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Abstract 

Background: There is growing concern worldwide about the role of polluted soil and water 

environments in the development and dissemination of antibiotic resistance. 

Objective: To identify management options for reducing the spread of antibiotics and antibiotic 

resistance determinants via environmental pathways, with the ultimate aim of extending the 

useful lifespan of antibiotics. Incentives and disincentives for action are noted. 

Methods: We focused on management options with respect to limiting agricultural sources, 

treatment of domestic, hospital, and industrial wastewater, and aquaculture. 

Discussion: Several options were identified, such as nutrient management, runoff control, and 

infrastructure upgrades. Where appropriate, a cross section of examples is provided across 

various regions of the globe. The importance of monitoring and validating effectiveness of 

management strategies is also highlighted. Finally, we close with a case study in Sweden 

illustrating the critical role of communication to engage stakeholders and promote action. 

Conclusions: Environmental releases of antibiotics and antibiotic resistant bacteria can in many 

cases be reduced at little or no cost. Some management options are also synergistic with existing 

policies and goals. The anticipated benefit is an extended useful lifespan for current and future 

antibiotics. Although the risk reductions often are still difficult to quantify, the severity of the 

accelerating world­wide morbidity and mortality rates associated with antibiotic resistance 

strongly motivate action. 
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Introduction 

Antibiotic resistance represents a serious and growing human health threat across the world. In 

many areas of the world there are no effective antibiotic therapies available for life threatening 

infection, and the pace of development of novel antibiotics is now alarmingly low (Walsh 2003). 

Medical therapy and surgery that we now take for granted (e.g., bowel surgery, hip replacements, 

treatment of leukaemia) may soon no longer be viable because the complication rate of 

untreatable infections will be too high (Carlet et al. 2012). 

Increasing attention is being turned towards potential contributing factors to antibiotic resistance 

outside the clinical realm. The World Health Organization (WHO) has declared that “emergence 

of antimicrobial resistance is a complex problem driven by many interconnected factors; single, 

isolated interventions have little impact” (WHO 2012a). However, environmental pathways of 

antibiotic resistance have not yet been directly addressed by WHO. In particular, recent research 

has highlighted soil and water environments as recipients, reservoirs, and sources of antibiotic 

resistance genes (ARGs) of clinical concern (Martinez 2009; Wright 2010). Likewise, soil and 

water environments receive inputs of antibiotics and antimicrobials, which can serve to amplify 

ARGs (Chee­Sanford et al. 2009; Heuer et al. 2011). Indeed, many of the resistance factors we 

face in the clinic today have been recruited from non­pathogenic bacteria around us (Bonomo 

and Szabo 2006). Here, we identify and provide an overview of potential mitigation options for 

minimizing the spread of antibiotics and antibiotic resistance along these pathways. 

In the following review we consider three critically important sources of environmental exposure 

to antibiotics and ARGs, namely terrestrial agriculture; treatment of wastewater from 

municipalities, pharmaceutical manufacturing and hospitals; and aquaculture. Limiting impacts 
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to aquatic environments is of special interest because they serve as a source of exposure to 

humans via recreational use, bathing, ingestion, and aerosol inhalation. Ideally, end points for 

assessing the effectiveness of management strategies should not only examine antibiotic resistant 

bacteria (ARBs), but should take into consideration the broader impact on the ARG pool (the 

antibiotic resistome) (Wright 2010). This is considerate of the fact that traditional culture­based 

methods overlook the vast majority of environmental microbes (Pace 1997). 

ARBs and ARGs are abundant in human and animal fecal material, calling for active stewardship 

to avoid gene­flow to and from environmental resistance reservoirs. Both water and land can be 

directly impacted by industrial, agricultural, and wastewater inputs of antibiotics, which impose 

selection pressure and enable the amplification, maintenance, and spread of ARBs. Switching to 

alternative biocides or animal growth promoters, such as metals, will not necessarily aid in 

limiting the spread of antibiotic resistance, as they can also select for antibiotic resistance 

through co­ or cross­resistance (Baker­Austin et al. 2006). In addition to end­of­pipe options, 

source control is key. Therefore in each section we provide discussion of the rationale for use of 

antimicrobial compounds in humans and animals, potential advantages of limiting or managing 

antimicrobial use, and the overall market and policy forces that impact the feasibility of 

management approaches. 

We recognize that estimates of exposures and risks associated with environmental pathways of 

resistance should be pursued to a practicable extent (Ashbolt et al. In revision). However, by the 

time a formalized risk assessment for environmental sources of antibiotic resistance is 

established, opportunities for effective action may be lost. Therefore, in this critical review the 

focus is on identifying management options that may be put into effect immediately. Ideally, 
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simple management practices may be identified that work synergistically with existing policies 

and goals, such as nutrient management, runoff control, or infrastructure upgrades. 

