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Abstract 

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for 

highlighting the areas in a city where people are at the greatest risk of harm from heat, but the 

manner in which vulnerability is conceptualized influences the results.  

Objectives: We tested a generic national heat-vulnerability index, based on a 10-variable 

indicator framework, using data on heat-related hospitalizations in Phoenix. We also identified 

potential local risk factors not included in the generic indicators.   

Methods: To evaluate the accuracy of the generic index in a city-specific context, we used factor 

scores, derived from a factor analysis using census tract-level characteristics, as independent 

variables and heat hospitalizations (with census tracts categorized as zero-, moderate-, or high-

incidence) as dependent variables in a multinomial logistic regression model. We also compared 

the geographical differences between a vulnerability map derived from the generic index and one 

derived from actual heat-related hospitalizations at the census-tract scale.  

Results: We found that the national-indicator framework correctly classified just over half (54%) 

of census tracts in Phoenix. Compared with all census tracts, high-vulnerability tracts that were 

misclassified by the index as zero-vulnerability tracts had higher average income and higher 

proportions of residents with a duration of residency < 5 years. 

Conclusion: The generic indicators of vulnerability are useful, but they are sensitive to scale, 

measurement, and context. Decision makers need to consider the characteristics of their cities to 

determine how closely vulnerability maps based on generic indicators reflect actual risk of harm.  
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Introduction 

Extreme hot weather events have become life-threatening phenomena in cities around the world 

(Anderson and Bell 2011; Baccini et al. 2011; Harlan et al. 2013; Loughnan et al. 2013; Sheridan 

et al. 2012). To estimate the risk of heat-related health consequences and propose adaptation 

strategies, researchers have developed heat vulnerability indices (HVIs) using composites of 

health, social, and environmental factors relevant to heat stress (Chow et al. 2012; Johnson et al. 

2012; Loughnan et al. 2013; Reid et al. 2012; Reid et al. 2009). Application of HVIs at the 

neighborhood level allows public-health practitioners and emergency responders to identify and 

locate populations at high risk of heat stress (Reid et al. 2009). The ability to visualize the spatial 

variation of heat vulnerability (i.e., on a map) helps local governments allocate resources and 

assist people in the areas of greatest need. However, human vulnerability to heat is a complex 

and dynamic issue, and the usefulness of a vulnerability index can be sensitive to scale, 

measurement, and context. We investigated how generic indicators of heat risk, taken from a 

national study (Reid et al. 2009) are interrelated in Phoenix, Arizona, and we analyzed the 

relative importance of different components of Reid et al.’s national heat-vulnerability index in 

predicting hospital admissions. Study results may help Phoenix focus its emergency services and 

climate-adaptation planning on neighborhoods at high risk of heat-related illness and mortality.  

Background 

Vulnerability to natural hazards is a function of physical exposure, sensitivity, and adaptive 

capacity (Chow et al. 2012; Polsky et al. 2007; Turner II et al. 2003; Wisner 2004). Physical 

exposure is proximity to environmental hazards, such as heat waves or natural disasters. 

Sensitivity is a characteristic of a population that influences its degree of susceptibility to the 

hazard, while adaptive capacity is the ability to cope with the impacts and aftermath of a 
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hazardous event. Making the concept of vulnerability “operational” has been a challenge because 

current theoretical concepts and frameworks are abstract and lack guidelines to measure or 

quantify them (Hinkel 2011). This challenge has stimulated studies to develop measures of 

vulnerability at various scales (Chow et al. 2012; Harlan et al. 2013; Johnson et al. 2012; Reid et 

al. 2012; Reid et al. 2009). Research teams with different paradigms have focused on different 

subsets of vulnerability components (Romero-Lankao et al. 2012), which, in turn, influenced the 

selection of variables used to evaluate degrees of vulnerability (Tate 2013). Cutter et al. (2003) 

were perhaps the first to develop a social vulnerability index (SoVI); they used data from the 

1990 U.S. Census to examine vulnerability to environmental hazards in 3,141 U.S. counties. This 

approach to vulnerability indicators (Cutter and Finch 2008) continues to provide the foundation 

for those seeking indicators of heat risk. 

