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Abstract 

Background: The extent to which climate change may affect human health by increasing risk 

from vector-borne diseases has been under considerable debate. 

Objectives: We quantified potential effects of future climate change on the basic reproduction 

number (R0) of the tick vector of Lyme disease Ixodes scapularis and explored their importance 

for Lyme disease risk, and for vector-borne diseases in general. 

Methods: Observed temperature data for North America and projected temperature using 

regional climate models drove an I. scapularis population model to hindcast recent, and project 

future, effects of climate warming on R0. Modelled R0 increases were compared with R0 ranges 

for pathogens and parasites associated with variations in key ecological and epidemiological 

factors, obtained by literature review, to assess their epidemiological importance. 

Results: R0 for I. scapularis in North America increased from 1971 to 2010 in spatio-temporal 

patterns consistent with observations. Increased temperatures due to projected climate change 

increased R0 by factors (2-5 times in Canada and 1.5-2 times in the US) comparable to observed 

ranges of R0 for pathogens and parasites due to variations in strains, geographic locations, 

epidemics, host and vector densities, and control. 

Conclusions: Climate warming may have co-driven Lyme disease emergence in northeastern 

North America, and in the future may drive substantial disease spread into new geographic 

regions, and increase tick-borne disease risk where climate is currently suitable. This study 

highlights the potential for climate change to have profound effects on vectors and vector-borne 

diseases, and the need to refocus efforts to understand these effects. 
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Introduction  

Considerable attention has been devoted to the possibility that climate change will exacerbate the 

burden of mosquito-borne diseases such as malaria and dengue, with important impacts on public 

health (Githeko et al. 2000). Early assessments of effects of climate change on malaria and 

dengue used simplistic models to assess possible effects of climate change on their basic 

reproductive number (R0, the universally recognised metric of the capacity of a parasite or 

pathogen to reproduce given particular environmental conditions) (Martens et al. 1995; Patz et 

al. 1998). However these were criticised for giving weight to future increases in R0 whether or 

not such increases resulted in R0 rising above the critical threshold of >1 for disease persistence 

(Rogers and Randolph 2000), and for being over-simplistic by only accounting for climate 

effects rather than the full range of non-climatic factors that impact the occurrence of these 

diseases (Reiter 2001; Rogers and Randolph 2000). Any impact of climate on R0 of malaria and 

dengue is limited by effects of variations in human host density, mosquito control, infection 

prevention and treatment in humans, and human management of the environment (agriculture, 

forest management, logging etc.) that affect ecology and epidemiology of the vectors, pathogens 

and diseases (Githeko et al. 2012). Consequently, the strength of evidence for recent climate 

warming effects on malaria risk has been questioned and much debated (Reiter et al. 2004; 

Tanser et al. 2003). 

Many vector-borne diseases of public health significance (e.g. Lyme disease, West Nile virus) 

are, however, maintained in transmission cycles involving wild animal hosts. These cycles are 

independent of human cases, and the spatio-temporal risk of human disease is less dependent on 

direct effects of human activities than is the risk from malaria and dengue. Nevertheless, despite 

some assessments (Gubler et al. 2001), effects of climate change on vector-borne zoonoses have 
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also been down-played mostly on the basis of limited evidence for recent effects of climate 

change (Kilpatrick and Randolph 2012). Lyme disease emerged (or likely re-emerged) in 

northeastern USA in the late 1970s due to expansion of tick populations generally thought to 

have been associated with changes in land use over some decades that resulted in re-forestation 

and expansion of population of the deer that are key hosts for the ticks (Wood and Lafferty 

2013). Lyme disease is now emerging in Canada and some northern US States due to northwards 

expansion of the geographic range of the tick vector I. scapularis (Hamer et al. 2010; Ogden et 

al. 2009), which is dispersed from source populations by migratory birds and terrestrial hosts 

(Leighton et al. 2012). 

