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Abstract 

Background: Benchmark dose (BMD) modeling computes the dose associated with a pre-

specified response level. While offering advantages over traditional points of departure (POD), 

such as no-observed-adverse-effect-levels (NOAELs), BMD methods have lacked consistency 

and transparency in application, interpretation and reporting in human health assessments of 

chemicals.  

Objectives: We aimed to apply a standardized process for conducting BMD modeling to reduce 

inconsistencies in model fitting and selection. 

Methods: We evaluated 880 dose-response data sets for 352 environmental chemicals with 

existing human health assessments. We calculated benchmark doses and their lower limit [10% 

extra risk, or change in the mean equal to 1 standard deviation (SD), BMD/L10/1SD] for each 

chemical in a standardized way with pre-specified criteria for model fit acceptance. We 

identified study design features associated with acceptable model fits.  

Results: We derived values for 255 (72%) of chemicals. Batch-calculated BMD/L10/1SD values 

were significantly and highly correlated (R2 of 0.95 and 0.83, respectively, n=42) with points of 

departure previously used in human health assessments, with values similar to reported 

NOAELs. Specifically, the median ratio of BMDs10/1SD:NOAELs was 1.96, and the median ratio 

of BMDLs10/1SD:NOAELs was 0.89. We also observed a significant trend of increasing model 

viability with increasing number of dose groups. 

Conclusions: BMD/L10/1SD values can be calculated in a standardized way for use in health 

assessments on a large number of chemicals/critical effects. This facilitates exploration of health 

effects across multiple studies of a given chemical, or when chemicals need to be compared, 

providing greater transparency and efficiency than current approaches. 
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Introduction   

Public health agencies (e.g., the U.S. Environmental Protection Agency [EPA] and California 

EPA) conduct health assessments of environmental chemicals to determine the likelihood of 

human health hazard and to establish levels of exposure considered as health protective. To 

derive quantitative toxicity values (i.e., cancer slope factors or reference doses/concentrations) 

for comparison to environmental exposure levels, the relationship between a dose/concentration 

of a chemical and a health outcome is characterized (U.S. EPA 2012b). Data from occupational 

cohorts or from studies in experimental animals are typically used for this purpose (National 

Research Council 1983). The first step in developing toxicity values is identifying, for each data 

set, a POD dose from which extrapolations to environmentally relevant doses are made. 

PODs traditionally used in non-cancer health effect assessments are NOAELs or lowest-

observed-adverse-effect-levels (LOAELs) (U.S. EPA 2012b). NOAELs and LOAELs are limited 

to the dose groups tested in a particular study and are not informed by the shape of the dose-

response relationship (Barnes and Dourson 1988; Travis et al. 2005). BMD modeling, a process 

of fitting a model to dose-response data, estimates a POD that is associated with a predefined 

level of biological response (i.e., the benchmark response [BMR]) (Crump 1984). BMD 

modeling addresses some limitations of NOAELs and LOAELs in that BMDs account for the 

shape of the dose-response curve, are more independent of study design elements such as dose 

choice or spacing, and can be more easily compared across multiple chemicals. In addition, 

estimating the BMD lower limit (BMDL) informs uncertainty in risk estimates. However, not all 

dose-response data sets are amenable to BMD modeling, for example, when group sizes are very 

small, but otherwise reflect the species of choice (e.g., as is often the case with dog studies). 
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BMD modeling is traditionally conducted on a chemical-by-chemical basis, with variability 

introduced during selection of critical endpoints, BMR values and models used to compute 

BMDs, as well as in evaluating model fit (Travis et al. 2005; U.S. EPA 2012b). For example, the 

biological significance of a given magnitude of change can differ among endpoints, especially 

when they range in severity. Thus, while the choice of BMR may vary from chemical to 

chemical and study to study, we investigated ways to standardize BMD methodology to increase 

consistency in POD derivation, reduce complexity, and improve efficiency. 