HVI conceptualization and measurement differ from one study to another. In the past decade, at 

least 13 (see Supplemental Material, Table S1) studies produced different HVIs that revealed the 

spatial distribution of heat vulnerability for many locations. Most of these studies follow an 

inductive methodology, which builds statistical models to explain observed harm through some 

indicating variables (Hinkel 2011; Tate 2013). Researchers select their indicating variables 

according to empirical analysis (e.g., ethnic minorities are usually more vulnerable than non-

Hispanic whites) or social theories (e.g., low social cohesion may negatively impact health) to 

evaluate an area’s relative risk of heat-related effects. Most studies include as risk factors the key 

aspects of temperature and vegetation cover (exposure components); age and ethnicity 

(sensitivity components); and income (adaptive capacity). The concerns of individual disciplines 

produce different conceptualizations of heat vulnerability indices. For example, environmental 

modelers (Uejio et al. 2011) have used indicators of the built environment and neighborhood 
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stability to examine heat mortality and heat-related emergency services. They found that 

neighborhoods with a high proportion of ethnic minorities, social isolation, and vacant housing 

units had the highest heat-stress incidence. Epidemiologists emphasize health conditions as risk 

factors, for example, diabetes, which increases susceptibility to heat (Reid et al. 2012; Reid et al. 

2009; Rinner 2009). In addition, other variables such as air conditioning (AC) prevalence and 

social infrastructure (i.e., access to health care facilities) are used as indicators adaptive capacity 

in studies of public health, sociology, and epidemiology (Harlan et al. 2013; Loughnan et al. 

2013; Reid et al. 2012; Reid et al. 2009). Data from simulation models provide variables to 

assess future risks to heat. Vescovi et al. (2005) explored the spatial distribution of heat 

vulnerability in southern Quebec under several future climate-change scenarios, using the 

prediction from Canadian Regional Climate Model and social-economic variables. Each 

disciplinary perspective captures distinct elements of exposure, sensitivity, and adaptive capacity, 

and therefore produces varying findings about what determines heat vulnerability. 

English et al. (2009) reviewed studies that identified outcomes of climate change and developed 

indicators for human health vulnerability assessment and found a need to test the usefulness of 

these indicators. There have been only a few attempts to evaluate the performance of heat 

vulnerability indices. Wolf and McGregor (2013) used an inductive approach to generate a HVI 

(and maps) covering 4,765 census units in Greater London, UK. In their subsequent research 

(Wolf et al. 2014), they validated the performance of their HVI using daily mortality and 

ambulance dispatch data from 1990-2004 and 1998-2006 respectively. The census unit that has 

an above-average HVI score and an above-average observed health impact score (measured by 

the amount of mortality/ambulance dispatches), and the census unit that has a below-average 

HVI score and a below-average health impact score are considered as accurate predictions in the 
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work of Wolf et al.(2014). The results showed that the London HVI predicted ambulance calls 

better than it predicted mortality. London HVI correctly predicted the impacts (measured by 

ambulance calls) in 3441 (62.2%) census units during summer days. Wolf et al.’s findings also 

suggested that ambulance calls and mortality had different response patterns to heat, consistent 

with a previous report of contrasting patterns of emergency room admissions and mortality 

during heat waves in London (Kovats et al. 2004).  

In the U.S., Reid and colleagues (2009) developed a national HVI using a statistical approach 

that integrated factors known to be associated with risk of heat stress in the U.S. They selected 

six socio-demographic and economic indicators (poverty, educational level, minority status, 

living alone, elderly, and elderly living alone), two air-conditioning variables, a measure of 

vegetation density, and diabetes prevalence to create an HVI for metropolitan statistical areas 

encompassing 39,794 U.S. Census tracts. They identified four dimensions of heat vulnerability: 

(1) social and environmental vulnerability—the aggregation of low education level, poverty, 

ethnic-minority status, and lack of green space; (2) social isolation, measured by the proportion 

of people living alone; (3) AC prevalence; and (4) underlying health conditions, represented by 

the proportion of elderly in the population and the prevalence of diabetes. Later, they asked 

whether areas with high HVI scores at the ZIP-code scale had higher rates of mortality and 

morbidity on abnormally hot days (defined by maximum temperature above the 95th percentile 

for the 30-year temperature distribution) (Reid et al. 2012). They evaluated the relationship in 

five states: California, New Mexico, Washington, Oregon, and Massachusetts. In California, 

Washington, and Massachusetts, heat-related illness was more strongly associated with the HVI 

on abnormally hot days than on other days. But in Oregon, the association between the HVI and 

heat-related illness did not differ between abnormally hot days and other days. In New Mexico, a 
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one-unit increase in the HVI was associated with a significant decrease in heat-related 

hospitalization on abnormally hot days. These findings suggest that local characteristics may 

influence the accuracy of HVI measures for predicting the risk of adverse heat-related health 

outcomes in some areas. 

Two HVI studies have been conducted in Arizona, using measures similar to Reid et al.’s (2009; 

2012). Chow et al. (2012) constructed an HVI using seven indicators from the three dimensions 

of heat vulnerability (physical exposure, adaptive capacity, and sensitivity) at the census-tract 

level in metropolitan Phoenix. They used this HVI to investigate geographical change to heat-

stress risk between 1990 and 2000, and estimated changes in heat vulnerability among different 

ethnic populations. They concluded that metropolitan Phoenix had experienced major 

demographic change during those 10 years, and that demographic change alone had altered the 

region’s “heatscape.” Harlan et al. (2013) examined neighborhood vulnerability indicators for 

2,081 census-block groups in Maricopa County, which includes the Phoenix metropolitan area. 