A mechanistic simulation model of the I. scapularis life-cycle has identified temperature effects 

on I. scapularis population survival to assist assessment of current and future on-the-ground 

Lyme disease risk in Canada (Ogden et al. 2005; 2006b). Prospective field studies and 

retrospective analyses of surveillance data on tick and pathogen emergence in southeastern 

Canada validated the model findings, and identified temperature as a statistically significant 

determinant and possible driver of emergence of the tick in Canada (Bouchard et al. 2013ab; 

Leighton et al. 2012; Ogden et al. 2008; 2010). The I. scapularis model was modified to permit 

direct calculation of R0 for I. scapularis via the next generation operator approach (Wu et al. 

2013) which, given the universal use of R0 and its estimation for a wide range of parasites and 

pathogens under many different conditions, allowed comparison of R0 variations in this study 

with observed variations for other parasites and pathogens. 

In this study we have estimated projected effects of climate change on R0 of an arthropod vector 

using a model that has been extensively ground-truthed, and assessed the ecological and 
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epidemiological significance of the projected changes in R0 by comparing them with ranges of R0 

values observed for other parasites and pathogens. 

Methods  

We estimated R0 under current and future projected climate at 30 sites in Canada that formed two 

roughly south-north transects in Ontario and Quebec, two Canadian provinces where I. 

scapularis ticks are becoming established. These transects aimed to capture climate variability 

that exists in the region. For simplicity in data presentation, the sites were grouped into clusters 

(Southern Ontario, Huron, Upper Southern Ontario, South-Western Quebec and the Boreal 

region; Supplemental Material, Table S1, Figure S1) according to geographic proximity and 

similarity in temperature conditions (see Supplemental Material, “Variation in temperature and 

R0 amongst sites”; Figures S2-S4), and mean values for clusters are presented. We also estimated 

R0 for two sites in the USA where Lyme disease is endemic in the northeast and upper Midwest, 

respectively, Old Lyme (Connecticut) where the human Lyme disease cases were first 

recognised (Wood and Lafferty 2013), and Fort McCoy (Wisconsin) (Anderson et al. 1987). 

Modelling R0  

The I. scapularis model is a deterministic model consisting of 12 ordinary differential equations 

as described in Wu et al. (2013), based on the mechanistic simulation model described in Ogden 

et al. (2005). This model captures effects of temperature on host seeking activity and rates of 

development from one life stage to the next (effects common to, but variable amongst, all 

arthropod vectors) parameterized from field and laboratory studies on I. scapularis. Mortality 

rates of non-feeding I. scapularis in Canada and northeastern USA are similar in summer and 

winter, presumably due to insulating effects of the litter layer in woodland habitats (Brunner et 

al. 2012; Lindsay et al. 1995). Our analyses operate on the hypothesis that effects of ambient 

6 



 
 

       

              

        

         

       

            

           

     

         

      

         

       

        

             

      

       

        

       

         

        

            

            

       

      

temperature on I. scapularis population survival are indirect via effects on temperature-

dependent rates of development of ticks from one life stage to the next. The lower the 

temperature, the longer is the tick lifecycle and, due to constant daily per capita mortality, the 

fewer larval ticks survive to become mated adult female ticks. At a threshold temperature, 

mortality outstrips reproduction and the tick populations die out (or fail to become established), 

i.e. at this temperature threshold R0 falls below unity (Ogden et al. 2005). At the latitudes under 

study here, effects of climate change on I. scapularis are expected to be the effect of climate 

warming on shortening the lifecycle, resulting in increasing R0 (Ogden et al. 2006b). Quadratic 

effects of temperature on arthropod vector life history traits are common (Mordecai et al. 2013) 

and quadratic effects of temperature on tick activity are included in the model. High 

temperatures may impact tick survival causing northward contraction of the southern range of I. 

scapularis resulting in a northward shift, rather than overall expansion, of the geographic range 

of climatic suitability for I. scapularis (Brownstein et al. 2005). Here we confine our study to 

Canada and the main regions of Lyme disease risk in the US north of 40°N (Diuk-Wasser et al. 

