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Abbreviations and Definitions 

BenMAP Environmental Benefits Mapping and Analysis Program 

C-R  concentration-response 

ER  emergency room 

ES  exponential smoothing  

GNM Georgia Institute of Technology, the Northeast States for Coordinated Air Use 

Management, and the Massachusetts Institute of Technology 

ICLUS  Integrated Climate and Land-Use Scenarios 

IPCC  Intergovernmental Panel on Climate Change 

MDA8  Maximum Daily 8-Hour Average Ozone Concentration (in ppb) 

NAAQS  National Ambient Air Quality Standard 

NCHS  National Center for Health Statistics 

NERL  National Exposure Research Laboratory 

NRC  National Research Council 

RIA  Regulatory Impact Analysis 

SRES   Special Report on Emissions Scenarios 
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Abstract 

Background:  Future climate change may cause air quality degradation via climate-induced 

changes in meteorology, atmospheric chemistry, and emissions to air. Few studies have explicitly 

modeled the potential relationships between climate change, air quality, and human health, and 

fewer still have investigated the sensitivity of estimates to the underlying modeling choices.   

Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts 

of climate change to key modeling choices.   

Methods: Our analysis included seven linked climate change/air quality modeling systems, five 

population projections, and multiple concentration-response functions.   Using the Environmental 

Protection Agency (EPA)’s Environmental Benefits Mapping and Analysis Program (BenMAP), we 

estimated future O3-related health effects in the U.S. attributable to simulated climate change 

between 2000 and c. 2050, given each combination of modeling choices. Health effects and 

concentration-response functions were chosen to match those used in EPA’s 2008 O3 National 

Ambient Air Quality Standards (NAAQS) Regulatory Impact Analysis (RIA).   

Results: Different combinations of methodological choices produced a range of estimates of 

national O3-related mortality from roughly 600 deaths avoided as a result of climate change to 2500 

deaths attributable to climate change (though the large majority produced increases in mortality).  

The choice of climate change/air quality model reflected the greatest source of uncertainty, with the 

other modeling choices having lesser but still substantial effects.   

Conclusions: Our results highlight the need to use an ensemble approach, rather than relying on any 

one set of modeling choices, to assess the potential risks associated with O3-related human health 

effects resulting from climate change.  
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Introduction 

There is a substantial and growing literature on the potential impacts of climate change in 

the absence of efforts to mitigate the atmospheric accumulation of greenhouse gases due to 

global emissions and other factors. The recent Intergovernmental Panel on Climate Change 

(IPCC) Fourth Assessment Report found that “warming of the climate system is unequivocal” 

and that “most of the observed increase in globally averaged temperatures since the mid-20th 

century is very likely due to the observed increase in anthropogenic greenhouse gas 

concentrations” (IPCC 2007). Of particular importance for the U.S. EPA’s mission to protect 

human health and the environment is the potential for future climate change to cause air quality 

degradation via climate-induced changes in meteorology and atmospheric chemistry, posing 

challenges to the U.S. air quality management system and the effectiveness of its pollution 

mitigation strategies (IPCC 2007; NRC 2004; Jacob and Winner 2009; Isaksen et al. 2009). In 

this context, the Global Change Research Program in EPA’s Office of Research and 

Development, in partnership with EPA’s Office of Air and Radiation, began soliciting research 

targeted at climate change impacts on air quality in 1999 (U.S. EPA 2009a; Weaver et al. 2009). 