Using 278 heat-death cases as dependent variables, they used binary logistic regression to 

validate a set of HVIs with different combinations of indicators. They concluded that 

socioeconomic vulnerability, being elderly or isolated, and surface temperature were strong 

predictors of death from heat exposure.  

Aim and Scope of This Study 

Measurement, scale, and context all influence the identification of risk factors. Different 

combinations of risk factors can produce different “vulnerability landscapes.” To better 

understand the relationships among risk factors and different scales, we tested Reid et al.’s (2009) 

national indicators in Phoenix, one of the nation’s hottest cities. We applied Reid et al.’s (2009) 

variables at the census-tract scale, but measured a few of them differently. We evaluated how 
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accurately the model reflects actual risk of harm locally. At this fine scale, we expected our 

findings to differ from those of Reid et al. (2009; 2012) and the local research described above 

(Harlan et al. 2013). We asked where, and what kind of, neighborhoods are at risk of heat-related 

illness caused by factors beyond social and economic vulnerability, inadequate green space, 

social isolation, and diabetes. Using a multinomial (polytomous) logistic regression model, with 

hospital admissions for heat stress modeled as a three-category dependent variable (zero-, 

moderate-, or high-incidence census tracts), our study explored several questions: 1) How well 

does a national HVI explain heat-related hospitalizations in the city Phoenix? Analyzing the 

census tracts within the municipal boundary of Phoenix is highly relevant for interventions, 

because it is the scale at which local governments determine resource allocation and enforce 

policies. 2) What is the relative importance of physical exposure, adaptive capacity, and 

sensitivity to hospitalization incidence, given Phoenix’s hot climate and high prevalence of air 

conditioning? 3) In which kinds of neighborhoods is the incidence of heat-related hospitalization 

explained well or poorly by the HVI? 4) Are there neighborhood characteristics that are not 

included in the HVI that predict heat-related hospitalizations in Phoenix? 

Materials and Method  

Our dependent variable (hospital admissions for heat stress) came from the Arizona Department 

of Health Service’s hospital discharge databases for 2004 and 2005. This dataset contains a 

disease code (using the International Classification of Diseases--Ninth Revision--Clinical 

Modification (ICD-9-CM) code) and the census tract number of the patient’s residence. We used 

ArcGIS 10 to calculate the rate of heat-related illness for each census tract and map 460 heat-

related hospitalizations (ICD-9-CM codes 992.0-992.9, effects of heat and light), including heat 

stroke, heat exhaustion, and other less common heat-related outcomes in 362 census tracts. We 
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normalized the heat-related hospitalizations between 2004 and 2005 by census-tract population 

estimates for 2010. Rates of hospitalization varied between 0 and 0.76%; the average was 0.03% 

(see Supplemental Material, Figure S1).  

The variables in Reid et al.’s (2009) study were our independent variables. Poverty, low 

education level, AC prevalence, and social isolation were indicators of adaptive capacity; 

ethnicity, age, and diabetes prevalence were indicators of a population’s sensitivity to heat; and 

green-space density indicated both physical exposure and adaptive capacity. Vegetation density 

has been shown to have negative relationship with neighborhood temperatures (Jenerette et al. 

2007), and it could mitigate the Urban Heat Island effects (Gober 2010; Stone and Norman 2006).  

We used data from the 2010 Census (U.S. Census Bureau 2012) for our socio-economic and 

demographic variables, which included the percentage of population living below the poverty 

line (poverty), over 65 years of age (elderly), ethnicity other than non-Hispanic white (minority), 

having less than a high school diploma (low education), living alone (all ages living alone), and 

living alone and over 65 years old (elderly living alone) at the census-tract level. To determine 

poverty, the Census Bureau uses a set of annual-income thresholds that vary by family size and 

composition. The poverty threshold for a household in Phoenix with two adults is $14,218 (U.S. 

Census Bureau 2013a).  

We measured diabetes rates differently from Reid et al. (2012; 2009). While Reid et al. estimated 

diabetes prevalence based on age, race, and gender of a county’s population and applied the 

diabetes incidence rate of each group, we thought this method might miss small-scale effects of 

diabetes. Thus, we used the diabetes hospitalization rate as an indication of diabetes-related 

morbidity, and we felt it would provide a better measure of health inequality at the neighborhood 
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level. Using the principal diagnosis code (ICD-9-CM codes 250.0-250.9, Diabetes mellitus) and 

the associated census-tract numbers, we mapped 7,727 cases of diabetes. We used census-tract 

population estimates for 2010 as the denominator and hospitalizations for diabetes during 2004 

and 2005 to calculate census-tract-level hospitalization rates for diabetes. The rates varied from 0 

to 5.52%; the average was 0.50%. Fifty-three (14.64%) of the census tracts had no hospital 

admissions for diabetes.  