2012). Impacts of rainfall on off-host tick survival and on host-seeking activity are considered 

accounted for in the model in assuming i) tick populations only become established in woodlands 

where the microclimate is suitable for tick survival, and ii) most temperate woodlands types 

occur where rainfall is sufficient for I. scapularis survival, which is supported by studies in 

Canada (Lindsay et al. 1995). Future projections for increased precipitation across much of 

Canada with climate warming are already being seen (Environment Canada 2013), so rainfall 

changes are not expected to limit northward I. scapularis spread. For the purposes of the present 

study, the simulation model of Ogden et al. (2005) was modified to be able to calculate R0 by the 

next generation operator as described in Wu et al. (2013). Apart from temperature values used to 

calculate tick development and host finding rates, values for host numbers (20 deer and 200 
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rodents) and all other parameter values were those used as starting values in (Wu et al. 2013). R0 

was estimated using mean monthly temperature data for each year and location as described in 

the following sections. Variations in host abundance affect the final size of the tick population, 

but not the temperature threshold (Ogden et al. 2005). The temperature threshold would be 

affected by variations in mortality rates of ticks in the environment, and slight variations in this 

have been observed in the field (Ogden et al. 2006a). For sensitivity analysis of R0 to variations 

in model parameter values see Supplemental Material “Model sensitivity analysis”, Table S2, 

Figures S5 and S6. 

Modelling R0  under current climate  

For observed temperatures, we used Australian National University Splines (ANUSPLIN: 

Hutchinson et al. 2009) of 10 km gridded daily time series data, which are obtained by thin-plate 

smoothing spline interpolation of daily climate station observations, while accounting for 

latitude, longitude and elevation. ANUSPLIN data cover 40 years (1971 to 2010) that encompass 

the period of Lyme disease emergence in North America, have coverage across northern North 

America and account for missing data by temporal and spatial interpolation. Mean daily near 

surface temperature was assigned to the 32 study sites, which are weather stations occurring over 

a wide range of orographic and forest ecosystems of Ontario and Quebec, or interpolations of 

ANUSPLIN data for locations in the USA. Monthly mean near surface air temperatures were 

used to parameterize the I. scapularis population model for estimating annual values of R0 for 

each site, for each year, from 1971 to 2010 (see Supplemental Material, “Variation in 

temperature and R0 amongst sites”). Values for annual cumulative degree days above 0°C (DD > 

0°C), contemporaneous for each estimated R0 value, were also computed as the accumulation of 

daily temperature above 0°C for each year for each site. The tick model calculates R0 for each 
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year using temperature data for that year, but in reality R0 will depend on the temperature 

conditions over the 2-3 year lifecycle of the tick. Therefore we used the moving average of R0 

over three years (that year, the previous year, and the subsequent year) to describe R0 for each 

year for each site, so for each site we obtained a time series for R0 and DD > 0°C of 38 years 

(1972-2009) and DD > 0°C for 40 years (1971-2010). 

Modelling R0  using projected climate data  

An ensemble of modelled temperature data available from three Regional Climate Model (RCM) 

and two Global Climate Model (GCM) runs were used to estimate future changes in R0 (see 

Supplemental Material, “Validation of climate model output”, Table S3). Time series of daily 

temperature for the 30 Canadian sites were extracted from each model. Simulated temperature at 

a given site was defined as the mean of the closest grid values to that site which increases 

confidence in the physical representativeness (Gachon and Dibike 2007). 

Bias-corrected output from the fourth version Canadian RCM CRCM4.2.3 (Laprise et al. 1997; 

Music et al. 2007) was chosen to provide temperature data for the I. scapularis model because it 

relatively accurately and conservatively hindcasted observed ANUSPLIN data in comparison 

with other climate models, and provided projected temperature at a local scale. For full details 

justifying the climate model selection see Supplemental Materials, “Validation of climate model 

output”, Figures S7 and S8. Like other RCMs, CRCM4.2.3 dynamically downscales output from 

a coarser resolution GCM and produces data at a horizontal resolution of approximately 50 km. 