To move from a consideration of environmental impacts to an explicit assessment of 

human health risks, the demographics and size of the exposed population, whether now or in the 

future, is a critical input. Therefore, EPA has concurrently been developing high-resolution, 

spatially explicit population projections for the U.S. These projections, from the Integrated 

Climate and Land-Use Scenarios (ICLUS) project (U.S. EPA 2009b), have been developed to be 

consistent with the underlying assumptions of the IPCC Special Report on Emissions Scenarios 

(SRES) social, economic, and demographic storylines (Nakicenovic et al. 2000).      
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 Our work builds on these two efforts by examining the potential indirect impacts of 

climate change on the health of a hypothetical future U.S. population (c. 2050) via its direct 

impact on tropospheric O3 concentrations.  We input both the climate change/air quality 

modeling results and various population projections into BenMAP, EPA’s air pollution benefits 

analysis model, to estimate the changes in adverse health effects resulting from the changes in 

ambient O3 concentrations simulated by the climate-air quality modeling systems.  Our analysis 

considers the health impacts associated with O3 changes induced only by future climate change; 

the air quality modeling simulated the response of O3 to global climate change alone, without 

changes in anthropogenic emissions of O3 precursors (e.g., due to future air quality management 

efforts and/or future economic growth; as described in EPA 2009a and Weaver et al. 2009). 

Knowlton et al. (2004), Bell et al. (2007), Hwang et al. (2004), West et al. (2007), Tagaris et al. 

(2009), and Sheffield et al. (2011) all modeled the health impacts of climate change-induced 

changes in O3. All of these studies found that simulated climate change produced increases in 

O3-related mortality. Tagaris et al. (2009) also found the potential for additional PM2.5-related 

mortality due to climate change. However, few studies have investigated the sensitivity of their 

estimates to the underlying modeling choices. For example, each of the references cited used a 

single climate/air quality modeling system as the basis for their analysis, though Tagaris et al. 

(2009) did provide a useful estimate of the uncertainty surrounding their O3-related health 

findings based on the range of results reported in Weaver et al. (2009). Similarly, only West et 

al. (2007) considered population growth in their analysis. Therefore, instead of developing a 

quantitative estimate of future human health impacts of climate-induced O3 changes, our goal, 

building on this previous work, was to assess the sensitivity of such estimates to key modeling 

assumptions and choices. Our purpose is to explore the uncertainty space surrounding 
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assessment of these climate-related health impacts and to sketch out the envelope of health risks 

that society must begin to consider. 

 

Methods 

Our study was designed to assess the sensitivity of modeled future O3-related human 

health impacts in the U.S. to modeling and methodological choices for (1) climate-induced 

changes in future meteorological conditions, (2) the changes in O3 concentrations resulting from 

those meteorological changes, (3) the size as well as age and geographic distributions of the 

affected population, and (4) the concentration-response (C-R) relationships linking O3 levels to 

specific health outcomes.   

There is substantial uncertainty surrounding each of the inputs to our analysis, 

particularly because it focuses so far into the future.  Much of this uncertainty cannot be assessed 

quantitatively.  Even assigning probabilities to the different models (representing our subjective 

assessments about the relative accuracy with which each approximates a future reality) is 

premature.  Instead, we present our analysis as a series of sensitivity analyses or “what if” 

scenarios designed to assess the impact of the various assumptions and modeling approaches on 

the results.  Figure 1 illustrates the basic structure of the analysis.  

 

Climate Change/Air Quality Modeling Systems 

Our analysis includes seven modeling efforts of six research groups (Harvard University; 

Carnegie Mellon University (CMU); Washington State University (WSU); EPA’s National 

Exposure Research Laboratory (NERL); the Georgia Institute of Technology, the Northeast 

States for Coordinated Air Use Management, and the Massachusetts Institute of Technology 
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(GNM) joint effort; and the University of Illinois, which considered two different SRES 

scenarios (denoted Illinois-1 and Illinois-2) but otherwise used identical setups. The Harvard and 

CMU simulations used global-scale (e.g., 2o x 3o grids) atmospheric chemistry models. The 

remaining simulations used regional air quality models, which necessitates downscaling Global 

Climate Model data to fine scales (e.g., 36 km grids). These modeling efforts are described in 

detail elsewhere (U.S. EPA 2009a; Weaver et al. 2009); we summarize the key characteristics in 