A large database of developmental toxicity studies was used previously to derive BMD estimates 

(Allen et al. 1994a, b) to demonstrate that a standardized approach to dose-response modeling is 

advantageous. Using a limited set of data and models it was shown that BMDs based on a 5% 

extra risk response were within an order of magnitude of statistically derived NOAELs. In this 

study, we expand upon this previous work by applying a standardized process for conducting 

BMD modeling to 880 dose-response data sets for 352 environmental chemicals extracted from 

publicly available human health assessments. Using standard approaches, as recommended by 

U.S. EPA (2012a), we evaluate multiple endpoints and identify features of animal study methods 

that may influence their utility for BMD modeling. 

Methods  

Data sets   

EPA Integrated Risk Information System (IRIS) (U.S. EPA 2013a), EPA Office of Pesticide 

Programs (U.S. EPA 2013b), EPA Superfund Regional Screening Levels (RSL) (U.S. EPA 

2013d), and California EPA (OEHA 2013) were surveyed for publicly available information on 

chemicals with human health assessments. Superfund RSL also included toxicity values from 
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EPA Provisional Peer Reviewed Toxicity Value (U.S. EPA 2013c), Centers for Disease Control 

and Prevention’s Agency for Toxic Substances and Disease Registry (ATSDR 2013), and EPA 

Health Effects Assessment Summary Tables (U.S. EPA 2011a). We collected both non-cancer 

and cancer toxicity values [reference doses (RfDs), reference concentrations (RfCs), oral slope 

factors, inhalation unit risks, and cancer potency values], and PODs that were used to derive the 

toxicity values, where applicable [NO(A)ELs, LO(A)ELs, and BMD/Cs used to derive RfDs and 

RfCs]. 

For each toxicity value, we extracted the dose-response data from the critical study used in the 

human health assessment. For each chemical, we obtained the name and a unique chemical 

identifier in the form of the Chemical Abstracts Service Registry Number (CASRN). The 

chemicals and their associated toxicity values, PODs, dose-response data and calculated 

BMD/Ls are available for download from http://comptox.unc.edu/bmddata.php (UNC 2013). 

Chemical structure curation   

Chemicals lacking CASRN were removed (e.g., mixtures such as “coke emissions”). CASRN 

were used to retrieve chemical structure information in the form of simplified molecular-input 

line-entry system codes (Weininger et al. 1989) which were converted to structure-data files 

using KNIME (Berthold et al. 2007). A rigorous chemical structure curation protocol (Fourches 

et al. 2010) was applied to ensure that the chemical structures were standardized and that 

mixtures and chemicals for which descriptors cannot be calculated (i.e., inorganics, 

organometallics) were removed. 
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BMD/L  calculation  

BMDs and BMDLs were calculated in a consistent fashion using BMDS Wizard (Beta Version 

1.6.1) (ICF International 2012) and BMD Software (BMDS, Version 2.3.1). Specifically, we 

applied automated rules with no manual interpretation of results with respect to the following: (i) 

selection of the benchmark response (BMR) value; (ii) choice of the models(s); (iii) model fitting 

criteria; (iv) computation of the BMDL; and (v) reporting of BMD and BMDL values. All 

automated rules were consistent with BMD modeling guidelines (U.S. EPA 2012a). The results 

are hereto referred to as “batch-calculated” BMDs and BMDLs. 

The BMDS Wizard program was used to automatically run BMDS. This program also 

recommended BMD/Ls for the collected dose-response data, based on the best-fitting model 

selected according to decision logic determined prior to modeling. The model decision logic and 

the criteria used to determine each model’s viability, based on adequacy of the fit of the model to 

the data are specified in Supplemental Material, Table S1. That is, after models are fit to the 

dose-response data, the tests listed in Supplemental Material, Table S1 were used to assign 

model fits of the dose-response data to Unusable, Questionable, or Viable categories by BMDS 

Wizard. As described in Figure 1, only Viable model outputs are used in the remainder of this 

analysis. We termed such Viable models “successful”. 