To determine AC prevalence, we aggregated parcel-level residential AC data from the Maricopa 

County Assessor’s Office to the census-tract level. We obtained vegetation index using a high-

resolution (15 meters/pixel) ASTER image [NASA Land Processes Distributed Active Archive 

Center (LP DAAC) 2012]. We combined three images taken on June 16, 2005 and July 06, 2006 

to represent Phoenix’s summer vegetation. The normalized difference vegetation index (NDVI) 

was calculated using red and near-infrared bands in ERDAS IMAGINE 2011, a remote-sensing 

image-processing software.  

Statistical analysis  

A flow chart that illustrates our research steps can be found in Supplemental Material Figure S2. 

Factor analysis was conducted using IBM SPSS 19. We used factor scores from this analysis as 

independent variables in the multinomial logistic regression (MLR), with health outcomes as 

dependent variables. A valid regression model that uses geographical/spatial data should 

consider the effect of spatial autocorrelation/dependency (Ward and Gleditsch 2008). We used 

Global Moran’s I to test the distribution of our dependent variable and model residuals. The 

spatial pattern of the dependent variable was very close to a random distribution (Moran’s I=0.10, 

p=0.00), and the Moran’s I for residuals was 0.02, p=0.00. We divided 362 census tracts into 

three groups of heat-related health outcomes: zero (146 tracts, 40.33%), moderate (109 tracts, 
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30.11%), and upper 30th percentile (high incidence, 107 tracts, 29.56%). The Deviance and Chi-

square value are both significant, providing evidence of good fit for the model.  

Results 

Correlation matrix 

Spearman’s correlation coefficients show the relationships among each of the 10 census-tract 

level vulnerability indicators (Table 1). Diabetes hospitalization rates were significantly and 

positively correlated with several indicators of socioeconomic disadvantage, including the 

proportions of the population that were race/ethnicity other than non-Hispanic white, below the 

poverty line, and that did not have a high school diploma. Reid et al. (2009) found a weaker 

correlation between diabetes prevalence and these variables (coefficients < 0.3). Use of different 

methods for the measurement of diabetes and the demographic structure of Phoenix may have 

affected our findings.  

Another location-specific condition that did not stand out in Reid et al.’s analyses (2009; 2012) is 

AC prevalence. On the national level, AC variables showed no strong associations (coefficient < 

0.02) with poverty and minority status. However, in Phoenix, AC variables have significant 

positive associations with poverty (coefficient > 0.5) and proportion of minority (coefficient > 

0.42). AC is vital to life and comfort in Phoenix, where temperatures average 41ºC in July 

(Cerveny 1996). Although Phoenix’s AC prevalence is above 90%, including central AC and 

window AC units (U.S. Census Bureau 2013b), the nearly 10% of housing units without AC are 

concentrated in economically disadvantaged neighborhoods in central Phoenix.  

Table 1 also revealed that proportion of elderly was negatively associated with less than high 

school diploma (-0.42), poverty (-0.33), and low vegetation (-0.35) in Phoenix. These 
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relationships were stronger than the data at the national scale (with coefficients between -0.03 

and -0.11). We can therefore interpret that the census tracts in Phoenix with a higher proportion 

of elderly residents were likely to be wealthier, greener, and better educated than what Reid et al. 

(2009) found at the county scale for the nation overall. This difference may be due to the influx 

of wealthy retirees into the Phoenix area, and the related proliferation of retirement communities 

featuring golf courses and outdoor recreational activities (Gober 2006).  

Spatial pattern of heat stress in Phoenix  

The map of heat-related hospitalization (Figure 1A) reveals an uneven rate pattern, with higher 

rates in the urban core. Urban-fringe neighborhoods in the northeast, northwest, and south 

Phoenix had relatively low rates of heat-related hospitalization. Of the three neighborhoods with 

the highest hospitalization rates, one (#3 in Figure 1A), which sits directly west of Sky Harbor 

Airport, is a low-income neighborhood with a median household income of $20,488 and a 

Hispanic population of almost 90%. However, the other two (#1 and #2 in Figure 1A) are 

middle-class (with median household incomes of $40,104 and $37,514) neighborhoods, and 

Hispanic populations of 25.7% and 52.3%, respectively.  

