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Abstract 

Background: Oyster norovirus outbreaks often pose high risks to human health. However, little 

is known about environmental factors controlling the outbreaks and little can be done to prevent 

the outbreaks as they are generally considered to be unpredictable.   

Objective: We sought to develop a mathematical model for predicting risks of oyster norovirus 

outbreaks using environmental predictors.  

Methods: A novel probability-based Artificial Neural Network model, called NORF model, was 

developed using 21 years of environmental and norovirus outbreak data collected from Louisiana 

oyster harvesting areas along the Gulf of Mexico coast, U.S.A. The NORF model involves six 

input variables that were selected through stepwise regression analysis and sensitivity analysis. 

Results: It was found that the model-based probability of norovirus outbreaks was most sensitive 

to gage height (the depth of water in an oyster bed) and water temperature, followed by wind, 

rainfall, and salinity, respectively. The NORF model predicted all historical oyster norovirus 

outbreaks from 1994 – 2014. Specifically, norovirus outbreaks occurred when the NORF model 

probability estimate was > 0.6, whereas no outbreaks occurred when the estimated probability 

was < 0.5. Outbreaks may also occur when the estimated probability is 0.5 – 0.6.  

Conclusions: Our findings require further confirmation, but they suggest that oyster norovirus 

outbreaks may be predictable using the NORF model. The ability to predict oyster norovirus 

outbreaks at their onset may make it possible to prevent or at least reduce the risk of norovirus 

outbreaks by closing potentially affected oyster beds. 
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Introduction 

Norovirus is a highly infectious and costly pathogen (Wang and Deng 2012; Atmar 2010). It is 

the leading cause of endemic diarrheal disease across all age groups, and the cause of half of all 

gastroenteritis outbreaks worldwide (Hall 2012). At this time, little can be done to prevent 

human health risks of norovirus because there is no vaccine to prevent infection, no drugs to treat 

it, and no model to predict norovirus outbreaks. However, it might be possible to prevent or at 

least reduce norovirus infection and associated costs by monitoring norovirus indicators daily 

and predicting norovirus outbreaks in advance, if environmental factors that predict the 

outbreaks can be identified and modeled.  

Norovirus is commonly found in oysters growing in contaminated waters. Oyster 

contamination with norovirus may occur after heavy rainfall, which often results in contaminated 

overland runoff, combined sewer overflow, or hydraulic overload in sewage treatment plants (Le 

Guyader et al. 2006; Miossec et al. 2000; Yang et al. 2012; Ye et al. 2014). Oysters filter large 

volumes of water as part of their filter-feeding activities and are able to accumulate and 

concentrate norovirus (Le Guyader et al. 2010). Therefore, oyster contamination with norovirus 

may cause norovirus outbreaks. While environmentally-mediated norovirus outbreaks do not 

occur frequently, outbreaks may have substantial impacts on human health, with symptoms 

including diarrhea, nausea, vomiting, and abdominal cramps (Le Guyader et al. 2010). In 

addition, secondary transmission from person to person may occur, and outbreaks may result in 

school and workplace closures, as well as the closure of oyster harvesting waters and costly 

oyster recalls. Oyster norovirus outbreaks have been reported worldwide. Westrell et al. (2010) 

reported 334 cases in 65 clusters of oyster norovirus outbreaks from January – March 2010 
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in five European countries, including the United Kingdom, Norway, France, Sweden and 

Denmark. A total of 305 cases were attributed to oyster norovirus outbreaks that occurred from 

December 16, 2003 to January 04, 2004 in Singapore (Ng et al. 2005). Multiple clusters of 

norovirus outbreaks were associated with raw oyster consumption affecting 36 people in British 

Columbia, Canada, in 2010 (McIntyre et al. 2012), and 525 cases were identified in March 2013 

in Australia from consumption of norovirus contaminated oysters (Lodo et al. 2014).  