Data sets were grouped according to dose-response type (continuous, dichotomous, or 

dichotomous-cancer), which guided the choice of BMRs and the types of models used to 

calculate BMDs. All models specified in the BMD modeling guidelines (U.S. EPA 2012a) were 

run for the appropriate data type (Table 1). Several additional model types that take into account 

more advanced biology, such as nested dichotomous, background-dose, background-response, 
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repeated response, concentration/time, and multi-tumor models were not within the scope of this 

project. 

The BMR levels associated with the batch-calculated BMD/Ls (termed BMD/BMDL10/1SD 

throughout) were standardized only according to the mathematical representation of the response 

data (continuous or dichotomous) and following the recommendations outlined in BMD 

Guidance (U.S. EPA 2012a). A 10% BMR was used for dichotomous data, and a “change in the 

mean equal to one control SD” BMR was used for continuous data. These two BMR levels are 

the standard reporting levels for each dose-response type, and do not necessarily represent 

equivalent values. However, Crump (1995) found that using a one control standard deviation 

change for continuous endpoint gives an excess risk of approximately 10% for the proportion of 

individuals below the 2nd percentile or above the 98th percentile of controls for normally 

distributed effects. Tailoring of BMR levels to the specific type or severity of the endpoint 

measured may depend on the decision-making context for which the BMD results will be used, 

and was therefore beyond the scope of this study. 

The final model and associated BMD and BMDL for each dose-response set was selected 

according to the following criteria. The Viable model with the lowest Akaike’s Information 

Criterion (AIC) was always selected if the BMDLs were “sufficiently close”, i.e., there was no 

more than a 3-fold difference between lowest and highest BMDL for Viable models (Davis et al. 

2011). Otherwise, the model with the lowest BMDL was selected. If no models were Viable, the 

highest dose(s) were removed and the models were re-run in cases where at least 3 (including 

control) doses remained. If two or more models had the same lowest AIC value and the BMD 

and BMDL values were different, the averages of the BMDs and BMDLs of those models were 

recorded. This final step is not done automatically by the BMDS Wizard. After completion of a 
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modeling run of a dose-response data set and BMR, for all successful models we recorded the 

BMD, BMDL, and any applicable model warnings or notes (based on passing or failing the tests 

listed in the decision logic reported in Supplemental Material, Table S1). If no model was 

successful, the dose-response data set was noted as having failed BMD modeling. 

BMD/L  selection  

If a chemical had more than one dose-response data set, we selected the BMDs and BMDLs as 

follows: (i) the lowest BMD (without warnings, if available) and the BMDL associated with it, 

and (ii) the lowest BMDL (if different from the previous BMDL). These were selected regardless 

of endpoint/effect. 

Data analysis  

We examined the features of the overall resulting data set, including the range and distribution of 

the batch-processed BMD and BMDL values. BMDs and BMDLs calculated using the method 

described here were compared to BMDLs and other PODs, particularly NOAELs, for the same 

chemicals as reported in previous human health assessments, using several linear regression 

methods to calculate Pearson (R2 values) and Spearman (ρ values) correlations. Tests for 

significance were calculated using a two-tailed unpaired t-test; p-values <0.05 were considered 

significant. Chi-squared test for trend in proportions was used to test for significance in trends; 

p-values <0.05 were considered significant. Statistical analysis and graphical outputs were 

produced by Microsoft Excel, R Statistical Package (Version 2.15), GraphPad Prism (La Jolla, 

CA) software, and the Health Assessment Workspace Collaborative (https://hawcproject.org) 

(Shapiro 2013). 
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Results  

Curation of chemicals and data  

We identified 1,260 chemicals with at least one EPA- or California EPA-derived toxicity value. 

Mixtures, chemicals missing structural information, and inorganic, organometallic, and duplicate 

structures were removed during curation (n=374). We collected dose-response data for 352 of the 

remaining 886 chemicals with toxicity values, yielding 880 dose-response data sets. We 

prioritized data collection prioritized according to public availability of the information 

(Supplemental Material, Figure S1). 