While antibiotic resistance is clearly a global challenge, we emphasize that local action is 

necessary to reduce its spread via the environment. Indeed, regional management regimes for 

agricultural and clinical use of antibiotics together with good hygiene have in many cases proved 

successful in minimizing resistance on a national basis. 

Issues and Recommendations 

Limiting Agricultural Sources 

Optimizing Antibiotic Use 

Agricultural usage of antibiotics represents a large proportion of the overall antibiotic 

consumption worldwide, although the specific antibiotics used vary extensively among countries 

( DANMAP 2010; EMA 2011; Sarmah et al. 2006;). Most recent estimates indicate that 70% or 

more of total antibiotics used in the U.S. (FDA 2011) and Australia (JETACAR 1999) are 

administered to livestock . In China, about 210 million kg antibiotics are produced annually, and 

46% are estimated to be used in livestock (Wang and Ma 2008). In general, uncontrolled use of 

antibiotics and metals is increasing in Chinese agriculture and industry, corresponding to 

enrichment of ARGs in the environment, particularly in soils (Wu et al. 2010). 

Limiting the use and types of antibiotics, particularly “critically important antimicrobials” 

(FAO/OIE/WHO 2004; WHO 2012a), in animal production is the most direct route of 

controlling agricultural antibiotic release into the environment, and likely also antibiotic 

resistance. Regulations on dosing based on clinical efficacy are often in place and growth 
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promoters have been banned in some cases. Importantly, such measures may also reduce the high 

risk of antibiotic resistance transfer from animals to humans (Angulo et al. 2006; Smith et al. 

2005). Antibiotics were phased out as growth promoters in 1986 in Sweden, followed by 

Denmark in the late 1990s, and subsequently the E.U. The action in Denmark was stimulated by 

the identified linkage between avoparcin use in broiler chickens and vancomycin­resistant 

Enterococcal (VRE) inflections in humans (Bates 1997). Overall, a dramatic decline in the total 

use of veterinary antibiotics was achieved in Denmark during this period from more than 200 

tonnes in 1994 to around 70 tonnes in 1999 (DANMAP 2010). However, “therapeutic” use of 

antibiotics in Danish pigs slowly doubled over a 10 year period, but was curtailed by about 25% 

after stricter monitoring and enforcement against illegal use from 2010­2011 (Aarestrup 2012). 

Banning subtherapeutic antibiotic use in Denmark led to marked reductions of antibiotic 

resistance among fecal enterococci in the animal populations (Aarestrup et al. 2001) 

demonstrating that it is indeed possible to reverse the occurrence of antibiotic resistance among a 

national population of food animals through regulations restricting antibiotic use. Multidrug 

resistance rates of E. faecium in U.S. poultry have similarly been observed to decline from 84% 

to 17% following a conversion to organic feed (Sapkota et al. 2011). However, initial sharp 

decreases can taper off, with an estimated 25 years required for vancomycin­resistant 

Enterococci to fully dissipate (Johnsen et al. 2011). Monitoring for response of resistance 

carriage in humans has not revealed obvious reductions, but there are significant confounds 

related to international travel and consumption of imported meat carrying higher loads of 

resistant bacteria (Hammerum et al. 2007). Need for improved human monitoring data has been 

noted (Aarestrup 2012). Correlations have been identified between antibiotic use and 

sulfonamide and tetracycline ARG abundance in cattle waste lagoons in the U.S. (McKinney et 
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al. 2010) and in Dutch soil (Knapp et al. 2011), supporting the relationship between antibiotic 

use and environmental reservoirs of resistance. 

Maintaining Good Animal Health 

Keeping animals healthy is an important way of reducing the usage of antibiotics. Best 

management practices, such as low animal density and improved nutritional programs, can be 

developed and adopted to control infectious diseases on farms. In a recent study of antibiotic 

amendment in dairy calf milk replacer, subtherapeutic antibiotics provided no additional health 

benefit when the calves were provided a high level of nutrition (Thames et al. 2012), which 

contrasts with studies where calves experienced greater incidence of illness when antibiotics 

were not supplemented, but were also provided lesser milk intake (Quigley and Drew 2000). 

Knowledgeable animal husbandry is the most important factor permitting reduced antibiotic use 

(van de Weerd et al. 2009). 

Alternatives to Antibiotics 

Metals (such as Cu, Zn and As) are commonly used in animal feeds as alternatives to antibiotics 

(Bolan et al. 2004). Since antibiotic resistance can be co­selected by metals (Berg et al. 2010; 

Knapp et al. 2011; SCENIHR 2009), it is apparent that replacement of antibiotics with metals 

could actually make antibiotic resistance worse. Further, metals (notably Cu) can accumulate in 

agricultural soils (Bolan et al. 2004; Gräber et al. 2005) and serve as even stronger long­term 

selective agents for antibiotic resistance in manure­amended soils than antibiotic residues, which 

are more prone to degradation and/or sequestration (Chee­Sanford et al. 2009). Other 

alternatives, such as herbal materials, may be worth pursuing (Hanczakowska and Szewczyk 

2007), but they should also be evaluated for potential to select for antibiotic resistance given that 
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many exert antimicrobial activity. Increased availability of inexpensive, readily­deliverable 

(ideally orally) vaccines that target major bacterial pathogens of animal, poultry and fish would 

be very desirable. 