CRCM4.2.3 is driven by initial and boundary conditions of the GCM CGCM3.1 T47 (McFarlane 

et al. 2005; Scinocca et al. 2008). Hindcasting up to 2000 used green-house gas emissions for 

CGCM3.1 T47 as in the CMIP 20th century experiment (Meehl et al. 2000). For future 

projections starting in 2001, the A2 scenario (mid-high Green-House-Gas emission scenario) of 
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the IPCC Special Report on Emission Scenarios (Nakicenovic and Swart 2000) was chosen 

because of the availability of regional climate model output using this scenario and because 

current actual trajectory of emissions corresponds best to this emissions scenario. 

Mapping R0  under current and future climate  

Thirty year mean values of R0 for I. scapularis were mapped using observed and projected 

values. Maps of DD > 0°C for North America north of the 40°N and east of the Rocky 

Mountains were generated using observed data for 1971 to 2000, and using DD > 0°C projected 

by bias-corrected CRCM4.2.3 output for the period 2001 to 2070. R0 was then computed for each 

year from the gridded DD > 0°C data using the formula R0 = 1.072 e-6 DD > 0°C2 – 4.658 e-3 DD 

> 0°C + 5.556 (the threshold for R0 > 1 was DD > 0°C > 2859.6°C) obtained using observed 

temperature data as described in Supplemental Material, “Mapping R0”, Figure S9. The mean 30-

year values for R0 were then mapped for the periods 1971 to 2000, 2011 to 2040 and 2041 to 

2070 (Figure 2). Regions west of the Rocky Mountains were masked because it was assumed 

that I. scapularis will not cross the Rocky Mountains, west of which Lyme disease risk will 

continue to depend on transmission of B. burgdorferi by the tick I. pacificus (Ogden et al. 2009). 

Literature search on  R0  ranges for parasite and pathogen systems  

There are to our knowledge, no equivalent estimates of how environmental changes may affect 

R0 of vectors. However, to better comprehend the ecological or epidemiological importance of 

projected changes of R0 of I. scapularis, we performed a literature review to obtain published 

estimates of how R0 for parasites and pathogens varies due to changes in factors already 

recognised as having ecological or epidemiological importance. These include variations in 

geographic location, host density, strain or genotype, disease control effort and variations 

amongst different epidemics. Articles were searched in the National Centre for Biotechnology 
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Information PubMed search site (http://www.ncbi.nlm.nih.gov/pubmed/) using search terms i) 

“basic reproduction number” without specifying pathogens or parasites, and then ii) “basic 

reproductive number” repeated with one of the following terms: tick, mosquito, chagas, malaria, 

dengue, nematode, “seasonal influenza”, “pandemic influenza”, pH1N1, “avian influenza”, 

measles, HIV, and fluke. Abstracts were reviewed and relevant articles were reviewed in full. 

Relevant articles were those in which R0 for parasites and pathogens was calculated to explicitly 

estimate its value under field, rather than theoretical conditions. This meant articles that 

employed simulation models using field data, fitting of epidemiological data (e.g. age-

seroprevalence or age-infection prevalence), or other methods such as estimates from 

phylogenetic analysis. We did not review and use R0 ranges obtained in model-based sensitivity 

analyses, variations in R0 associated with seasonal variations in mosquito abundance in one 

location (which may vary from zero to very high values), estimates where control methods 

effectively eradicated disease resulting in almost infinite values for changes in R0, and model-

predicted variations across whole potential geographic ranges which range from theoretical high 

to zero values (e.g. Estrada-Peña et al, 2013). We also did not use some very high modelled 

ranges of R0 for malaria (e.g. 1 – 11,000 (Smith et al. 2007) when modelling of empirical age-

infection prevalence data produced strongly contrasting single digit estimates of R0 (Hagmann et 

al. 2003; Hay et al. 2005). This literature search aimed to provide an illustration of how 

important projected changes in R0 of I. scapularis could be, compared to R0 of other parasites 

and pathogens, but it was not aimed to be an exhaustive cataloguing of all literature in this field, 

and it was recognised that R0 estimates are not precise and vary according to the estimation 

method used (Heffernan et al. 2005; Li et al. 2011). 
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Results  