BMD modeling  

Of the 880 dose-response data sets available for analysis, we successfully (termed Viable in 

BMDS Wizard) modeled 603 according to the pre-specified statistical and other adequacy 

criteria given in Supplemental Material, Table S1 without any adjustments. Ninety-nine dose-

response data sets contained fewer than 3 dose groups (including control) and thus could not be 

modeled. For 178 dose-response data sets, a first-pass attempt to model with all dose groups 

failed. When the highest dose group was omitted, we obtained successful models for an 

additional 66 dose-response data sets while 112 remained unmodelable. In total, 669 dose-

response data sets were successfully modeled while 211 dose-response data sets were not 

(Supplemental Material, Figure S2). The modeled data sets covered 255 chemicals, whereas 

dose-response data sets for a remaining 97 chemicals did not pass model fit and completion tests. 

Overall, the modeling success rates were 86, 91 and 75% for cancer, dichotomous, and 

continuous data sets, respectively. The most frequently used model was exponential for 

continuous data sets and log-logistic for dichotomous data sets. See Supplemental Material, 

9



 

      

  

       

           

        

       

     

 

      

          

         

        

      

   

           

       

      

  

      

        

      

Figure S3 for additional information on models used, including a characterization of models used 

by the number of dose groups. 

We also evaluated the model-fit warnings associated with successful models (271 out of 669 or 

40.5% successful data sets had at least one warning), and found that the majority (64%) of these 

concerned extrapolating more than 3 times below the lowest non-zero dose (median values were 

6.4 for BMDL and 5.0 for BMD extrapolations). The next most common (13.2%), but not 

mutually exclusive, warning was high (>5) BMD/BMDL ratio (Supplemental Material, Figure 

S4). 

Comparison to points-of-departure reported in human health assessments   

We made statistical comparisons among previously reported and batch-calculated PODs for the 

PODs used as the basis for published RfDs (fewer data were available for comparison of PODs 

for other toxicity values and analyses were designed to be as consistent as possible). The lowest 

batch-calculated BMD10/1SD and BMDL10/1SD were compared with BMDLs from the same data 

set used for PODs in previous human health assessments. We found these untransformed values 

to be significantly and highly linearly correlated (R2 of 0.95 and 0.83, respectively, n=42) 

(Figures 2A,B). More than 88% of values were within one order of magnitude of the BMDLs 

used in past assessments, and the mean values were not significantly different (Supplemental 

Material, Figure S5). We noted two outliers (both were included in the correlation analysis): 

dichloromethane and trichloroethylene (marked “a” and “b”, respectively, in Figures 2A,B). 

These same batch-calculated BMD10/1SD and BMDLs10/1SD were also compared with NOAELs 

from the same data set used as PODs in previous human health assessments, and after log-

transformation to account for skewness were found to be significantly linearly correlated (R2 of 
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0.66 for both, n=75) (Figures 2C,D; see Supplemental Material, Table S2 for the list). The 

comparison was further made with LOAELs used previously as PODs, or all previous PODs 

aggregated together, with significant linear correlation after log transformation (LOAELs: R2 of 

0.78 and 0.63, respectively, n=20; PODs: R2 of 0.62 and 0.59, respectively, n=138) 

(Supplemental Material, Figure S6). 

Comparison to NOAELs reported in human health assessments  

We calculated the ratios of batch-calculated BMDs10/1SD and BMDLs10/1SD to oral NOAELs 

reported in previous health assessments (Figures 3A,B; n=75) (there was an insufficient number 

of inhalation NOAELs for statistical comparison), respectively. The median ratio of 

BMDs10/1SD:NOAEL was 1.96, with a 5th to 95th percentile range of 0.24 to 56.9. The median 

ratio of BMDLs10/1SD:NOAEL was 0.89, with a 5th to 95th percentile range of 0.06 to 23.7. In 

addition, we compared LOAELs from the studies used to identify the NOAELs used in the 

previous health assessments when available, and found a median ratio of 3.81 with a 5th to 95th 

percentile range of 1.87 to 10.7 (Figure 3C, n=68). 