Although antibiotic resistance may decline following relaxation of selection pressures, low, yet 

detectable, levels of resistance determinants are likely to persist for decades due to the low 

fitness costs associated with many antibiotic resistance mechanisms (Andersson and Hughes 

2010; Johnsen et al. 2011). Additionally, sulfonamide and tetracycline ARGs were only slightly 

less abundant in lagoons receiving organic versus conventional waste (McKinney et al. 2010). 

Both organic and conventional cattle lagoon water contained average tet(W) and sul1 levels 

about three orders of magnitude greater than “pristine” background river sediment in this same 

region (Pruden et al. 2012). This indicates that even under minimal antibiotic use conditions 

(organic), there is the potential for release of ARGs. Therefore, ideal management practices will 

also aim to control the flow of genetic elements from animal manure to aquatic systems. 

Management of Manure Containing Antibiotics 

Composting eliminates on average 50­70% of some antibiotics ( Sharma et al. 2009; Storteboom 

et al. 2007; Wang et al. 2012; Wu et al. 2010). Antibiotic degradation is suspected to primarily 

occur only during the thermophilic phase over the first two weeks, and efficiency depends on 

both duration and temperature. Watering, aeration and turning of compost was observed to offer 

some advantage to accelerating antibiotic decay of chlortetracycline, monensin, and tylosin, but 

even simple storage of manure stockpiles resulted in significant antibiotic degradation 

(Storteboom et al. 2007). Digestion of livestock waste can also treat antibiotic residues; five­

week fermentation effectively removed most sulfonamides and trimethoprim (Mohring et al. 
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2009) while sulfamethoxazole and oxytetracycline were reduced more effectively under aerobic 

than anaerobic incubation of dairy lagoon water (Pei et al. 2007). 

Biological Treatment of ARGs in Manure 

Response of ARGs to biological treatments, such as lagoons and composting, is variable because 

of the complex microbial ecology involved. Composting and manure storage resulted in up to 

100­fold reduction of tetracycline ARGs, but tet(O) increased when horse manure was 

composted, even in the absence of measurable antibiotics (Storteboom et al. 2007). Persistence 

of ARBs (such as E. coli) and ARGs (tet and erm) after composting has been observed (Sharma 

et al. 2009) and can be problematic, as ARGs can persist even in the absence of selection 

pressure (Johnsen et al. 2011). McKinney et al. (2010) observed up to 10­fold reduction of tet 

ARGs across six anaerobic livestock lagoons monitored, but sul ARGs actually tended to 

increase with treatment time. Others have reported lagoon treatment to be less effective 

compared to composting (Wang et al. 2012). A recent lab study with an agricultural E. coli strain 

suggests that anaerobic treatment may be a promising way to impose a high metabolic burden on 

bacteria and thus limit their capability to engage in horizontal gene transfer (Rysz et al. 2013). 

Containment of ARGs in Manure 

Containment of animal wastes is a practical strategy with other advantages of nutrient 

management and protection of soil and water quality. Containment strategies include prevention 

of lagoon spills and seepage, control of surface runoff, and limiting sediment erosion and 

transport from animal farms. Surface runoff can be limited by improved manure collection and 

increased storage capacity allowing for manure application to land only when crop demands for 

water and nutrients are high. Long­term manure storage offers benefits in terms of containment, 
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and can result in reduced prevalence of tetracycline residues and tetracycline resistant bacteria 

(Chee­Sanford et al. 2009). Manure separation technologies act to concentrate solids from 

manure slurries through processes such as screening, filtration, or sedimentation and may also 

provide an avenue to mitigate the release of antibiotic residues and ARGs. Benefits of manure 

separation include reduced nutrient content, prolonged storage potential, improved biological 

treatment, and minimization of odors. 

Potential Synergies with Alternative Energy or Policy Needs 

On­farm methanogenic biogas facilities may provide added incentive for improved waste 

treatment (Mohring et al. 2009). The increased intensification and geographical concentration of 

livestock production facilities further solidifies incentives to consider novel manure management 

technologies (Steinfeld et al. 2006). 

At a policy level, it is recommended that standards on concentrations of antibiotics in animal 

manures for land application should be established and monitored. Using animal manures as 

organic fertilizer also reduces the runoff from animal farms, risk of lagoon spills and seepages 

while allowing nutrient recovery. Enacting controls on manure management is challenging as it 

requires agreement, cooperation, and enforcement among a large number of stakeholders. 