Tables 1 and 2.  Briefly, each modeling group explored the potential impacts of climate change 

on O3 concentrations in the U.S. using two linked models. First, a climate model was used to 

simulate meteorological conditions in the U.S. for future years (under climate change) and the 

present.  This modeled meteorology was then input to an air quality model to simulate the 

ambient O3 concentrations that would result. Anthropogenic emissions were held constant 

between the base case and the climate change case, but climate-sensitive biogenic and 

evaporative emissions were allowed to change in response to changes in climate. Baseline 

emissions were similar, though not identical, across modeling efforts (e.g., for the U.S., based 

largely on 1999 or 2001 EPA emissions inventory data), as described in the individual 

publications about these simulations. Some modeling groups used dynamical downscaling (with 

a regional climate model) to further regionalize the global climate model simulation outputs. 

Choice of downscaling model and methodology is an additional source of uncertainty, but 

systematically separating out this additional source was not feasible for this analysis. 

The modeling groups produced from 3 to 10 summers’ worth of Maximum Daily 8-Hour 

Average Ozone Concentrations (MDA8) approximately centered on the years 2000 (“present”) 

and 2050 (“future”). MDA8 was computed by taking rolling 8-hour averages for a 24-hour 

period and then taking the maximum. This was done for all days in the modeled O3 seasons. 
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Although different models used different grids, for consistency the air quality grids for all of the 

models were remapped to a 30 km x 30 km grid for this analysis. Further adjustment of modeled 

air quality is described in the Supplemental Material (see Supplemental Material, page 3).   

 

Population Projections to a Future Year 

All of the BenMAP runs used populations projected to 2050.  To explore the sensitivity 

of our results to assumptions about what this future population would look like, we selected five 

population projections for input into our analysis. One of these is simply the 2000 Census 

population – i.e., we assumed no change from the 2000 Census population by 2050 to show the 

risk associated with climate change in the absence of changes in populations exposed.  A second 

population projection is extrapolated from the Woods & Poole population projections for the 

year 2030 already in BenMAP (Woods & Poole Economics Inc. 2007), using a set of exponential 

smoothing (ES) forecasting methods (for details see Supplemental Material pages 3-4).  Finally, 

we selected three of the ICLUS population projections – A1, A2, and the base case (BC) – to 

provide the lower and upper bound ICLUS total population projections, as well as an 

intermediate case.  The basis for the ICLUS population projects and the underlying assumptions 

are described in detail elsewhere (U.S. EPA 2009b) and more briefly in the Supplemental 

Material (page 4).   

   

Concentration-Response Relationships and Health Impact Functions 

We followed the selection of health effects, studies, and C-R functions EPA used in the 

benefits analysis for the O3 NAAQS RIA completed in 2008 (U.S. EPA 2008).  The C-R 

functions are taken from epidemiological studies, and we assume they are applicable to any year, 
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though this assumption entails additional uncertainties. The suite of health effects included 

mortality from all causes (“all-cause mortality”), non-accidental mortality, hospital admissions 

for respiratory illnesses, emergency room (ER) visits for asthma, school loss days; and minor 

restricted activity days (see Supplemental Material, Table S1, for study details).  For several 

health effects, two or more C-R functions were pooled (see Supplemental Material pages 4 -5 for 

details on pooling and Table S4 for the pooled estimates).   

Most of the studies in the air pollution epidemiological literature have estimated 

exponential (log-linear) C-R functions in which the natural logarithm of the health effect is a 

linear function of the air pollutant: 

 

     y = Be
βx  

,     [1] 

 

where x is the ambient air pollutant (e.g., O3) level, y is the incidence of the health effect at O3 

level x, β is the coefficient of ambient O3 concentration, and B is the incidence at x=0.   

The “health impact function” – the relationship between a change in the pollutant 

concentration (∆x = x1-x0) and the corresponding change in incidence of the health effect in the 

population (∆y = y1-y0) – derived from the log-linear C-R function is 

 

∆y = y0[e
β∆x

 – 1],    [2] 

 

where x1 and x0 represent the model-simulated summertime O3 levels c. 2050 and c. 2000, 

respectively, while y1 and y0 represent the health effect incidence in the with- and without-

climate-change (baseline) scenario, respectively. The baseline incidence (y0) is the product of the 
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baseline incidence rate and the exposed population.  The measure of O3 concentration available 

from the climate change/air quality models is the O3 season average MDA8.  The C-R functions 

relate the MDA8 to health effects, and we applied this O3 season average MDA8 to each day.  

