. PFOS showed a similar 
relationship with uric acid as did PFOA, but 
with less pronounced trends. PFOA appeared 
to be more strongly associated with uric acid 
than was PFOS. The ORs for hyperuricemia 
were higher for PFOA than for PFOS (1.47 
vs. 1.26 for the top quintile vs. the lowest 
quintile). Inclusion of both fluorocarbons in 
the hyperuricemia model only slightly dimin­
ished positive trends with PFOA but had 
more effect on trends with PFOS.

Serum PFOA levels were quite high over­
all in this community primarily due to con­
tamination of drinking water (although 5% 
of the population had worked at the chemical 
plant and had high levels due to occupational 
exposure). However, a large number of people 
had low levels, similar to the U.S. population. 
Serum PFOS was present at levels similar to 
those of the U.S. population. Restriction of 
the data to those with lower levels of PFOA 
suggested that even slight increases in PFOA 
above background were associated with sig­
nificant increases in uric acid.

In linear regression analyses, the expo­
sure–response curve for PFOA and uric acid 
appeared to attenuate at the highest expo­
sures, possibly reflecting saturation of a bio­
logical mechanism at high doses, whereas the 
curve for PFOS did not.

The percentage of the variance (change 
in R2) in uric acid attributable to PFOA (or 
PFOS) is small, only about 1%. However, 
many variables that are important predictors 
explain only a small amount of the varia­
tion of something else. For example, in our 
model predicting cholesterol in this popu­
lation (Steenland et al. 2009b), removal of 
significant and well-established cholesterol 
predictors—exercise, smoking, sex, alcohol, 

Figure 2. Observed uric acid with increasing PFOA (A) and PFOS (B) unadjusted for covariates.
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Predicted value from regression model for an aver-
age participant: 45 years of age, 0.95 mg/dL creati-
nine, high school education, male, 28.55 kg/m2 BMI, 
nonsmoker, nondrinker. Data are population means 
and 95% CIs.
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and socioeconomic status combined—reduces 
the R2 of our model < 1% (the reduced model 
contains only BMI and age). Furthermore, if 
there is a causal relationship between PFOA 
and uric acid, we may have misclassified 
PFOA by using current levels, because past 
levels may be the more relevant predictor. 
This would bias our findings toward the null, 
decreasing the amount of variance explained.

A mechanism by which PFOA (or PFOS) 
might lead to higher uric acid is unknown. 
However, some data suggest that PFOA can 
induce oxidative stress in human liver cells 
(Panaretakis et  al. 2001; Yao and Zhong 
2005). It is in turn possible that such oxida­
tive stress may be associated with increased 
uric acid (Patterson et al. 2003).

A second possible mechanism by which 
PFOA and uric acid might be associated with­
out being causally linked is via shared renal 
transport transporters governing excretion of 
each substance. Organic ion transporters 1 
and 3 (OAT 1 and 3) are involved in tubular 
secretion. OAT 1 and 3 have high affinity for 
PFOA (Nakagawa et al. 2008). Recent studies 
also show that OAT 1 and 3 are involved in 
urate secretion (Eraly et al. 2008). So it is pos­
sible that if the levels of PFOA increase, the 
secretion of urate is decreased and therefore 
blood urate levels may secondarily increase. 
However, whether this shared transporter 
hypothesis is relevant in humans remains 
speculative at this point.

Our findings are of interest because uric 
acid itself has been linked to hypertension 
and possibly other cardiovascular outcomes. 
A strength of our study is the large popula­
tion and the fact that the participation rate 
in the community was high, lessening con­
cern about chance findings and about poten­
tial selection biases. A limitation is that we 
did not have data on blood pressure for our 
population, making it impossible to directly 
assess a possible fluorocarbon–blood pressure 
relationship. Perhaps the principal limitation 
of our study is that, despite the associations 
we observed, causal inference is limited by 
the cross-sectional nature of the data. We 
cannot know whether the rise in PFOA or 
PFOS preceded the rise in uric acid. It is 
also possible that concentrations of both per­
fluorinated compounds rise with increased 
uric acid because all three are related to some 
other as yet unknown biological mechanism, 
an interpretation consistent with the parallel 
effects of both PFOA and PFOS, assuming 
this mechanism was related to perfluorinated 
compounds in general.
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