Domestic, Hospital, and Industrial Wastewater Treatment 

Need for Sanitation and Sewage Treatment in the Developing World 

WHO (2012b) estimates that globally 2.6 billion people lack access to basic sanitation, which 

likely results in direct releases of ARBs and pathogens into the environment and ambient waters. 

Thus, basic hygiene is likely a critical step to mitigating the spread of resistance. Of recent 

concern is the detection of the gene NDM­1, providing bacteria with resistance to a large number 
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of antibiotics, in polluted surface waters and chlorinated tap water in India (Walsh et al. 2011). 

The NDM­1 gene is highly mobile and is found in multiple waterborne pathogens, including 

Vibrio cholera (Walsh et al. 2011) and E. coli (Kumarasamy et al. 2010). 

Fate of Antibiotics in WWTPs 

Sewage collection and treatment serves an essential role in the protection of human and 

environmental health. These systems are designed to remove conventional pollutants, including 

suspended solids, nutrients (N and P), organic matter, and, to some extent, pathogens. 

Traditional WWTPs are not intentionally designed for the removal of antibiotics or ARGs. 

Antibiotic residues from different sources (household, pharmaceutical industry and hospital) 

enter into municipal sewage along with other co­selecting factors, such as metals and surfactants. 

At least 56 antibiotics belonging to 6 different classes have been widely detected at ng/L to µg/L 

levels in sewage of East Asia, North America, Europe and Australia (Zhang and Li 2011). 

Removal pathways include adsorption, biodegradation, disinfection, and membrane separation 

(Zhang and Li 2011). Other pathways, such as hydrolysis, photolysis, and volatilization also 

contribute to removal (Zhang and Li 2011), depending on antibiotic properties. For example, 

tetracyclines are mainly removed by adsorption onto the biomass flocs, beta­lactams are largely 

degraded by hydrolysis reactions driven by bacteria or physical chemical processes, whereas 

erythromycin and ciprofloxacin are recalcitrant in activated sludge (Li and Zhang 2010). 

Antibiotics pose a special problem for wastewater treatment because they may impose selective 

pressure. The same mechanisms that degrade antibiotics can also enable resistance and be 

selectively enriched (e.g., beta lactam degradation) (Baquero et al. 1998). Clearly, the role of 

antibiotics as selective agents in WWTPs is complex. A recent study of a domestic WWTP 
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demonstrated a correlation between certain sulfonamide ARGs and sulfonamide antibiotics, but 

no correlation between tetracycline ARGs and corresponding antibiotics (Gao et al. 2012). At 

present, the possible role of antibiotics as selective agents in municipal WWTPs remains unclear. 

Fate of ARBs and ARGs in WWTPs 

WWTPs receive direct input of resistant faecal and commensal bacteria of patients prescribed 

antibiotics. Most recently, methicillin­resistant Staphylococcus aureus (MRSA) were detected in 

the effluent of four U.S. WWTPs (Goldstein et al. 2012), and bacteria resistant to clinically 

important antibiotics, including ciprofloxacin and vancomycin, have been found in the activated 

sludge (Nagulapally et al. 2009). ARBs and ARGs may either decrease (i.e., via death and decay) 

or increase (i.e., via horizontal gene transfer and/or selective enrichment) through the treatment 

process. The most direct route of removal of both is via solids separation, such as sedimentation. 

However, subsequent biological treatment steps may result in selective increase of ARBs (Zhang 

et al. 2009). Evidence of exchange of new ARGs emerging in the clinic with wastewater bacteria 

was recently observed using a plasmid metagenomic analysis (Szczepanowski et al. 2009) and 

WWTPs have been described to possess the ideal mix of conditions to foster horizontal gene 

transfer and development of multi­drug resistant bacteria (Schlüter et al. 2007). ARGs persist in 

effluents of a variety of full­scale WWTPs at levels well above those typical of aquatic 

environments, even following disinfection (Auerbach et al. 2007). ARGs have even been 

observed to break­through relatively advanced WWTPs using mixed media filtration and persist 

at detectable levels in surface water receiving the discharge (LaPara et al. 2011). Others have 

observed ARGs from industrial and municipal WWTP sources to persist in river sediment 

(Kristiansson et al. 2011; Storteboom et al. 2010). 
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WWTPs as Critical Control Points 

WWTPs may represent a critical node for control of global spread of antibiotic resistance. 

Thermophilic anaerobic sludge digestion appears particularly promising and may achieve 

superior ARG removal relative to mesophilic digestion, potentially because of the much 

narrower host ecology of the microorganisms (Diehl and LaPara 2010; Ma et al. 2011). More 

advanced treatment technologies, for example membrane separation, could be applied to retain 

bacterial cells, including their genetic material (Riquelme Breazeal et al. 2013). Additionally, 

ozone has been proposed to disinfect ARBs and destroy ARGs (Dodd 2012). However, costs of 

advanced treatments will be significant, therefore an ideal starting place may be to consider 

ARGs alongside other issues of concern if upgrades are already planned. 