Since the health impact functions are nearly linear, this application of a seasonal average to each 

day in the season provides a good approximation to the result we would get if we had individual 

daily 8-hour maxima for each day in the O3 season.  In many cases, the C-R function used an O3 

metric other than the MDA8 (e.g., the 24-hour mean) (see Supplemental Material, Table S1); the 

coefficients from these functions were converted to coefficients for the MDA8 (see Abt 

Associates Inc. 2010, Appendix G, for methods).  This conversion would be expected to add 

only a small amount of uncertainty to the results.   

 

Baseline Incidence Rates 

A detailed description of the estimation of baseline incidence rates c. 2050 is given in the 

Supplemental Material (pages 5 – 7).  Briefly, we calculated cause-specific death counts at the 

county level for selected age groups from individual-level mortality data for years 2004-2006 

obtained from the Centers for Disease Control, National Center for Health Statistics (NCHS), for 

the entire United States.  The county-level death counts were then divided by the corresponding 

county-level population to obtain the mortality rates.  We used three years (2004-2006) of 

mortality and population data to provide more stable estimates.  We then extrapolated these 

county-level mortality rates to 2050 using the U.S. Census Bureau national mortality life tables 

(U.S. Census Bureau 2010). 

Regional rates for hospitalizations and asthma ER visits were calculated from year 1999 

regional hospitalization and year 2000 ER visit counts obtained from NCHS’ National Hospital 
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Discharge Survey and National Hospital Ambulatory Medical Care Survey, respectively (CDC 

2008; CDC 2010) (Supplemental Material, pages 6 – 7).  We applied the regional rates to every 

county in a region.  Hospitalization rates are cause-specific, with causes defined by those 

combinations of ICD codes that were used in the selected epidemiological studies. We were 

unable to project hospitalization and ER visit rates to 2050, however, because, unlike for 

mortality rates, there are no reliable projections of hospitalization or ER visit rates or trends into 

the future. 

 

Defining the “O3 Season” 

The climate change/air quality models used in this analysis generally defined the O3 

season as June, July, and August, i.e., climatological summer in the Northern Hemisphere. 

Though most air pollution epidemiology studies focusing on O3 have defined the season more 

broadly (e.g., May through September), we use the more conservative June-August definition for 

consistency with the O3 simulations. Modeling results summarized in Weaver et al. (2009) 

indicate similar magnitudes of climate-induced O3 increases in fall and spring, suggesting that 

the health impacts we report here are more conservative than if we considered a more standard, 

longer O3 season. 

 

Estimation of Human Health Impacts  

BenMAP calculated the change in each adverse health effect within each grid cell of the 

air quality grid by combining the appropriate C-R function coefficient (β), baseline incidence 

(y0), and simulated change in O3 due to climate change (∆x) in the health impact function 

(equation [2]).  While BenMAP uses the same “national” C-R function coefficient (β) in all grid 

Page 11 of 30



 12

cells, population estimates and baseline incidence rates in the health impact function are as 

location-specific as possible.  The grid cell-specific changes in health effects are then summed 

across grid cells to produce county-level, state-level, and national estimates of health impacts. 

 

Results 

Using the 7 climate change/air quality models and 5 population projections, we produced 

35 potential “answers” to the question:  How many O3-related cases of a given health effect (e.g., 

non-accidental mortality) may be attributable to climate change in the conterminous United 

States in a future year?  We also considered more than one C-R function for some health effects, 

further increasing the number of potential “answers.” 