Factor analysis  

Like Reid et al. (2009), we applied a Varimax rotation in the factor analysis to minimize the 

number of original variables that load highly on any one factor and increase the variation among 

factors. We retained three factors (Table 2) with eigenvalues higher than one: 1) poverty, ethnic 

minority, and low education; 2) lack of AC and vegetation; and 3) diabetes and social isolation, 

including elderly living alone. Factor 1 explained the highest amount of variance (44.7%); 

Factors 2 and 3 explained 19.98% and 10.46%, respectively. Together they explained 75.14% of 
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the total variance, similar to Reid at al. (2009) where 75% of total variance was explained by 

four factors. 

Poverty and minority status are important factors in heat vulnerability, locally and nationally, 

and are included in Factor 1 (see Supplemental Material, Figure S3A). Also included is a 

negative relationship with elderly populations: disadvantaged neighborhoods in Phoenix tend to 

have a large number of children and relatively few elderly residents. Factor 2 combines lack of 

air conditioning with lack of vegetation, and can be considered a location factor; it is associated 

with inner-city neighborhoods (see Supplemental Material, Figure S3B). Residents of the inner 

city are at higher risk from heat than residents elsewhere. Factor 3 (see Supplemental Material, 

Figure S3C) combines social isolation (especially of elderly people) with diabetes hospitalization. 

In Phoenix, demographic characteristics make this combination an important factor. The elderly 

population is at high risk for diabetes (Arizona Department of Health Services 2008). In 2010, 

according to the Decennial Census, 121,943 people over 65 years old lived in Phoenix, and about 

27% of them lived alone—a higher proportion than in cities neighboring Phoenix (U.S. Census 

Bureau 2011). The long history of retirement migration to Phoenix may have resulted in a large 

proportion of elderly living alone, and this population is at high risk of diabetes hospitalization.  

Each census tract was assigned a score for each Factor ranging from 0–6, where 0 was assigned 

to tracts with values ≥ 2 SD below the mean for the study area as a whole, and 6 was assigned to 

tracts with values > 2 SD above the mean. The individual factor scores were then summed to 

derive the HVI for each tract, with each factor score given an equal weight (Figure 1B), as in 

other vulnerability studies (Cutter et al. 2003; Harlan et al. 2006; Schmidtlein et al. 2008; Wolf 

and McGregor 2013). Areas with high HVI scores were clustered in the downtown Phoenix 

central business district and along the south side of the industrial corridor.  
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MLR models 

The results of the multinomial logistic regression show that only Factor 1 (poverty and minority 

status) was a statistically significant predictor (p < 0.05) of a moderate-incidence versus zero-

incidence tract (OR = 2.00; 95% CI: 1.50, 2.65 for a 1-unit increase in the Factor 1 score) (Table 

3). Factor 1 was also a significant predictor of a high-incidence versus zero-incidence tract (OR 

2.74; 95% CI: 2.03, 3.69), along with Factor 3 (OR 2.00; 95% CI: 1.44, 2.76). These results 

suggest that census tracts with higher proportions of residents living in poverty and ethnic 

minorities (Factor 1), and tracts with higher rates of hospitalization for diabetes and higher 

proportions of residents >65 years of age living alone (Factor 3) are more vulnerable to heat 

stress than other census tracts. 

We used the factor scores to predict the category (zero, moderate, and high incidence) of heat-

related health outcomes in MLR model. We then compared the predicted and observed values. 

From the classification table (Table 5), we found that the scores of HVI did a better job in 

predicting non-vulnerable areas than vulnerable areas. HVI accurately classified zero-incidence 

census tracts as zero-incidence tracts 79% of the time, but was less accurate for classifying 

moderate tracts as moderate versus zero- or high incidence (27%) or for classifying high-

incidence tracts as high-incidence versus moderate- or zero-incidence (48%). The overall 

accuracy rate in predicting heat-related outcomes was only 54%, suggesting that accounting for 

additional factors beyond those in the standard vulnerability index would improve risk prediction.  

Factor 2, with high loadings on lack of AC, was not a significant predictor of heat hospitalization 

in Phoenix (Table 3). AC has been recommended as a mitigation strategy to reduce heat impacts 

on health, because many studies find that AC prevalence is negatively associated with adverse 

health outcomes, especially on extremely hot days (Keatinge 2003; McGeehin and Mirabelli 
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2001; Semenza et al. 1996; Semenza et al. 1999). However, having an AC unit does not 

automatically mean being able to use it. According to a 2009 survey that interviewed 359 

households in three socially vulnerable neighborhoods in Phoenix, many families cannot afford 

to turn on their AC in the hottest season—33-50% of respondents who have AC indicated that 

they avoid using AC to reduce electricity bills (Hayden et al. 2011).  