Oysters are filter feeders that pump a large amount (about 5 liters/hour) of water (including 

norovirus in the water) through their gills and mantle (Wang and Deng 2012). Oyster norovirus 

outbreaks appear to be influenced by environmental factors, such as rainfall, temperature, and 

salinity (Wang and Deng 2012). Norovirus outbreaks in oyster harvest waters often take place 

during cold weather (Maalouf et al. 2010). Wastewater effluent from failing wastewater 

treatment plants may be a common route of norovirus transmission after heavy rainfall (Flannery 

et al. 2012, 2013; Schijven et al. 2013). Maalouf et al. (2010) found that viruses tend to attach to 

fine sediment particles or silts, and that salinity may enhance the binding of viruses to fine 

sediment particles. As a result, viruses are protected by marine sediment and may persist in an 

infectious state for several months especially when salinity is low. In oyster harvest waters, 

norovirus survival rates increase with reduced exposure to ultraviolet light (Lee and Ko 2013). A 

1-month follow up study suggested that strong winds were associated with a rapid increase in 

norovirus prevalence in oyster harvest areas (Grodzki et al. 2012). However, in spite of recent 

progress in identifying individual environmental risk factors for norovirus outbreaks, little is 

known about key environmental factors controlling the outbreaks.  
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The overall goal of the present study was to establish a quantitative model for predicting 

oyster norovirus outbreaks. Our specific objectives were (1) to identify environmental predictors 

for oyster norovirus outbreaks and (2) to construct a model for estimating the probability of an 

oyster norovirus outbreak. 

Materials and Methods  

Due to the lack of concentration data for norovirus in oyster growing waters, we developed a 

probability-based Artificial Neural Network (ANN) model, using historical data on norovirus 

outbreaks in 30 oyster harvest areas from 1994 – 2007, for predicting the risk of potential oyster 

norovirus outbreaks in a probabilistic fashion, similar to weather forecasts. 

Study area. Louisiana is one of the primary oyster-producing states in the United States. 

There are 30 oyster harvest areas along the Louisiana coast (Figure 1). Areas 1 – 7 are located to 

the south of Lake Pontchartrain and to the east of the Mississippi River while Areas 8 – 30 are 

located west of the river. Areas 29 and 30 are actually in the Calcasieu River estuary. In addition 

to fresh water discharges from the rivers and lakes, the oyster harvesting areas may also receive 

sewage from oyster-harvesting boats and failing septic systems along the shoreline, and 

contaminated urban stormwater runoff and combined sewer overflows from nearby cities, 

constituting potential sources of oyster norovirus contamination (Schaeffer et al. 2013).  

Outbreak data sets. Historical norovirus outbreaks in Louisiana oyster harvest areas were 

recorded in Louisiana morbidity reports released annually by Louisiana Department of Health 

and Hospitals (Table 1). Some additional data for individual outbreaks, such as the duration and 

the number of infected people, were provided by Ronald J. Dugas, at the Louisiana Department 

of Wildlife and Fisheries. 
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Data and sources for environmental variables. Environmental data for five environmental 

predictors were collected for the years 1994-2014. Due to the limited number of norovirus 

outbreak events, the 21 years of data were split into two data periods based on time sequence of 

norovirus outbreaks: Period 1 (1994-2007) used for model development and Period 2 (2008-

2014) for prediction (independent testing or cross-validation). Data for gage height, water 

temperature, and salinity were obtained from U.S. Geological Survey (USGS) stations 

(http://www.usgs.gov/) located in Louisiana oyster harvest areas, while data for rainfall and wind 

(including wind speed and direction) were obtained from Louisiana State University Agricultural 

Center (LSU AgCenter) stations (http://weather.lsuagcenter.com) (Figure 1).  

Gage height is essentially the water depth in an oyster growing area. We selected gage 

height as a potential predictor because low gage height (low water depth) may reduce dilution of 

sewage-contaminated runoff from antecedent rainfall, thus potentially increasing norovirus 

concentrations in oyster growing water (Wang and Deng 2012). We selected water temperature 

as an environmental predictor since cold weather or low temperature favors norovirus survival 

(Westrell et al. 2010). Salinity has also been reported to affect the persistence of norovirus in 

oyster harvest waters by enhancing virus binding to fine sediment particles (Maalouf et al. 2010). 