 

National Results  

Estimates of annual national O3-related non-accidental mortality c. 2050 ranged from 

over 600 deaths avoided because of climate change to over 2500 deaths attributable to climate 

change, depending on the climate change/air quality model, population projection, and C-R 

function used (Table 3).  Estimates for all-cause mortality follow similar patterns according to 

climate change/air quality model and population projection (Supplemental Material, Table S2).  

The broad patterns seen for mortality across the different modeling choices are largely mirrored 

for the morbidity effect estimates as well, though for some health outcomes the numbers of cases 

are much larger, for example in the hundreds of thousands or millions for minor restricted 

activity days (Supplemental Material, Tables S3 - S7).   

Figure 2 summarizes the influence of the climate change/air quality model and population 

projection on estimates of future O3-related non-accidental deaths attributable to climate change, 
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using the Bell et al. (2004) C-R function. The C-R function is itself a source of substantial 

uncertainty.  Had we instead used the Ito et al. (2005) C-R function, for example, the numbers 

would have generally been over 4 times larger (e.g., 2560 attributable deaths compared with 570 

based on Illinois-1 and ICLUS_A1), although the basic pattern according to climate change/air 

quality model and population projection is the same (see Table 3).   

Our analysis is one of the first to account for population growth and associated changes 

in age and geographic distributions, and we found that considering these factors  has a substantial 

influence on the estimates of health impacts.  The assumption that the population c. 2050 will be 

exactly what it was in the year 2000 (i.e., by using Census 2000 population estimates) produces 

estimates that are consistently lower than those based on population projections, all of which 

assume at least some increase in population size relative to the year 2000, in addition to changes 

in the age distribution of future populations., as is easily seen in Figure 2 and Table 3 (and 

proposed in Tagaris et al. 2009).   

The choice of methods to project future age and geographic distributions can also 

influence results.  For example, although the ICLUS_A2 population projection for 2050 is, in 

total, greater than the ICLUS_A1 projection (424.8 million vs. 386.7 million), ICLUS_A1 is 

skewed more towards the older age groups (with about 26 percent projected to be age 65 or older 

in 2050 versus only about 21 percent based on ICLUS_A2; see Supplemental Material, Figure 

S1).  Since older people have substantially higher baseline incidence rates for mortality (and 

other adverse health effects) than younger people, the same increase in O3 concentration would 

result in more deaths among an older population than a younger one as the estimated change in 

the outcome is a function of the baseline incidence, which is the product of the baseline 

incidence rate and the population size.  This is reflected in the slightly higher numbers of O3-
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related deaths for ICLUS_A1, despite the overall smaller population. If age group-specific 

mortality C-R functions were available, their application would likely accentuate the importance 

of age distribution, since older people may be more vulnerable to air pollution.  

The importance of the age distribution of the affected population is particularly apparent 

when we consider morbidity effects that focus on specific age subgroups in the population, such 

as O3-related school days lost (ages 5 – 17) or respiratory hospital admissions among those age 

65 and older (see Supplemental Material, Tables S3, S4, S6, and S7).  For example, estimates of 

O3-related respiratory hospital admissions among infants attributable to climate change c. 2050 

based on the ICLUS_A1 population projection are uniformly smaller in magnitude than the 

corresponding estimates based on ICLUS_A2, regardless of the climate change/air quality 

modeling system used (see Supplemental Material, Table S3).  This is because ICLUS_A2 

projects that a greater percentage of the population (and a larger total population) will be under 1 

year of age, and that a smaller percentage of the population will be 65 and older, relative to 

ICLUS_A1 (see Supplemental Material, Figure S1). 