Wastewater Reuse 

Wastewater reuse is becoming a worldwide strategy for water sustainability. However, it is 

critical that the application of reclaimed water is carefully evaluated and proper safeguards 

emplaced in order to avoid unintended consequences. It is common practice to employ different 

treatment levels for different purposes, e.g., full body contact versus toilet flushing or irrigation. 

Wastewater is commonly disinfected via UV or chlorination, which will kill resistant bacteria, 

but ARG are more recalcitrant (Pruden and McKinney 2012; Munir et al. 2011; Kim et al. 2010; 

Auerbach et al. 2007). Chlorination reduces several antibiotics, including ampicillin, 

chlortetracycline, sulfamethoxazole, sulfadiazene, ofloxacin and trimethoprim (Li and Zhang 

2012). Ozonation efficiently reduced a broad range of antibiotics and their active metabolites 

(Dodd et al. 2010). 
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Sludge/Biosolids and Other Solid Wastes 

Land application of sludge/biosolids from WWTPs is also a means of resource recovery, while 

accomplishing disposal of a costly treatment by­product. However, ARBs and ARGs are known 

to be present in biosolids (Brooks et al. 2007; Munir et al. 2011). Research suggests that 

culturable heterotrophic ARBs attenuate quickly after amendment to soil (Brooks et al. 2007). 

Studies employing culture­independent techniques, though, indicate otherwise. A recent study 

comparing land application of manure versus biosolids demonstrated elevated levels of 

tetracycline and sulfonamide ARGs in soils amended with biosolids during the four month 

monitoring period (Munir and Xagoraraki 2011). Interestingly, the effect was more strongly 

driven by soil characteristics than by the source. Munir et al. (2011) also noted that among the 

five U.S. WWTPs examined the biosolids loading rate (mass produced x concentration) of 

tetracycline and sulfonamide ARBs and ARGs was ~1,000 times higher than aqueous WWTP 

effluent. 

Antibiotics are also prevalent in biosolids, household and hospital solid wastes. Seventeen 

antibiotics from five classes were detected at the µg/kg to mg/kg range (dry sludge weight) in 

biosolids from East Asia, North America and Europe (Zhang and Li 2011). Incineration is a 

zero­risk solution with regards to antibiotics, ARBs and ARGs, although there are trade­offs with 

air quality and cost of alternative fertilizers. If used appropriately incineration may provide a 

source of alternative energy. Landfills still pose some risks because leachates may pollute 

groundwater and surface water, and they are commonly re­directed to a municipal WWTP 

(Renou et al. 2008). In Sweden, only 1% of household waste was deposited on landfills in 2010, 

whereas 99% was either incinerated or recycled (Naturvårdsverket 2012). 
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Hospital and Industrial Waste Treatment: Hot Spots for Antibiotic Resistance 

Resistant microbes have the potential to rapidly spread from one corner of the world across the 

entire planet (Walsh et al. 2011) and thus managing “hot spots,” such as hospitals and drug 

manufacturers, is of high concern (Kovalova et al. 2012). Hospitals are of interest for targeted 

pre­treatment systems, such membrane bioreactors, that can partially remove antibiotics and 

other drugs as well as ARBs before discharging into public sewer systems (Kovalova et al. 

2012). Recently, a multiple­criteria decision analysis of options and motivation for removing 

pharmaceuticals from hospital wastewater in Switzerland indicated remarkably high acceptance 

of this approach across multiple stakeholders (Lienert et al. 2011). 

Manufacturing sites as potential “hot­spots” for antibiotic resistance development were only 

identified a few years ago, with levels reaching mg/L in several cases. Exceptionally high levels 

of fluoroquinolones were found in the treated effluent of a WWTP in India serving 

approximately 90 generic drug manufacturers (Larsson et al. 2007). Severe antibiotic 

contamination of the local surface, ground and drinking waters was found (Fick et al. 2009). 

Furthermore, ARGs and associated mobile genetic elements were markedly increased 

downstream (Kristiansson et al. 2011). Studies from China showed releases of therapeutic levels 

of oxytetracycline and penicillin downstream from a factory, with increased resistance rates (Li 

et al. 2010; Li et al. 2009). Up to 44 mg/L of lincomycin was reported in the effluent from a 

Korean factory (Sim et al. 2011) and a Croatian study reported releases of sulphonamides up to 

mg/L concentrations (Babić et al. 2007). One factory annually contributed about 2000 kg of 

antibiotic to Oslo’s WWTP, considerably more than any active pharmaceutical ingredient (API) 

studied that originated from usage and excretion (Thomas et al. 2007). A crucial question is 
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whether these are exceptions or the norm. This is difficult to evaluate as publically available data 

on antibiotic emissions from drug manufacturing are still highly fragmented. 