Using observed (ANUSPLIN) temperature data, R0 for I. scapularis in the late 1970s when Lyme 

disease emerged in the northeastern USA (Wood and Lafferty 2013), was estimated at 

approximately 3 and 1.9 in Old Lyme and Fort McCoy respectively, at between 2 and 3 in 

Southern Ontario, approximately 1.5 in Huron and South-Western Quebec, but mostly below 1 in 

Upper Southern Ontario and the Boreal region (Figure 1). In Old Lyme R0 increased to almost 

linearly to approximately 3.5 by 1999 during the first period of expansion of I. scapularis in 

northeastern US. In Fort McCoy, R0 increased slightly but this increase was small compared to 

interannual variations. In Southern Ontario R0 increased to 4 by the early 2000s during which 

time I. scapularis populations emerged at a number of locations in this region (Point Pelee 

National Park, Turkey Point, Rondeau Provincial Park: Figure 1 panel 1). In Huron and South-

Western Quebec R0 increased from 1.5 to 2.5 by the early 2000s, and subsequent to this (mostly 

from 2000 onwards) I. scapularis populations began to emerge in South-Western Quebec (Figure 

1 panel 4). In Upper Southern Ontario R0 increased to > 1 in the late 1990s but in the Boreal 

region R0 remained below unity for the whole 1971-2010 period (Figure 1). 

R0 values for I. scapularis obtained in model simulations using projected climate data were 

similar for an ensemble of climate models, and bias-corrected output from the regional climate 

model CRCM4.2.3 was used as a representative of the ensemble because of its spatial resolution 

and predictive accuracy. R0 for I. scapularis in Canada was projected to increase 1.5 to 2.3 times 

from the period 1971-2000 to 2001-2050, and 2.2 to 4.6 times from the period 1971-2000 to 

2051-2069 depending on location (Figure 1, Table 1), and in the US, R0 was predicted to 

approximately double to 7.1 and 5.2 in Old Lyme (Figure 1) and Fort McCoy, respectively by 

2051-2069 (Table 1). Increases in R0 to values > 1 predicted in regions where R0 was below 1 
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during the period 1970-2000 would be expected to facilitate range expansion of I. scapularis 

northward and possibly westward (Figure 2). 

The projected increases in R0 are equivalent, for the most part, to ranges of values of R0 

estimated for other globally important parasites and pathogens associated with variations in 

major determinants of their ecology and epidemiology such as geographic location, pathogen 

genotype, different epidemics, reservoir host or vector density, and control efforts (Table 1). 

Discussion  

These findings suggest that increasing temperatures in northern North America that support an 

R0 for I. scapularis of > 1.5 have been coincident with, or in advance of, but not subsequent to 

expanding numbers of locations where I. scapularis populations have become established. In 

Canada, where we have tracked I. scapularis spread, temperature has remained a statistically 

significant determinant of I. scapularis occurrence in field studies and analyses of surveillance 

data that accounted for alternative environmental determinants (e.g. host abundance, altitude, 

rainfall, habitat types, tick immigration rates) (Bouchard et al. 2013ab; Leighton et al. 2012; 

Ogden et al. 2008; 2010), These observations supported a key role for temperature in I. 

scapularis populations becoming established at the northern edge of the tick’s range. Also, I. 

scapularis population expansion in Canada is occurring despite an overall deforestation (Natural 

Resources Canada 2013) rather than the reforestation thought to have driven the initial re-

emergence of Lyme disease in the USA (Barbour and Fish 1993). Forest fragmentation may 

enhance Lyme disease risk for a variety of reasons, however I. scapularis are invading Canada 

where forest fragmentation occurred over timescales long pre-dating current I. scapularis 

invasion (Elliot 1998). Together, these findings suggest that even if recent warming in the region 

(5-10% increases in DD > 0°C, Figure 1) was not associated with global warming, a future 
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warming climate will increase R0 of I. scapularis in northern North America. Increases in R0 may 

drive increased Lyme disease risk where it is already endemic (within limits determined by 

density-dependent regulation of the tick), and range expansion into more northern regions where 

it is currently absent. Furthermore, they support the hypothesis that climate warming in 

northeastern North America may have co-driven the emergence of Lyme disease risk, alongside 

other hypothesised factors such as reforestation and burgeoning deer populations (Wood and 

Lafferty 2013), by facilitating I. scapularis spread from refuges. Expansion of I. scapularis in the 

northern US has then provided the source of ticks to fuel northward expansion into Canada. 