We also selected rainfall as a potential predictor because it facilitates the transmission of 

norovirus from inland sources to oyster growing waters (Wang and Deng 2012). Finally, we 

included wind as an environmental predictor, defined as a function (product) of both wind speed 

and wind direction. Generally, an onshore wind causes water levels to rise at the coast (set-up), 

while an offshore wind causes water levels to fall (set-down). We hypothesized that offshore 

winds would facilitate the transmission of norovirus from land to oyster harvest waters, in 
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addition to causing water levels to fall, thus increasing the concentration of norovirus in oyster 

growing waters. Because the wind direction that determines if the wind is onshore or offshore 

varies among different locations, we defined a dichotomous indicator variable (1 if offshore, 0 if 

onshore) separately for each location. Specifically, winds blowing from 180–360 degrees were 

defined as offshore in oyster harvest areas 1 – 7, winds from 90–270 were classified as offshore 

in areas 8–17, and winds blowing from 0–180 degrees were classified as offshore for areas 18-

30. It should be noted that wind, as the product of speed and direction, is not a dichotomous 

variable. 

Due to the sparse distribution of LSU AgCenter weather stations, several oyster harvesting 

areas share the data from a common nearby weather station.  Specifically, the rainfall and wind 

data from Hammond station are used for Areas 1 – 3 while data for Areas 4 – 7, 8 – 19, 20 – 26, 

and 27 – 30 are collected from the stations in the cities: Port Sulphur, Houma, Jeanerette and St. 

Gabriel, and Lake Charles, respectively. 

Since a USGS station is located at the border between Areas 2 and 3, the two areas (2 and 3) 

share the same data from the USGS station. Due to missing data in some years for Area 24, the 

same datasets are used for Areas 24 and 26. Likewise, Areas 29 and 30 are also treated as a 

single area in terms of data sharing. As a result, there are only 12 oyster harvest areas, where 

independent data are available, including Areas 1, 2 (including 3), 6, 7, 12, 13, 14, 15, 17, 19, 24 

(including 26), and 30 (including 29).  In areas containing two or more USGS stations, the 

station with the most complete data was used as the primary station, and the other stations were 

used as a source of supplementary data. All data are available online at the hourly time scale, 
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making it possible to obtain the daily maximum, daily minimum, daily change, and daily average 

of the variables, which are needed in the predictive model. 

Selection of model input variables. Stepwise regression analysis has been widely used to 

select model input variables (predictors) and reduce the number of potential model input 

variables for ANN analysis (Zhang et al. 2015 and 2012, Genell et al. 2010). We used forward 

stepwise regression (PROC REG, SELECTION = STEPWISE, SAS 9.2) to select a final set of 

model predictors of norovirus outbreaks based on both the partial R-square values for individual 

variables, and the overall model R-square values. We began with a large pool of potential 

environmental predictors that included several measures of gage height [daily maximum gage 

height (daily maximum gage height – daily minimum gage height), minimum gage height, 

average gage height, and daily change in gage height], water temperature (daily average 

temperature, minimum temperature, and maximum temperature), rainfall (rainfall on the same 

day, and rainfall on 1 to 15 previous days), salinity (daily average, maximum, and minimum), 

and wind (direction and speed). Environmental variables selected for the final model, ranked 

from the highest to lowest  individual R-square values, were maximum gage height, minimum 

temperature, wind (offshore or onshore, as defined above), change in gage height, rainfall 9 days 

before, and minimum salinity, with all variables except rainfall defined by values on the current 

day. Variables were automatically selected in the stepwise regression analysis based on 

individual R-square p-values <0.05 with the exception of salinity (p = 0.15), which was included 

because it improved the overall model R-square value by 9.84%.   
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Normalization of ANN model input variables (environmental predictors). After selection, 

all model input variables were normalized to a range of 0 – 1 using Equation [1], where a 

represents a model input variable, max(a) and min(a), refer to observed historical maximum and 

minimum values of a, respectively. The parameter, N(a), stands for the normalized variable of a.   

       
)min()max(

)min()(
aa

aaaN
−

−
=                                    [1] 

After normalization, we graphically examined the relation between each environmental 

predictor (with the exception of rainfall, which had a limited distribution) and the frequency of 

norovirus outbreaks (Figure 2). It can be seen from Figure 2(a) that the frequency of norovirus 

outbreaks has a highly nonlinear relationship with the normalized gage height (GH) and daily 

change in gage height (DCGH). Basically, about 70% of historical norovirus outbreaks occurred 

when GH was lower than 0.2. For this reason, the variable, (0.5GH)DCGH (selected through a 

trial-and-error procedure to produce the best fit curve in Figure 2(a)), was actually used as a 

model input variable in lieu of the daily change in gage height while GH was also included as 

another model input variable. The nonlinear relationship was derived by using the 