Unpredictable neighborhoods 

We looked at the neighborhood characteristics of the 14% of census tracts that were oppositely 

misclassified by the model—35 neighborhoods predicted to be zero-incidence neighborhoods 

that were actually high-incidence neighborhoods (Table 4, Group 1), and 17 neighborhoods 

predicted to be high-incidence areas that were actually zero-incidence areas (Table 4, Group 2). 

Many Group 1 neighborhoods were wealthy neighborhoods on the urban fringe (see 

Supplemental Material, Figure S4). Group 2 tracts were scattered in central and south Phoenix, 

and many of them were low-income, and their proportion of Hispanics and the diabetes rate there 

were higher than the City’s average.  

To better understand risk factors beyond the scope of the national HVI, we looked at variables 

from other heat vulnerability studies which were not included in Reid et al.’s 2009 study. These 

variables included the size of a census tract’s non-citizen population, the proportion of renters, 

residents living in the same residence less than five years, unemployment rate, vacancy rate, and 

nighttime temperature (Chow et al. 2012; Harlan et al. 2013; Klinenberg 2002). The first variable 

is a proxy for newcomers who may have limited access to warnings, medical support, and 

resources that can help them gain relief from heat stress (Chow et al. 2012). Proportions of 

renters and new residents are measures of population mobility. Short-term renters and 

newcomers are likely to lack social support and assistance in their neighborhoods (Chow et al. 
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2012; US EPA 2006). Unemployment and vacancy rates are typically used as proxies for social 

stability of a neighborhood; unemployment rate captures the population’s lack of stable 

economic resources and vacancy rate explains a neighborhood’s prosperity. High unemployment, 

vacancy, and a high crime rate hinder residents from seeking help in their neighborhoods 

(Klinenberg 2002). We were not able to acquire crime-rate data at the census-tract scale for 

Phoenix, but we believe that unemployment and vacancy rates are adequate proxies for social 

stability. The final factor, nighttime temperature, represents the intensity of the urban heat island 

effect. We estimated nighttime surface temperatures using the thermal band of three ASTER 

satellite images [NASA Land Processes Distributed Active Archive Center (LP DAAC) 2012] 

that cover entire Phoenix City. The images were taken in June 2003. 

The above factors varied widely for the two groups of misclassified neighborhoods, so taking the 

averages of these variables for the two groups may not adequately represent the groups’ 

characteristics. We used the city’s average numbers for these variables as thresholds, and 

calculated the percentage of neighborhoods above the city average for each variable. Group 1 

neighborhoods, with much higher observed hospital admissions than the HVI predicted, have 

higher neighborhood mobility (43%) than Group 2 neighborhoods (35% mobility). This finding 

suggests that high neighborhood mobility measured by residency status less than five years may 

be associated with higher risk of heat-related illness. In addition, many of the neighborhoods in 

Group 1 were in low-density areas on the urban fringe. The low-density environment offers a 

different lifestyle than does the urban core, one that may be associated with health outcomes of 

residents. However, more work is required to understand why these tracts differ from the ones 

that were better predicted by HVI. Many neighborhoods in Group 2 were located in the city core, 
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and had higher population densities and a higher proportion of Hispanic residents than 

neighborhoods in Group 1, but experienced no heat-related hospitalization. 

Discussion  

Our findings suggest that low socioeconomic status, and that the proportion of adults >65 living 

alone, percentage of adults living alone, and the rate of hospitalization for diabetes, predict 

vulnerability to heat at the census-tract level. This finding coincides with studies that found a 

strong association between poverty, minority, and adverse health outcomes (Curriero et al. 2002; 

Harlan et al. 2006; Uejio et al. 2011), and studies showing that diabetes was associated with 

higher risk of heat-related illness (Schwartz 2005; Semenza et al. 1999).  

The proportion of dwellings with AC was not a significant predictor of heat-related hospital 

admissions in Phoenix, perhaps because the incidence of AC is so high or because having AC 

does not imply using it. Some heat-related illness occurs in those who work outside or engage in 

outdoor activity. Thus, having an AC at home does not eliminate the risk of heat-related health 

problems. Therefore, reducing the risk of heat-related hospitalizations requires more than 

increasing home AC units. It also requires (1) more effective risk mitigation for people who 

work or recreate outside, (2) identification of socially isolated, diabetic patients, and (3) 

awareness of the concentration of effects in disadvantaged neighborhoods.  

From a political economic perspective, the process of marginalization are fundamental factors 

making some urban residents (i.e. low income) more vulnerable to natural or environmental 

hazards (Browning et al. 2006; Klinenberg 1999). However, there are other social characteristics, 

such as social capital or social networks, not measured by common social vulnerability indicators, 

which could offset the impact of environmental hazards on low-income or minority populations 



19 
 

(Romero-Lankao et al. 2012). Several studies have found that some socioeconomically 

disadvantaged groups and immigrants have strong internal social networks that foster social 

cohesion and fast recovery from disasters (Chamlee-Wright and Storr 2009; Klinenberg 2002; Li 

et al. 2010). Klinenberg (2002) suggested that strong social networks; pedestrian-friendly streets; 

and shops, restaurants, and community organizations are sources of resilience that can save lives 

form heat stress. Living in a neighborhood with a robust social infrastructure that provides an 

environment for mutual assistance could reduce negative health impacts, especially during 

disasters (Sampson 2011).   