Some industries treat their own wastes from its generation through to discharge, while others 

discharge to a third party WWTP with or without pretreatment (e.g. pH adjustment, chelation, 

precipitation). Therefore the level of control and accountability differs. Production cycles at 

pharmaceutical manufacturing sites are highly variable and many drugs are produced in a batch­

wise manner, thus effluent composition can vary drastically over time. This requires distinct 

treatment relative to domestic WWTPs, which are designed to receive stable loadings. Thus, 

WWTPs receiving wastes from drug manufacturers will benefit from requiring pre­treatment or 

establishing limits to antibiotic discharge. 

Variable waste streams typical of industrial production will likely require a range of treatment 

technologies. A major challenge is that the high antibiotic concentrations in industrial WWTPs 

inevitably will exert strong selection for ARBs. For this reason, activated sludge is not 

recommended for highly antibiotic contaminated waste streams because of the dense microbial 

populations employed. If biological treatment is unavoidable, it is imperative that bacteria from 

the treatment process are eliminated before discharge. Seeding biological treatment systems with 

microbes originating from human feces is discouraged as is land­application of residual 

biosolids. 

Several policy measures could provide benefits for curtailing the spread of antimicrobial 

resistance from “hot spots”. First, the industry itself could take a leading role in developing 

voluntary standards for pharmaceutical wastes containing APIs (Murray­Smith et al. 2012). It 

may be worthwhile to impose more restrictions on synthetic antibiotics and ones that persist in 
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the environment (e.g., fluoroquinolones). Secondly, greater transparency through the supply 

chain is urgently needed in order to know where human drugs are coming from and where they 

are going (Larsson and Fick 2009; Larsson 2010). Thirdly, national purchasers of medicines 

could aim to take greater responsibility of the issue (SEMC 2011). Action in this area is critical 

as many governments are focusing on cost as the primary driver of policy decisions. Finally, 

extension of good manufacturing practices to include environmental considerations could be of 

benefit (MPA 2011). 

Aquaculture Management Options 

Infectious disease outbreaks among aquaculture stock species are of fundamental concern, both 

because of loss of stock and detriment to animal welfare. Aquaculture is increasing worldwide 

(Bostock et al. 2010), which is likely to increase the disease risk. Since the primary motivation of 

antibiotic use in aquaculture is to protect against the devastation of stock illness and loss, 

promoting a healthy fish stock is the ideal route for minimizing antibiotic use. In some countries 

(e.g., in North America and in Europe), licensing and regulation of the use of antimicrobial 

agents in aquaculture is strictly enforced and guided by veterinary professionals. However, a 

large proportion of the global aquaculture production takes place in countries with few 

regulations and limited enforcement (FAO/OIE/WHO 2006). 

For economic reasons, quinolones, sulfonamides and tetracyclines are the most popular 

antibiotics in aquaculture, although others such as macrolides and beta­lactams are also 

occasionally used (FAO/OIE/WHO 2006). Most fish species cultivated in aquaculture are 

poikilothermic and are adapted to lower temperatures (Heuer et al. 2009); however, some 

zoonotic fish bacteria, such as Aeromonas, Salmonella and Mycobacterium, are known to also 
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infect humans and carry ARGs (Weir et al. 2012). Bacteria such as E. coli can be present in 

water and on harvested fish, especially when animal or human waste is added, as is the case in 

integrated production systems. E. coli is the most common bacterial human pathogen, and 

exposure to antibiotics in the aquaculture environment may stimulate elevated resistance. 

Approximately 20 years after industrial aquaculture had begun, evidence emerged that ARGs 

were transferred between aquatic bacteria that are pathogenic to both fish and humans (Cabello 

2006; Ryu et al. 2012). In the case of cultured shellfish, deadly pathogens, such as Vibrio and 

Salmonella, may acquire resistance via horizontal transfer. For example, the fish pathogens 

Vibrio and Lactococcus transferred tetracycline ARGs to human E. coli and Enterococcus 

faecalis (Neela et al. 2009). A Joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use 

in Aquaculture and Antimicrobial Resistance (FAO/OIE/WHO 2006) and a review (Cabello 

2006) concluded that public health hazards related to antibiotic use in aquaculture include the 

development and spread of ARBs and ARGs, and the occurrence of antibiotic residues in 

aquaculture products. 

In some developed countries newly introduced vaccines (Sommerset et al. 2005) and well­

equipped facilities have helped alleviate the need for antibiotics. This is exemplified by a 99% 

reduction in the use of antimicrobial agents in Norwegian salmon and rainbow trout aquaculture 

from 1987 to 2007, despite a massive increase in fish production (Heuer et al. 2009). However, 

developing countries, especially Asian countries where the majority of aquaculture production 

occurs, suffer from proliferation of ARB stimulated by aquaculture management system 

practices and the farmer’s life style (Heuer et al. 2009). Common in Southeast Asia is integrated 

farming of animal­fish­vegetable, in which antibiotics are used for animal husbandry and animal 

waste is directly released to aquaculture ponds and applied rice/vegetable fields. This causes 
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direct antibiotic contamination and can select for ARB (Suzuki and Hoa 2012). However, this 

practice is traditional and therefore not straightforward to eradicate. Therefore, international 

monitoring will be especially important for products from integrated ponds. 