Batch-calculated BMD/Ls permit comparisons among adverse effects and chemicals   

We selected nitroguanidine (CASRN 556-88-7) as an example chemical to illustrate how the 

standardized BMD approach can be used to calculate “batch-calculated candidate reference 

values” among multiple adverse health effects. Several dose-response data sets were available 

for nitroguanidine, including body weight changes, maternal toxicity, and non-neoplastic 

histopathological changes. In the original human health assessment, all of these endpoints were 

used to select a single NOAEL and derive an RfD. The collection of batch-calculated 

BMDLs10/1SD was arrayed and compared to the NOAEL (Figure 4A) (U.S. EPA 1993). 
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Uncertainty factors for interspecies uncertainty (UFA=10), intraspecies variability (UFH=10), 

sub-chronic to chronic extrapolation (UFS=10), and database incompleteness (UFD=3) were 

applied in the original assessment to derive a reference dose of 0.1 mg/kg/day. “Batch-calculated 

candidate RfDs” based on batch-calculated BMDLs and the same uncertainty factors are 

presented in Figure 4A. The same type of analysis was conducted for di(2-ethylhexyl)adipate 

(CASRN 103-23-1) and pentachlorophenol (CASRN 87-86-5) (Supplemental Material, Figure 

S7). 

We also used BMDs to illustrate comparisons across chemicals, as they reflect central estimates 

of the dose associated with a standardized level of benchmark response based only on the 

mathematical representation of the response (continuous or dichotomous). We ranked multiple 

chemicals according to their calculated BMDs10/1SD (i.e., relative potency) in Figure 4B. 

Study design features as a factor in BMD modeling success  

Because about a quarter of the dose-response data sets could not be successfully modeled using 

the BMD approach (i.e., Unusable or Questionable according to BMDS Wizard), we reviewed 

study design characteristics that may be associated with success or failure of modeling. Dose-

response data sets that were not modeled successfully failed for a variety of reasons, including 

poorly modeled variance, goodness of fit p-test values <0.05, or a lack of confidence in 

calculated values, such as by having a BMDL higher than highest dose or a BMD/BMDL ratio 

>20 (Supplemental Material, Figure S8). 

We found that there is a significant (p<0.05) difference in the number of dose groups of 

successful dose-response data sets vs. unsuccessful dose-response data sets (Supplemental 

Material, Figure S9). Upon further examination, we observed a significant (p<0.01) trend of 

12



 

        

        

       

       

       

          

        

 

      

      

    

        

         

        

       

 

     

      

      

      

        

increasing viability of models with increasing numbers of dose groups (Figure 5A). We found 

that the number of animals per dose group is statistically significantly associated with BMD 

modeling success (p<0.001) (Figure 5B). Successful models had lower numbers of animals per 

dose group than unsuccessful models, across all dose-response data types (i.e., dichotomous, 

dichotomous cancer, continuous). There was no correlation between the number of dose groups 

and number of animals per dose group (data not shown). The spacing between the dose level of 

dose group 2 and dose group 3 was not associated with BMD modeling outcome (data not 

shown). 

Discussion  

We evaluated the efficacy and reliability of a standardized BMD approach, compared it to 

chemical-specific BMD modeling, and identified lessons learned for future application of BMD 

modeling in human health assessments. Our analysis indicates that a standardized approach can 

be successfully applied to a large number of chemicals and data sets. We limited our analysis to 

the dose-response data sets from which PODs were identified in past assessments, but which 

were not necessarily chosen with BMD modeling in mind. It is likely that this approach would be 

even more successful if applied to data sets specifically chosen for BMD modeling (e.g., those 

with sufficient dose groups and dose-response trends) (Davis et al. 2011). 