High socio-economic status does not necessarily mean low heat vulnerability, and vice versa. 

Our misclassified neighborhoods included wealthy, White-Anglo neighborhoods with higher 

hospital admissions than the HVI would have predicted. Many of these neighborhoods had a 

higher proportion of households that have relocated to the neighborhood in the past five years 

than the city average. Programs that enhance residents’ awareness of heat risks might also reduce 

the incidence of negative health outcomes in transient neighborhoods. 

Our findings provide information that can help the City government plan effective interventions. 

We recommend a two-stage strategy to reduce heat-related hospital admissions in Phoenix. The 

first stage should focus on immediate and short-term heat-mitigation among socioeconomically 

disadvantaged populations, especially in central Phoenix. We suggest that the municipal 

government relocate resources to neighborhoods with high HVI scores in the urban core. 

Interventions might include opening cooling centers during extreme heat events, providing 

information about how to prevent heat-related illness to disadvantaged populations, and 

increasing the efficiency and affordability of residential AC. The second-stage policy should 

focus on long-term planning. Because high social isolation is associate with higher risk of heat-
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related illness, programs to care for people living alone or making warning information 

accessible to those living alone are likely to reduce heat-related hospital admissions.  

Good planning practices that improve health can bring co-benefits to the residents. It has been 

shown that changing urban design to reduce automobile dependency and CO2 emissions (for 

example, creating a comfortable, pedestrian-friendly environment that increases walkability in 

neighborhoods) can also reduce the risks of cardiovascular disease, obesity, and diabetes (Lathey 

et al. 2009), all of which that exacerbate the outcomes of heat stress.  

We acknowledge that this study has several limitations. For the present analysis we used ICD 

code 992 as the only outcome because this category is a straightforward measurement of heat 

impact on human health. However, using only this dataset, we might underestimate heat impacts 

on human health because 1) this dataset only records serious cases that require hospitalization, 

and, 2) there are other human-health problems relevant to excessive heat, such as cardio-vascular 

disease and respiratory diseases (Reid et al. 2012). The second limiting factor is that we assume 

the heat-related illness will have an equal probability of resulting in hospitalization in any census 

tract. However, compared with other residents, low income people without health insurance and 

non US citizens may be less likely to seek medical care, and less likely to be hospitalized if they 

do seek care, even if they have the same severity of heat-related illness. Furthermore, the 

neighborhood mobility indicators (ex. residency for < 5 years) may not necessarily represent the 

actual social conditions, such as lack of social cohesion. Moreover, data used to characterize the 

predictors and the outcomes are defined at the census-tract scale. While group-level associations 

are informative and relevant for planning group-level interventions, associations with group-

level characteristics cannot be assumed to represent associations with the same characteristics 

defined at individual level. Lastly, we used 2010 Census data to define HVI, but health outcomes 
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were from 2004-2005. Although this may not result in substantial bias or misclassification, but 

this remains a potential limitation.  

Conclusions  

Generic indicator systems can predict the risk of heat-related health problems adequately and 

provide a useful picture of the spatial distribution of risk, but they are sensitive to scale, 

measurement, and context. Decision makers need to reflect on the particular characteristics of 

their cities to determine how well the vulnerability maps reflect actual risk of harm. In Phoenix, 

the variables used on a national scale allowed us to accurately classify only about 54% of the 

census tracts based on heat hospitalizations. There is, however, a larger story about heat stress 

that is not captured by the standard vulnerability measures. There is no one-size-fits-all 

vulnerability indicator. Different types of problems and concerns require multiple strategies to 

evaluate the degree of vulnerability. Our study demonstrated that researchers need to take into 

account the wide institutional and social context that determines vulnerability, as expressed by 

the concept of “contextual vulnerability” (Hinkel 2011). In addition, vulnerability studies should 

not be limited to just the identification of vulnerable people and places, but should also include 

the exploration of the sources of resilience in communities. Further research can build upon our 

heat vulnerability map to identify the source of resilience to heat in Phoenix and further 

investigate the factors that put neighborhoods at risk of heat-related illness. 
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Table 1. Spearman’s correlation for vulnerability variables. 