Across all of these dimensions, the source of the greatest uncertainty, for both non-

accidental and all-cause mortality, appears to be the projections of future climate change-induced 

meteorological changes and corresponding air quality changes, which are determined by the 

climate change/air quality modeling system used. This is shown clearly in the results of an 

analysis of variance, which decomposes the total variability in estimated mortality into the 

variability due to the chosen climate change/air quality model, population projection, 

epidemiological study (C-R function) used, and interactions between these modeling choices, 

respectively (see Table 4). The different impacts across model choices are magnified to a greater 

or lesser degree by study choice/C-R function (see Supplemental Material, Figure S2).        
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Regional Estimates 

Because national estimates can mask very different regional changes, we delineated three 

broad regions for additional analysis: the Northeast (defined as east of 100 degrees west 

longitude and north of 36.5 degrees north latitude); the Southeast (defined as east of 100 degrees 

west longitude and south of 36.5 degrees north); and the West (defined as everything west of 100 

degrees west longitude).  These three regions account for the entire continental U.S. Finer-scale 

regional breakdowns, while possible, would have been an over-interpretation of our results given 

the various uncertainties. 

  Figure 3 shows national and regional estimates of O3-related non-accidental mortality 

using the C-R function from Bell et al. (2004) and the ICLUS_A1 population projection, and it 

illustrates this national-level masking of differing regional trends. For example, the modest net 

change in nation-wide O3-related non-accidental mortality based on the WSU climate change/air 

quality model represents the sum of highly variable regional estimates (i.e., 275 avoided deaths 

in the Northeast, plus 369 additional deaths in the Southeast, plus 54 additional deaths in the 

West).  With the exception of Illinois-1 and Illinois-2, none of the driving climate/air quality 

scenarios produces regional health impact estimates that are all in the same direction – i.e., 

increases in O3 estimated concentrations attributable to climate change in some regions are 

accompanied by decreases in other regions (due, for example, to factors such as differences in 

circulation patterns and increases in cloud cover, as discussed in Weaver et al. 2009). While the 

WSU climate/air quality simulation estimates suggest large decreases in O3-related deaths in the 

Southeast and large increases in the Northeast, the GNM and NERL model estimates show 
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regional effects in just the opposite directions. These same general patterns are evident for all-

cause mortality and for different C-R functions for either type of mortality.     

 

Discussion  

We have attempted to assess the sensitivity of estimated O3-related human health impacts 

of climate change to the following key modeling assumptions and choices: climate-induced 

changes in meteorological conditions and the corresponding changes in O3 concentrations; 

projections regarding the size, and age and geographic distributions of the affected population; 

and the concentration-response relationships linking O3 levels to specific health outcomes.   

Looking across all combinations of modeling choices (including climate change/air 

quality model, population projection, and C-R relationship), estimates of national O3-related 

mortality and morbidity attributable to climate change by mid-century span a wide range – e.g., 

from roughly 600 cases of non-accidental mortality avoided as a result of climate change to 

roughly 2500 cases attributable to climate change.  

The source of the greatest uncertainty at the national level appears to be the climate 

change/air quality scenario used, with choice of C-R function and population projection also 

important, though less influential in this analysis.  Not only is the total population exposed to O3 

in a future year important, but assumptions regarding the age distribution of that population are 

also important for estimating O3-related adverse health effects.  The variability of these estimates 

represents the true extent of uncertainty in the problem, however, only to the extent that our 

choices (seven simulations, five population projections, a few alternative C-R specifications, and 

a single unchanging set of emissions to air) span the full range of possibilities in their respective 

dimensions. Our estimates thus may understate the plausible range of potential future outcomes. 
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National results can mask important regional differences.  Estimates for the Northeast 

region generally indicated adverse health impacts and were the most consistent across the 7 

climate/air quality scenarios of the 3 regions. In contrast, estimated health impacts for the 

Southeast showed substantial variation. The West generally showed the smallest impacts, largely 

due to the relatively smaller projected populations. 

The wide range of estimated O3-related mortality and morbidity attributable to climate 

change resulting from different methodological choices highlights the need to consider an 

ensemble of estimates, rather than relying on any one modeling system or set of assumptions. 

Despite this range, however, the large preponderance of the estimates is in the direction of 

climate-induced increases in O3 leading to adverse health impacts. This is illustrated in Figure 4, 

which shows that population-weighted climate-induced O3 concentration changes estimated 

using the different climate/air quality simulations indicate that 50-90% of the future U.S. 

population would be subject to increases in O3 exposure, all other factors remaining constant. 