We compared batch-calculated BMD/Ls based on a standardized, guidance-driven choice of 

benchmark responses and models to BMD/Ls based on chemical-specific decisions made by 

different assessors and at different times. Batch-calculated BMD/Ls were significantly correlated 

with BMDLs derived one chemical at-a-time. Approximately 20% of the batch-calculated values 

used a different BMR from the BMR used in the original assessment (Supplemental Material, 
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Table S3). Two outliers were dichloromethane and trichloroethylene and the difference was 

largely due to use of PBPK model-based dosimetry in the original assessments. The PODs for 

these two chemicals already reflected a conversion from animal to human equivalent dose and an 

adjustment for human toxicokinetic variability (U.S. EPA 2011b, U.S. EPA 2011c). For 

trichloroethylene, an additional difference was the use of a 10% extra risk in the batch-calculated 

modeling as opposed to a 1% extra risk in the assessment (U.S. EPA 2011c).  

Because our analysis uniquely included BMD, BMDL, and NOAEL values for 75 chemicals, we 

evaluated the relationship between batch-calculated BMDs and BMDLs and NOAELs selected 

during the course of a human health assessment. NOAELs are thought to approximate the dose 

that represents a 1 to 5% BMR (Allen et al. 1994a). However, we show that BMDs based on a 

10% or 1SD BMR are similar to NOAELs (Figure 3B) (U.S. EPA 2012a). Similarly, Sand et al 

(2011) found that the median upper bound on extra risk at the NOAEL was approximately 10% 

using 786 NTP cancer data sets.  

Our analysis also highlights the utility of BMD modeling and batch-processed candidate 

reference value calculations in evaluating the entirety of a database on a specific chemical. While 

we only used data from the critical study evaluated in the original human health assessment, we 

demonstrate that BMDLs can be calculated in a standardized way to facilitate comparison among 

multiple health effects and multiple studies at a fixed BMR, consistent with the advice from the 

National Academies (National Research Council 2009). This approach also aids identification of 

outlier evidence or studies if some calculations are orders of magnitude higher or lower than the 

balance of the data. Thus, this approach can increase objectivity in evaluating multiple studies, 

enhance transparency, and improve communication with assessors, peer-reviewers, and the 

general public. 
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We posit that a comparable approach can be applied in other contexts. For example, high-

throughput in vitro testing is producing vast amounts of data, consisting of hundreds of dose-

response data sets on thousands of chemicals. However, it is unrealistic to expect that individual 

evaluation of concentration-response relationships in each data set would be commensurate with 

timely and efficient analyses of these data. Calculation of BMD-like values from in vitro data has 

been suggested (National Research Council 2009), and our approach can be applied to increase 

efficiency and transparency in processing such large data sets. Sand et al. (2012) provide a 

comprehensive review of the considerations for selecting appropriate standardized BMRs when 

performing concentration-response analysis of in vitro data. Consistent selection and application 

of BMRs and a standardized decision logic yields values that enable comparisons across 

chemicals (Sirenko et al. 2013) and may inform further testing using a process that is relevant for 

and familiar to risk managers and decision makers. 

Additionally, consistently derived BMDs that represent the same biological response can provide 

valuable quantitative information for other analyses. For example, they can be used to evaluate 

the potential for quantitative structure-activity relationship modeling. If a chemical structure is 

found to be predictive of a chemical’s BMD, this would allow decision-makers to evaluate a 

chemical’s potential hazard to human health even if animal or human data on that chemical are 

lacking. 

Our analysis also informs advancement of a unified dose-response modeling framework that is 

applied consistently to cancer and non-cancer effects proposed by NRC (National Research 

Council 2009). The exact nature and implementation of this framework has yet to be determined. 

For dichotomous endpoints, current EPA BMDS guidance specifies a smaller and more 

constrained set of models for cancer than for non-cancer endpoints (U.S. EPA 2012a). This is a 
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potential area for harmonization as health assessments move towards unifying the cancer and 

non-cancer assessments that could be readily explored by the batch-processing approach 

explored herein. 