Microsoft Excel LINEST function for multivariate regression with the frequency of norovirus 

outbreaks as the dependent variable and the predictors, (0.5GH)DCGH and GH, as independent 

variables. Temperature, salinity, and wind had approximately linear relations with the frequency 

of norovirus outbreaks (Figure 2B, C, and D) and were therefore modeled as normalized 

continuous variables. The linear relationships were also derived using the Excel LINEST 

function. However, the values of variables that were negatively associated with outbreaks were 

subtracted from 1 so that all predictors would be positively associated with the probability of an 

outbreak, such that the final set of normalized predictors used as input for the ANN model were 
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1–gage height, (0.5gage height)*daily change in gage height, 1–temperature, 1–salinity, wind, and 

rainfall 9 days prior.  

The Artificial Neural Network (ANN) was previously found to be a simple yet effective tool 

for describing nonlinear relationships between the concentration of fecal indicator bacteria in 

coastal recreational waters and environmental variables (Zhang et al. 2015, Zhang et al. 2012). A 

significant advantage of an ANN model over numerical models is its flexibility in dealing with a 

large number of model input variables when the specific functional relationship between a 

dependent variable and independent model input variables is unknown, as is the case for 

norovirus outbreaks. We used the ANN Toolbox in the MATLAB Program (version 2010a) to 

train a feed-forward ANN model using the error back-propagation algorithm to integrate the 

environmental predictors for the prediction of oyster norovirus outbreaks. The ANN model 

architecture consists of an input layer with the 6 predictor variables, a hidden layer with 20 

neurons, and an output layer that displays the estimated probability of oyster norovirus outbreaks 

based on the model. In the model development phase, the normalized datasets for the six input 

variables, collected from 1994 -2007, were employed in the input layer. The 14 years of data 

from the 12 oyster harvesting areas with complete and independent datasets (areas 1, 3, 6, 7, 12, 

13, 14, 15, 17, 19, 24, and 30) were first combined without distinguishing one area from another, 

and were then randomly split into three groups for training (60% of data), validation (20% of 

data,) and testing (20% of data). The data values in output layer were either 1 (if there was an 

oyster norovirus outbreak) or 0 (if there was no outbreak). We identified the best-trained ANN 

model based on the performance of top-ranked models in reproducing confirmed oyster 

norovirus outbreaks. Predictions based on the ANN model were compared with historical data 
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for norovirus outbreaks to identify threshold values for model-predicted probabilities that were 

consistently associated with outbreaks. We subsequently refer to the best-trained ANN model as 

the Norovirus Outbreak Risk Forecasting model, or NORF model.  

Sensitivity analysis. To evaluate the sensitivity of the NORF model to individual model 

parameters, we changed the mean value of each input variable (gage height, temperature, 

salinity, wind, and rainfall), one at a time, by ± 5%, ± 10%, ± 20%, ± 30%, and ±40%, 

respectively, and calculated the percent change in the model output (i.e., the predicted 

probability of an outbreak) with each incremental change in the individual predictor variables.  

Independent cross-validation. A cross-validation was performed to measure the predictive 

ability of the model using data collected from 2008 – 2014 that were not used in the model 

development phase. The primary criterion for assessing model performance during the cross-

validation phase was to accurately predict all past oyster norovirus outbreaks from 2008 – 2014 

without producing false outbreaks. 

Predictions for another location. In addition to Louisiana, the NORF model was also tested 

as part of the cross-validation using the data collected from the Copano Bay, Texas, oyster 

harvesting area for January 1 – December 31, 2013. The data for gage height, temperature, and 

salinity were collected from USGS station 8211503 while rainfall data were collected from 

USGS station 8288570. Wind speed and direction data were collected from NOAA station 

8774513. Winds blowing from 67.5–247.5 degrees were defined as offshore winds. The data 

were processed using the same methods as those for processing Louisiana data. NORF model 

predictions of potential oyster norovirus outbreaks in this area were made for 365 days in 2013.  
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Results  

We compared predicted probabilities of norovirus outbreaks based on the NORF model with 

the occurrence of reported outbreaks in 1996, 2002, and 2007 and identified a threshold model-

based probability of 0.6 that consistently predicted the observed outbreaks (Figure 3).  