Finally, as Tagaris et al. (2009) suggested, climate change may have even greater health 

impacts associated with other air pollutants like PM2.5.  The combined health effects of O3 and 

these other pollutants, along with other factors such as increased heat waves, should be explored 

using multi-pollutant models. 

 

Conclusion 

At this stage in the development of a scientific understanding of climate change and air 

pollution-related human health, it would be unwise to rely on any one model, epidemiological 

study, or population projection.  This is perhaps the most important “take away” message of our 

analysis.  Different combinations of methodological choices and model assumptions produce 
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widely varying results, particularly at regional scales, and can produce fundamentally different 

conclusions about the overall impact of climate change on O3-related health effects. The goal of 

this study was therefore not to develop any best guess as to the most likely future human health 

impacts of climate-induced O3 change, but instead to explore the uncertainty space surrounding 

assessment of these impacts and to begin to define the envelope of future risk. This also 

highlights the need to develop decision-making frameworks and tools capable of managing the 

uncertainty such ensembles represent (e.g., see Lempert et al. 2004; Johnson and Weaver 2009). 
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Table 1.  Summary of global climate and O3 modeling systems used in this analysis 

 

Model     Harvard    CMU 

Simulation Period  5 summer/falls   10 summers/falls 

 

GCM     GISS III   GISS II′ 

 

Resolution   4º × 5º    4º × 5º 

 

GHG Scenario   A1b    A2 

 

GCTM    GEOS-Chem   GISS II′  

 

Climate Sensitive  BVOCs;   BVOCs;  

Emissions   Lightning and soil NOx Lightning and soil NOx  

 

 

Abbreviations: 

BVOC  biogenic volatile organic compounds 

GCM  General Circulation Model 

GCTM  Global Chemical Transport Model 

GEOS  Goddard Earth Observing System  

GHG  Greenhouse Gas 

GISS   Goddard Institute for Space Studies  

NOx  Nitrogen oxides 
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Table 2.  Summary of regional climate and O3 modeling systems used in this analysis 

Model   NERL  Illinois 1 Illinois 2 WSU  GNM 

Simulation  5 JJAs  4 JJAs  4 JJAs  5 Julys  3 JJAs 

Period 

 

GCM   GISS III PCM  PCM  PCM  GISS III 

 

Global   4º × 5º  2.8º × 2.8º 2.8º × 2.8º 2.8º × 2.8º 4º × 5º 

Resolution 

 

GHG   A1b  A1Fi  B1  A2  A1b 

Scenario 

 

RCM   MM5  CMM5  CMM5  MM5  MM5 

 

Regional  36 km  90/30 km 90/30 km 36 km  36 km  

Resolution 

 

Convection  Grell  Grell  Grell  Kain-Fritsch Grell 

Scheme 

 

RAQM CMAQ AQM  AQM  CMAQ CMAQ 

 

Chemical  SAPRC99 RADM2 RADM2 SAPRC99 SAPRC99 

Mechanism 

 

Climate  BVOCs; BVOCs; BVOCs; BVOCs;  BVOCs; 

Sensitive Evaporative Evaporative Evaporative Evaporative Evaporative 

Emissions 

 

AQM  Air Quality Model 

BVOC  biogenic volatile organic compounds 

CMAQ  Community Multiscale Air Quality Model 

CMM5 University of Illinois Climate extension of the Penn State/NCAR Mesoscale 

Model version 5 

GCM   General Circulation Model 

GEOS  Goddard Earth Observing System 

GHG  Greenhouse Gas 

GISS   Goddard Institute for Space Studies 

JJA  June, July, August 

MM5   Penn State/NCAR Mesoscale Model version 5 

PCM   Parallel Climate Model 

RADM2 Regional Atmospheric Deposition Model (2
nd

 generation) 

RAQM Regional Air Quality Model 

RCM   Regional Climate Model 

SAPRC  Statewide air pollution research center 
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Table 3.  Estimated changes in national summertime (June-August) O3-related non-accidental mortality due to simulated climate 

change between 2000 and c. 2050 
a
 

 