Rearing methods for fish are roughly divided into land­based pond and marine pen­culture. One 

of the fundamental ways to diminish diseases is to reduce the density, which can reduce physical 

contact and fighting. Preventing invasion of wild fish into pens is also crucial, as exchange of 

pathogenic fish bacteria between wild­ and cultured­fish is a suspected mechanism of spreading 

ARGs (Grigorakis and Rigos 2011). It is also important to avoid overuse of feed, as excess feed 

will settle, augment the bacterial reservoir, and contribute to an unhealthy, eutrophic 

environment. 

Fish feed can also serve as a direct source of ARBs and ARGs. Minced raw fish meat commonly 

used for feed can contain a diverse microbiota, as well as mixtures of other materials such as 

soybean and vegetable oil. Dry pelleted food may offer some advantages and is gaining 

popularity, having been used exclusively in salmon and trout aquaculture since the 1970s 

(Takeda 2010). Most non­spore bacteria will be sterilized in the heating process of feed 

manufacturing; however, residual Gram­positive spores and their DNA have introduced ARGs in 

marine environments (Rahman et al. 2008). 

Aquaculture workers in areas with intensive use of antibiotics are most directly exposed to both 

antibiotics and ARB, and are therefore expected to be of increased risk for antibiotic­resistant 

zoonotic and foodborne infections. The greatest potential risk to the broader public is thought to 

be the development of a reservoir of transferable ARGs in aquatic bacteria that can be 

disseminated by horizontal gene transfer to other bacteria and ultimately to human pathogens. 
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However, a quantitative risk assessment on antibiotic resistance in aquaculture is difficult to 

perform owing to lack of data and the complex pathways of gene flow among various aquatic 

species and environmental compartments. Programs to monitor antibiotic usage and ARBs from 

farm­raised aquatic animals and their surroundings should be implemented and national 

databases are needed to provide baseline information and facilitate communication 

(FAO/OIE/WHO 2006). 

Lastly, aquaculture exemplifies the international transport risk of ARGs. In 2009, China 

produced 62.5 percent of the global harvest of fish, crustaceans, and molluscs (34.8 million 

tonnes). Five other countries produced over one million tonnes in the same year (Bostock et al. 

2010). Developed countries import a significant portion of the harvest, accounting for 76.8 % of 

total fisheries imports in value, with the E.U accounting for 40.8% and the U.S. and Japan 

together accounting for 27.2 % of total. One approach to limit international pathways may be 

monitoring of antibiotic residues at customs. Although there are innumerable ARGs in 

environment, at least ones with high clinical relevance, such as mecA, extended spectrum beta 

lactamases, and NDM­1, could also be monitored. 

Strategic Implementation and Monitoring Needs 

Although it is not possible to define safe exposure levels in a strict sense, the scientific 

community should aim to define such levels to provide regulators with a basis for defining and 

implementing standards. Once standards are defined, costs associated with various mitigations 

will be possible to estimate. However, we must acknowledge that the uncertainty is still high 

regarding ultimate benefits for individual measures. On the other hand, anticipated societal costs 

associated with increased resistance motivate mitigations, even without conclusive evidence that 
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their implementation will lead to less clinical treatment failures in the future. It will be extremely 

difficult to quantify such links all the way to clinical outcomes. Therefore, efficacy of mitigation 

efforts can at present best be evaluated based on surrogate measures, such as the abundance of 

antibiotics, ARGs and ARBs in the environment. Here, routine monitoring programs are 

required, providing baseline data on which to contrast measurements before and after mitigation 

activities, as has been successfully implemented by the Danish Integrated Antimicrobial 

Resistance Monitoring and Research Programme (DANMAP). Establishing and/or maintaining 

existing biobanks of soil and water will allow retrospective analyses. Similarly, metagenomic 

inventories allow retrospective in silico analyses of resistance factors we are not concerned about 

today, but possibly tomorrow. 

Incentives and Risk Communication 

Numerous stakeholders are involved in each of the above proposed management options and 

understanding their various incentives is key. Generally, economic incentives are the strongest, 

but they may also be political or reputational. Short­term costs are often a major contra­incentive 

to invest in mitigations, while branding through environmental responsibility, as well as concern 

over public health are general pro­incentives. 