The immediate importance of future increased R0 of I. scapularis in the northeast and upper 

Midwest of North America is that i) regions currently climatically unsuitable become suitable for 

I. scapularis establishment (i.e. R0 changes from < 1 to >1: Figure 2), ii) in regions currently 

suitable for I. scapularis (where R0 > 1), tick invasion speed will accelerate as the likelihood of 

stochastic tick population fade out reduces (May et al. 2001), and tick-borne pathogen invasion 

speed increases due to increasing tick abundance (Ogden et al. 2007), and iii) risk from I. 

scapularis-transmitted pathogens may increase where the tick and pathogen are already 

established due to increased tick abundance up to a point at which this is limited by density-

dependent regulation (Ogden et al. 2007). To date I. scapularis invasion in northern USA and 

Canada has been followed by invasion of the agent of Lyme disease, Borrelia burgdorferi sensu 

stricto (Hamer et al. 2010; Ogden et al. 2013), hence we assume northward I. scapularis range 

expansion is synonymous with expansion in Lyme disease risk. 

The magnitude of projected increases in R0 of I. scapularis in our study is of importance for the 

ecology and epidemiology of vector-borne diseases in general. This was illustrated by the R0 

ranges estimated for other globally important parasites and pathogens associated with variations 
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in known key determinants of their ecology and epidemiology (Table 1). These ranges were of a 

similar magnitude to projected increases in R0 of I. scapularis with climate change. Tick species 

are likely to respond to the central tendency of increasing temperatures due to i) the long periods 

of inter-stadial development that take place in the surface layers of the soil where fluctuating air 

temperature are buffered, ii) latency in responses of development rates to temperature changes 

minimising effects of very short-term temperature fluctuations (Ogden et al. 2004), iii) their 

ability to return to soil-level refugia during extremes of heat, cold, drought or rainfall while host 

seeking, iv) their associations with woodland habitats within which a microclimate is buffered 

from extremes of temperature occurring in treeless areas (Lindsay et al. 1999a; Morecroft et al. 

1998), and v) ticks have no non-parasitic immature feeding stages whose survival is susceptible 

to short-term changes in weather, as do dipteran vectors such as mosquitoes. Therefore the 

increases in R0 projected here represent a possible magnitude of increase in mean R0 values 

arthropod vectors may experience with climate change. Around this mean, dipteran population 

R0 may fluctuate seasonally and annually over a much wider range due to rapid effects of rainfall 

and temperature on reproduction and mortality rates. Abundance and geographic distributions of 

many mosquito-borne diseases are currently driven primarily by control activities that 

superimpose on any climate effects. Large increases in vector R0 may, however, render current 

vector and vector-borne disease control methods ineffective as vector multiplication outstrips 

control efforts (Massad, 2008; Reithinger et al. 2003; Smith et al. 2007). 

R0 increases with climate change may be limited in some circumstances. Host population 

densities and habitat do not seem to be currently limiting on I. scapularis range expansion, but 

they may be in the future. Mosquitoes and other dipteran vectors can be dispersed by wind 

(Service 1997) but ticks need hosts for their dispersal to effect range expansion. I. scapularis are 
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dispersed over long distances by migratory birds, but ticks that are not carried by migratory 

animals would be expected to have less capacity to invade climatically suitable environments. 

Ticks of public health importance such as I. ricinus and I. scapularis are mostly host and 

woodland habitat generalists, which facilitates range changes, while the more highly specialised 

the niche of a species, the less likely it will be to be dispersed and/or capable of becoming 

established in new locations (Morin and Chuine 2006). 