Climate  

Change/ Study      Population Projection 

Air Quality   

Model     ICLUS_A1 ICLUS_A2 ICLUS_BC Woods  Census_ 

           & Poole 2000 

Illinois-1 Bell et al. (2004) 570  520  510  440  170 

  Ito et al. (2005) 2560  2340  2280  1970  780 

  Schwartz (2005) 860  790  770  670  270 

Illinois-2 Bell et al. (2004) 530  480  480  420  160 

Ito et al. (2005) 2390  2180  2160  1870  710 

Schwartz (2005) 810  730  730  640  250 

CMU  Bell et al. (2004) 480  430  430  350  150 

  Ito et al. (2005) 2180  1950  1920  1570  690 

  Schwartz (2005) 730  660  650  540  240 

Harvard Bell et al. (2004) 240  220  230  200  80 

  Ito et al. (2005) 1090  1000  1030  890  380 

  Schwartz (2005) 370  340  350  300  130 

GNM  Bell et al. (2004) 40  30  20  10  -20 

  Ito et al. (2005) 180  140  80  50  -80 

  Schwartz (2005) 60  50  30  20  -30 

NERL  Bell et al. (2004) 10  10  -10  -50  -20 

  Ito et al. (2005) 50  20  -40  -240  -100 

  Schwartz (2005) 20  10  -20  -80  -40 

WSU  Bell et al. (2004) -150  -140  -110  -60  0 

  Ito et al. (2005) -650  -630  -480  -240  0 

  Schwartz (2005) -220  -210  -160  -90  0 

 
a
 Numbers rounded to the nearest 10 
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Table 4. Analysis of variance results for estimates of national summertime (June-August) O3-

related non-accidental mortality due to simulated climate change between 2000 and c. 2050 

 

Source    DF ANOVA SS  Percent of Total SS   

 

Model    6 24271499  48%   

Population Projection  4 2108558  4%   

Study    2 9055636  18%   

Model*Study     12 10495284  21% 

Model*Population Projection 24 2641882  5% 

Study*Population Projection  8 921745  2% 

Model*Study* 

Population Projection  48   1165135  2% 

 

Total    104 50659739  100%  
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Figure Legends 

 

Figure 1.  The structure of the analysis of O3-related impacts on human health attributable to 

climate change 

 

Figure 2.  Estimated national summertime (June-August) O3-related non-accidental mortality due 

to simulated climate change between 2000 and c. 2050 (C-R function from Bell et al. 2004) 

(Note: -0.6 deaths were estimated based on the WSU climate change/air quality model and 

Census_2000 population data.) 

 

Figure 3.  Estimated national and regional summertime (June-August) O3-related non-accidental 

mortality due to simulated climate change between 2000 and c. 2050 (C-R function from Bell et 

al. 2004; ICLUS_A1 population projection) 

 

Figure 4.  Cumulative probability density functions of national population-weighted summertime 

O3 concentration changes between 2000 and c. 2050 from the seven sets of climate-air quality 

modeling results (ICLUS_A2 population projection; other population projections yield similar 

results) 
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Figure 1.  The structure of the analysis of O3-related impacts on human health attributable 

to climate change 
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Figure 2.  Estimated national summertime (June-August) O3-related non-accidental 
mortality due to simulated climate change between 2000 and c. 2050 (C-R function from 
Bell et al. 2004) (Note: -0.6 deaths were estimated based on the WSU climare change/
air quality model and Census_2000 population data.)  
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Figure 3.  Estimated national and regional summertime (June-August) O3-related non-

accidental mortality due to simulated climate change between 2000 and c. 2050 (C-R 

function from Bell et al. 2004; ICLUS_A1 population projection) 
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Figure 4.  Cumulative probability density functions of national population-weighted 

summertime O3 concentration changes between 2000 and c. 2050 from the seven sets of 

climate-air quality modeling results (ICLUS_A2 population projection; other population 

projections yield similar results) 
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