Economic incentives can be provided at different levels through the adjustment of business 

models or regulatory actions, such as increased costs or strict penalties for non­compliance. For 

example, current business models have not provided sufficient leverage for the pharmaceutical 

industry to invest in the development of new antibiotics at the necessary pace to keep up with 

resistance. The lack of innovation in antibiotic discovery and increased reliance on existing 

antibiotics has contributed to increased prevalence of resistance and the reduced efficacy of 
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existing treatment options. There is a growing pressure for antibiotic discovery to be refined and 

a number of incentives have recently been proposed (Laxminarayan and Powers 2011; Spellberg 

et al. 2012). These incentives on their own may not remove the selective pressures for resistance 

development; they will just provide new ones. Therefore any new incentives need to be coupled 

with increased management of antibiotics. 

Economic and political pressure originating from the final consumers should not be 

underestimated. This is a parallel mitigation path that potentially is much faster than regulatory 

actions. At times, activities unrelated to the issue of concern can cause incentives. For example, 

animal welfare concerns may result in both reduced need for antibiotics and reduced stocking 

densities. Regulation of pollution levels of other chemicals could also indirectly result in reduced 

antibiotic release. 

Providing information to stakeholders and policy makers is equally as important as incentives. If 

stakeholders are not able to estimate risks and benefits involved with taking action, they are more 

likely to remain passive and go on with “business as usual”. Here, the scientific community as 

well as media have a strong responsibility to promote well­balanced risk communication. Risk 

communication with respect to antibiotic resistance is particularly challenging. For example, 

individuals could become confused and not take antibiotics when needed. Educational 

campaigns, such as e­bug, work to address this (ECRI 2012). 

Case­Study: Stakeholder Initiatives to Reduce Risks Associated with Drug Manufacturing 

Recent action within this area provides a good case study of risk management in the real­world. 

Soon after Swedish media coverage of a study on industrial antibiotic pollution in India (Larsson 

et al, 2007), the Swedish Association of the Pharmaceutical Industry AB (LIF), a trade 
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organization for research­intensive pharmaceutical companies, requested that the Swedish 

government take action. In parallel, LIF arranged round­table discussions with politicians, the 

Medical Products Agency (MPA), pharmaceutical industries, county councils, pharmacies, the 

water treatment sector, the Environmental Protection Agency, the Chemical Agency, and 

academia. The direct sharing of information across stakeholders with different expertise built a 

common platform for discussions, and was a major reason why a strong consensus was rapidly 

reached that mitigations were necessary. In 2009, the Swedish government formally 

commissioned the MPA to identify ways to reduce pollution from pharmaceutical industries on a 

global basis. Eight different actions were proposed, where the main path was to amend the Good 

Manufacturing Practice framework with environmental criteria. Sweden has now brought this 

proposal to the E.U. health ministry. 

In early 2009, the Associated Press highlighted the pollution situation in India incentivising 

several major international companies to intensify their work with internal operations and third 

party supply­chains. An example of this is a proposed scheme by AstraZeneca for defining ‘safe’ 

discharge limits for active pharmaceutical ingredients from manufacturing sites (Murray­Smith 

2012). 

The Swedish Environmental Management Council and the county councils implemented new 

environmental procurement criteria for medicines for hospital use in 2011 (SEMC 2011). For the 

first time, focus is on emissions from manufacturing. No discharge limits are specified yet, but 

suppliers and subcontractors have to set up monitoring programmes. Well before 

implementation, seminars were arranged inviting all major medical suppliers. 
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To create further incentives, the Swedish government has drafted a proposal regarding the 

national generic substitution system (Swedish government 2013). Previously, cost reduction has 

been the sole driver to identify which therapeutically interchangeable product that will be 

(partly) reimbursed by the state. If the proposal is implemented, companies would compete not 

only on price, but also on their level of pollution control. An expected hurdle for implementation 

is how environmental risks associated with manufacturing should be assessed. To address this, a 

group of stakeholders initiated work in 2011 to generate a draft document on life­cycle 

environmental classification. In 2011, the Swedish government also adopted, a “National 

Pharmaceutical Strategy”. Reducing environmental emissions of drugs, nationally as well as 

globally, was one of the major aims highlighted in this strategy. A major challenge is that the site 

of origin of the API is confidential. Thus, major business journals in Sweden have highlighted 

the need for greater transparency (Larsson and Fick, 2009; Larsson 2010). Clearly there are 

economical risks linked to negative media exposure, and this drives action. Along these lines, as 

major shareholders in the pharmaceutical industry, the Swedish Church arranged a seminar for 

the bank sector in late 2012 to provide guidance for how to act, as shareholders, in order to 

promote environmentally­safe production. 

Conclusion 

Several management options were identified across agriculture, wastewater treatment, 

aquaculture, and pharmaceutical manufacturing that could aid in mitigating risks of antimicrobial 

resistance in the environment. Many of these are practical strategies that are economically 

feasible and that can be synergistically implemented with other benefits. Recent proactive 

measures taken in Sweden demonstrate that such actions are feasible and add momentum to the 
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development of new policies and regulations. Outreach, education, communication, monitoring 

and transparency appear to be vital factors for the success of management schemes for limiting 

the spread of antibiotic resistance via environmental pathways. 
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