Conclusions  

We estimated the degree to which projected climate change may impact the ecology of arthropod 

vectors and, by inference, vector-borne diseases. The emergence of Lyme disease in North 

America may itself have been partly driven by recent climate change. Confidence in our 

projections is increased by observed changes in temperature and estimated R0 for the vector that 

are associated with actual emergence of the vector and the vector-borne diseases it transmits. Our 

findings suggest that effort should be re-focussed on assessing the health risks due to vector-

borne disease, particularly vector-borne zoonoses, associated with our changing climate. 
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Table 1. R0 values quantified for infectious diseases, vectors (arthropod) and vector borne diseases. 

Pathogen or parasite R0 range estimate Factors associated with 
variation 

Sources 

Directly transmitted 
infectious diseases 
Cholera in Zimbabwe 1 to 2.72 (x2.7) Environment, socio-

economic conditions, and 
cultural practices 

Mukandavire et al. 2011 

1918-19 A/H1N1 Pandemic flu 1.5 to 7.5 (x5) Human population 
density 

Chowell et al 2007; 
Massad et al. 2007; Mills 
et al. 2004; Vynnycky et 
al. 2007 

1957–58 A/H2N2 Pandemic flu 1.4 - 1.7 Country Longini et al. 2004; 
Nishiura 2010b 

2009 A/H1N1 1.3 to 1.7 (x1.4) Country, community, 
human population density 

Fraser et al. 2009; 
Pourbohloul et al. 2009; 
Tuite et al. 2010; White et 
al. 2009; Yang et al. 2009 

Low pathogenic influenza A 
viruses in turkey flocks 

0.6 to 5.5 (x9.2) Virus strain and farm Comin A et al. 2011 

H5N1 influenza A in poultry 1 to 3 (x3) Different global 
epidemics 

Zhang et al. 2012 

H7N7 influenza A in poultry 1.2 to 6.5 (x5.4) With and without control Stegeman et al. 2004 
Seasonal influenza 1.6 to 3 (x1.9) Locations, years and viral 

strains 
Gran et al. 2010; Truscott 
et al. 2012 

HIV 1.1 to 3.7 (x3.4) Country and sub-
epidemic 

Nishiura 2010a; Stadler et 
al. 2012; Xiao et al. 2013 

SARS 1.2 to 8 (x6.7) Modelling methods and 
human population 
demography 

Bauch et al. 2005 

Measles 1.2 to 9.5 (x7.9) Vaccination, different 
schools 

Mossong and Muller 
2000; Plans Rubio 2012 

Polio 2 to 14 (x7) Levels of hygiene Fine and Carneiro 1999 
Canine rabies 1.05 to 2.44 (x2.3) Location across the world Fitzpatrick et al, 2012; 

Kitala et al. 2002 
African Swine Fever 2 to 3 (between farms: 

x1.5), and 8 to 11 
(within-farms: x1.4) 

Location in Russian 
federation 

Gulenkin et al. 2011 

Foot & Mouth disease in cattle 1.6 to 4.5 (x2.8) With and without control Ferguson et al. 2001 
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Pathogen or parasite R0 range estimate Factors associated with 
variation 