Finally, results of our analysis also give insight into study design attributes that increase the 

potential for BMD modeling success. We observed that successful dose-response data sets tend 

to have higher numbers of dose groups with fewer animals in each dose group. This result is in 

accord with Slob et al. (2005) who found, using simulated data, that a higher number of dose 

groups will help to define the shape of the dose-response and may minimize the risk for 

unfavorable dose placement. This may be due to several factors. First, as the number of animals 

in each dose group increases, flexibility in slight deviations between the statistical model’s shape 

and the true underlying dose-response function decreases. Second, for dichotomous models, 

there may be sources of variation beyond the binomial statistics assumed by BMDS. In either 

case, a statistically poor model fit is more likely with more animals per dose group, all other 

things being equal. This may arise because the test for lack of fit has more power and is more 

likely to reject the model fit when group sample size is high. Nonetheless, this finding does not 

imply that fewer animals per dose group is preferable overall. Modeling success needs to be 

balanced against having enough statistical power to detect a response (Melnick et al. 2008). 

Because the majority of warnings found in otherwise successful models are due to extrapolation 

more than 3 times below the lowest non-zero dose, it is likely that those data sets did not have 

adequate data to support the BMRs used, and such a warning would not have occurred if a higher 

BMR has been selected. Additionally, the models may not account for non-biological sources of 

variation (e.g., group effects) and are dependent on a biological or statistical dose-response trend 

(Sand et al. 2008). Consideration of these factors together with a more detailed evaluation of the 
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characteristics of dose-response data sets associated with BMD modeling success might 

illuminate additional useful trends that can inform future study design. 

We acknowledge several limitations. Because we did not conduct chemical-by-chemical 

evaluation, the BMR was not adjusted based on data source or effect severity. A higher or lower 

BMR may be warranted based on the study type (e.g., epidemiological vs. experimental animal) 

or severity of the biological response (e.g., developmental malformations vs. organ-specific 

histopathological changes). However, it is likely that a fixed BMR would be appropriate still 

(i.e., to enable comparisons among chemicals with the same critical effect and observed severity) 

in contexts using a standardized BMD process. Additionally, BMD models might fit the data 

mathematically, but may not inform plausibility of the biological response (Davis et al. 2011). 

Statistical evaluation was limited to model-fit criteria and did not include other considerations, 

such as evaluation of the model fit in the low dose region. Also, cutoffs were fixed in an 

automated manner according to the decision logic, resulting in less flexibility in assessing model 

viability than if each cutoff were independently adjusted. These issues can be addressed by a 

chemical-by-chemical or model-by-model analysis, if necessary. 

Furthermore, when using BMD modeling for the purpose of deriving a chemical-specific POD, 

EPA guidance recommends an evaluation of the pertinent literature to first identify the most 

appropriate study(ies) for analysis, based on hazard identification, the type of data, and study 

design (U.S. EPA 2012a). However, our analysis was based on studies that were not necessarily 

selected for their amenability to BMD modeling. Thus, for a given chemical, it was possible that 

the dose-response data were unavailable due to inadequate reporting (e.g., original data not 

provided or only represented graphically in primary literature, group means reported without 

standard deviations, no control group reported). This highlights the importance of presenting the 
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raw data used to identify the POD in assessment summaries (such as the online IRIS 

Summaries). 

Conclusions  

We demonstrate that a standardized BMD modeling approach can be used to derive 

BMD/Ls10/1SD that are significantly and highly correlated with BMDLs derived one chemical at a 

time. The median ratio of BMDs10/1SD to NOAEL was less than 2, while BMDLs10/1SD values 

were generally even lower than NOAELs. Deriving BMD/Ls in a consistent way across 

chemicals and endpoints gives values that represent the same response level and which are 

therefore useful in various decision-making contexts, such as identifying a candidate reference 

value, or determining relative potency of chemicals. Such a standardized approach can also be 

applied to data sets when speed and efficiency are priorities (e.g., in vitro assays). Ultimately, we 

demonstrated that a standardized approach, which makes BMD modeling transparent and easy to 

reproduce, is feasible and thus may be considered for wider use in certain decision contexts and 

types of assessments. In specific cases, expert judgment will still be needed in evaluations of 

alternative BMRs based on the study type or severity of biological response. Such judgment will 

assure that the standardized BMD modeling yields an accurate reflection of the underlying 

biology. 
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Table 1. Summary of BMRs and models used in BMDS, according to dose-response type. 