  Diabetes 
Race/ethnicity 
other than non-
Hispanic white 

Age 
above 

65 
Live 

alone 
Elderly 
living 
alone 

Below 
poverty 

line 

Less than 
high 

school 
diploma 

Low 
vegetation 

No 
central 

AC 

No AC 
of any 
kind 

Diabetes 1.00          Race/ethnicity other 
than non-Hispanic 
white 

.63** 1.00         

Age above 65 -.13* -.54** 1.00        Living alone .34** .06 .15** 1.00       Elderly living alone .27** -.07 .52** .57** 1.00      Below poverty line .73** .79** -.33** .31** .16** 1.00     Less than high school 
diploma .67** .91** -.42** .09 .04 .83** 1.00    
Low vegetation cover .32** .34** -.35** .12* -.03 .35** .38** 1.00   No central AC .51** .43** -.05 .25** .17** .51** .45** .23** 1.00  No AC of any kind .52** .42** -.05 .26** .17** .50** .43** .26** .93** 1.00 

(Spatial unit: Census tract; n=362).  

*p<0.05 , **p<0.01. 



28 
 

Table 2. Factor analysis of 10 variables. 

Variables Factor 1 Factor 2 Factor 3 
Below poverty line 0.78 0.30 0.32 
Race/ethnicity other than non-Hispanic white  0.93 0.10 0.04 
Less than high school diploma 0.90 0.18 0.14 
Age above 65 -0.65 -0.15 0.49 
No central AC 0.19 0.92 0.27 
No AC of any kind 0.18 0.92 0.27 
Low NDVI 0.44 0.45 -0.14 
Age above 65 living alone -0.06 0.10 0.89 
Living alone 0.13 0.23 0.63 
Diabetes 0.54 0.27 0.59 
Factor 1: poverty, race/ethnic minority and low education; Factor 2: lack of AC and vegetation; Factor 3: 

diabetes and social isolation. 
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Table 3. Odds ratios (OR) and 95% CI for associations between a 1-unit increase in each factor 

and census tracts with moderate- or high-incidence of hospitalization for heat-related illness 

relative to zero-incidence census tracts based on multinomial logistic regression.  

Predictor OR (95% CI) p-value 
Moderate-incidence tract   

Factor 1 2.00 (1.50, 2.65) 0.00 
Factor 2 0.84 (0.56, 1.27) 0.41 
Factor 3 1.18 (0.85, 1.64) 0.32 

High-incidence tract   
Factor 1 2.74 (2.03, 3.69) 0.00 
Factor 2 1.20 (0.90, 1.60) 0.21 
Factor 3 2.00 (1.44, 2.76) 0.00 

Reference category: zero-incidence tract. 
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Table 4. Characteristics of census tracts with misclassified heat vulnerability based on the HVI 

compared with average values for all census tracts in Phoenix City 

Characteristics Group 1 
n = 35 

Group 2 
n = 17 

Phoenix City Average 
n = 362 

Median household incomea $52,972 $27,216 $48,750 
Non-Hispanic white 97% 6% 49% 
Diabetes 34% 94% 0.5% 
Non-citizens  11% 71% 16% 
Unemployment 23% 59% 7.5% 
Proportion of renters 49% 65% 42% 
Proportion living in the same 
residence < 5 years 43% 35% 46% 
Vacancy rate  46%  71% 13% 
Average surface temperatureb  26.1°C  26.6°C       25.7°C 
Note: The percentage for Groups 1 and 2 refer to census tracts, not household. The percentages for 

Phoenix city are city-wide average.  

Group 1: High-incidence census tracts predicted to be zero-incidence census tracts.  

Group 2: Zero-incidence census tracts predicted to be high-incidence census tracts. 
aGroup 1: 60% of census tract > average; Group 2: 0% of census tract > average. bGroup 1: 54% of census 

tract > average; Group 2: 76% of census tract > average.  
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Table 5. Accuracy assessment (Classification table). 

  Predicted 0 Predicted 1 Predicted 2 Percent Correct 
Observed 0 115 14 17 78.80% 
Observed 1 56 29 24 26.60% 
Observed 2 35 21 51 47.70% 

Percent Correct 56.90% 17.70% 25.40% 53.90% 
 0=zero-incidence; 1=moderate-incidence; 2=high-incidence census tracts. 
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Figure Legend 

Figure 1. (A) Spatial distribution of heat-related hospitalization rate. Census-tract-level 

hospitalization rates for heat-related illness= hospitalizations for heat-related illness between 

2004 and 2005 divided by census-tract population estimates for 2010 times 100 (in percentage). 

#1, #2, and # 3 are the top three census tracts with high heat hospitalization rates (> 2.5 SD). (B) 

Heat vulnerability index (sum of three factor scores) in the city of Phoenix. Each census tract 

was assigned a score for each factor ranging from 0-6 based on standard deviation above or 

below mean. HVI scores range from 0-16.  
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Figure 1. 

 