Sources 

Arthropod Vectors: 
Ixodes scapularis in Canada 

Boreal region 1971-2000 versus 
2001-2050 

0.3 to 0.7 (x2.3) Climate change This study 

Boreal region 1971-2000 versus 
2051-2069 

0.3 to 1.4 (x4.6) Climate change This study 

Huron region 1971-2000 versus 
2001-2050 

1.8 to 3.0 (x1.6) Climate change This study 

Huron 1971-2000 versus 
2051-2069 

1.8 to 5.3 (x2.9) Climate change This study 

S Ontario 1971-2000 versus 
2001-2050 

3.0 to 4.5 (x1.5) Climate change This study 

S Ontario 1971-2000 versus 
2051-2069 

3.0 to 6.7 (x2.2) Climate change This study 

Upper S Ontario region 
1971-2000 versus 2001-2050 

0.9 to 1.7 (x1.9) Climate change This study 

Upper S Ontario 1971-2000 
versus 2051-2069 

0.9 to 3.3 (x3.6) Climate change This study 

SW Quebec region 1971-2000 
versus 2001-2050 

1.7 to 2.8 (x1.6) Climate change This study 

SW Quebec 1971-2000 versus 
2051-2069 

1.7 to 4.3 (x2.5) Climate change This study 

Old Lyme CT 1971-2000 
versus 2001-2050 

3.1 to 4.8 (x1.5) Climate change This study 

Old Lyme CT 1971-2000 
versus 2051-2069 

3.1 to 7.1 (x2.3) Climate change This study 

Fort McCoy WI 1971-2000 
versus 2001-2050 

2.3 to 3.4 (x1.4) Climate change This study 

Fort McCoy WI 1971-2000 
versus 2051-2069 

2.1 to 5.2 (x2.2) Climate change This study 

Vector borne diseases 
Dengue in Columbia 0.88 to 3.87 (x4.4) Human and mosquito 

density 
Padmanabha H et al. 2012 

Dengue in Brazil 1.5 to 2.75 (x1.8) With and without adult 
mosquito control 

Pinho et al. 2010 

Dengue in Brazil 1.6 to 22.9 (x14.3) City and year Degallier et al. 2009 
Chikungunya in Italy 1.8 to 6.0 (x3.3) Local variations in 

mosquito abundance 
Poletti et al. 2011 
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Pathogen or parasite R0 range estimate Factors associated with 
variation 

Sources 

Leishmaniasis (L. infantum) in 
dogs 

5.9 to 11 (x1.9) Countries Dye et al. 1992; Quinnell 
et al. 1997 

Blue Tongue Virus 1.8 to 11 (x6.1) Geographic regions of 
the Netherlands 

Santman-Berends et al. 
2013 

African horse sickness in zebra 10 to 23 (x2.3) Virus strain Lord et al. 1997 
Endoparasites 
Nematodes of sheep 6 to 16 (x2.7) Nematode species Kao et al. 2000 
Oncherciasis 5.3 to 7.7 (x1.5) Countries Filipe et al. 2005 
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Figure Legends  

Figure 1. Mean values for R0 of the tick Ixodes scapularis obtained in tick model simulations using 

observed temperature data (ANUSPLIN: 1971-2010), and projected temperature data obtained from 

the RCM CRCM4.2.3 (according to SRES A2 emissions scenario) for: 1. Southern Ontario; 2. 

Huron Ontario; 3 Upper Southern Ontario; 4. South-Western Quebec; 5. the Boreal region of 

central Ontario and Quebec; 6. Old Lyme Connecticut and 7. Fort McCoy, Wisconsin. The black 

arrows in each panel reference the first identification of Lyme disease in the US (Wood and 

Lafferty 2012). The green arrows indicate the year of first field detection of I. scapularis 

populations within the Canadian clusters. In panel 1 (Southern Ontario) these dates are 1976 for 

Long Point (Watson and Anderson 1976), 1996 for Point Pelee (Lindsay et al. 1999b), 1999 for 

Rondeau Park (Morshed et al. 2003) and 2001 for Turkey Point (Scott et al. 2004) in panel 4, 2007 

a number of sites in South-Western Quebec (Ogden et al. 2008). The estimated numbers of Census 

Subdivisions (CSDs) with established I. scapularis populations in South Western Quebec, based on 

passive surveillance data (Leighton et al. 2012), is also shown as the green dashed line in panel 4. 

The range of R0 values produced in simulations for 2020-2069 of CRCM4.2.3 and five other GCMs 

and RCMs is indicated by the error bar to the right of each panel except for US sites for which only 

output from CRCM4.2.3 was available. Full details of all simulations are presented in Figure S6. 

Figure 2. Maps of values of R0 estimated from ANUSPLIN observations (1971-2000: upper panel), 

and projected climate obtained from the CRCM4.2.3 driven by CGCM3.1 T47 and following the 

SRES A2 GHG emission scenario for 2011 to 2040 (middle panel) and 2041 to 2070 (bottom 

panel). The colour scale indicates R0 values. Note that within the zones where R0 of I. scapularis is 

> 1, geographic occurrence of Lyme disease risk is also limited by other environmental variables 

(Diuk-Wasser et al. 2012). 
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