Dose-response type Dichotomous Continuous Dichotomous-cancer 
Benchmark response 10% extra risk Change in the mean equal 

to 1 control group SDa 
10% extra risk 

Models used to calculate 
BMDs and BMDLsb 

Gamma, 
Dichotomous-
Hill, Logistic, 
LogLogistic, 

Probit, 
LogProbit, 

Weibull, and 
Multistagec 

Exponential 2, 
Exponential 3, 
Exponential 4, 

Exponential 5, Hill, 
Power, Polynomialc, and 
Linear (both constant and 
modeled variance models 

for each model above) 

Cancer multistage 
1st-order through n-1 
order where n is the 

number of dose groups 

Distribution assumption Binomial Normal Binomial 
aThis control group SD is the modeled SD. bModels selected based on defaults in BMDS and 

preferences of EPA IRIS program (U.S. EPA, 2012a). cOf order n-1 where n is the number of 

dose groups for each data set modeled. 
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Figure Legends  

Figure 1. Schematic of BMDS Wizard workflow, adapted with permission from (ICF 

International 2012). 

Figure 2. Correlations of batch-calculated BMDs and BMDLs with BMDLs (A,B) and NOAELs 

(C,D) reported in human health risk assessments. R2 values represent squared Pearson 

correlations. ρ values represent Spearman correlations. Dotted line represents the regression line 

through the origin. Solid line represents the best-fit line. “a” denotes dichloromethane values; 

“b” denotes trichloroethylene values. 

Figure 3. Histograms of log-transformed ratios of batch-calculated BMDs to NOAELs (A), 

BMDLs to NOAELs (B), and LOAELs to NOAELs (C). Y-axis: frequency counts; X-axis: 

magnitude of the ratio; red dotted lines: 5th and 95th percentiles of the distribution; red arrows: 

median values. 

Figure 4. Array of batch-calculated BMDLs for the critical effects observed in studies of 

nitroguanidine as compared to IRIS NOAEL and RfD (A), and array of batch-calculated BMDs 

for selected chemicals compared to RfDs and PODs reported in human health assessments (B). 

Yellow circles: batch-calculated BMDs and BMDLs; orange circles: RfDs based on batch-

calculated BMDLs; colored bars: uncertainty factors; blue squares: human health assessment 

PODs; gray squares: human health assessment RfDs. a,Reduced body weight gain. b,Retarded 

ossification of pubis. c,Fewer than 3 sternebrae ossified. d,Fewer than 3 caudal vertebra ossified. 

e,Reduced weight gain in female rats. f,Reduced weight gain in female rats. g,Retarded 

ossification of pubis. h,Fewer than 3 caudal vertebra ossified. i,Fewer than 3 sternebrae ossified. 

j,Reduced body weight gain. k,Maternal toxicity. l,Renal lesions (glomerulosclerosis). m,Decreased 
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delayed hypersensitivity response. n,Renal tubule regeneration. o,Increased splenic weight. 

p,Renal cytomegaly. q,Nest-like infolds of the nasal respiratory epithelium. r,Chronic irritation. 

s,Lung adenoma or carcinoma (combined). t,Hemosiderin deposition in the liver. u,Increased 

mortality. v,Lung and kidney histopathology. w,Reduced offspring body weight. 

Figure 5. Relationship of Viable BMD models to (A) the number of dose groups, (B) number of 

animals in each dose group. ** indicates significant for trend (p < 0.01); *** indicates a 

significant difference between group means (p<0.001). 
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Figure 4. 
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