Two oyster harvest areas (6 and 7) were shut down on February 16 and 23, 1996, 

respectively, and oysters harvested in Area 6 from January 25 and Area 7 from February 8 were 

recalled. The NORF model predicted high norovirus outbreak probabilities of 0.733 for February 

4 and 0.833 for February 5, respectively (Figure 3A). There was another reported norovirus 

outbreak in Areas 6 and 7 in December 1996 that caused multiple clusters of illnesses (total n = 

493) associated with the consumption of norovirus-contaminated raw oysters on December 25 

(http://www.outbreakdatabase.com/details/louisiana-oysters-1996/). The two areas were closed 

on January 3, 1997 and oysters harvested between December 22, 1996 and January 3, 1997 were 

recalled. The NORF model predicted an outbreak probability of 0.820 for December 18, 1996. 

The model prediction suggests that oysters should have been recalled on December 18 instead of 

December 22, 1996 to January 3, 1997. The NORF model also predicted norovirus outbreaks 

that occurred in areas 1, 6, and 7 in March 2002 (Figure 3B). In 2007, oysters harvested in Area 

3 between December 10–21 were recalled due to a norovirus outbreak, while the NORF model 

predicted a norovirus outbreak with a probability of 0.604 for December 16, 2007 (Figure 3C).  

In general, NORF model predictions were consistent with the reported oyster norovirus 

outbreaks, though there were some differences in the timing of the predicted versus reported 

outbreak dates. However, the reported onset dates for norovirus outbreaks were usually estimated 

based on post-outbreak epidemiologic investigations, and it is possible that the reported 
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norovirus outbreak onset dates or oyster recall dates may not be accurate. The NORF model was 

also run for other years during 1994 – 2007 that did not have any reported norovirus outbreaks. 

The model predicted low outbreak probabilities (< 0.5) during all of these years (data not 

shown).  

Sensitivity analysis. Decreases in gage height, temperature, and salinity, and increases in 

rainfall and wind, were associated with increases in model-predicted probabilities of oyster 

norovirus outbreaks (Figure 4). Likewise, increases in gage height, temperature, and salinity, 

along decreases in rainfall and wind, were associated with lower estimated probabilities. 

Changes in gage height and temperature had the greatest influence on model predictions, while 

salinity, rainfall, and wind also affected model predictions. Specifically, the NORF model 

predicted norovirus outbreak probability increases of 20%, 45%, 103%, 167%, and 243% when 

the gage height was reduced by 5%, 10%, 20%, 30%, and 40%, respectively. Likewise, the 

model predicted norovirus outbreak probability increases of 51%, 95%, 155%, 180%, and 221% 

for corresponding decreases in temperature.  

Independent cross-validation: There were five reported norovirus outbreaks in the 

independent testing period from January 2008 - December 2014 (Table 1). Three of the five 

outbreaks took place in March 2010. Area 3 was closed on March 25 after 14 people became ill 

due to the consumption of norovirus contaminated raw oysters harvested between the suspected 

(unconfirmed) period of March 20 – March 25 (Figure 5A). Nine additional cases were reported 

after the closure of Area 3. The NORF model predicted at least two norovirus outbreaks on 

March 2 (probability = 0.82) and March 13 (probability = 0.85) to March 14 (probability = 0.60), 

respectively. The predicted outbreak on March 2 coincided with an extremely strong offshore 
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wind (normalized value = 0.52, or 16.1 m/s), low gage height (normalized = 0.09, 0.68 feet) and 

low temperature (normalized = 0.22, 11.2°C).  

The model-predicted and reported outbreak dates (March 2 versus March 20) differed for 

Area 3, but the model-predicted outbreak on March 2 for Area 3 was close to the date of a 

reported norovirus outbreak on March 6 in Area 7 (Figure 5B). This area was closed on March 

24 after 14 people were infected by norovirus after eating raw oysters harvested between March 

6 (date inferred from post-outbreak investigation) – March 24. The NORF model predicted a 

norovirus outbreak on March 13 in Area 7 with a probability of 0.85. Environmental conditions 

that favored an outbreak in Area 7 on this date included an extremely low gage height 

(normalized value = 0.08, -0.23 feet), low salinity (0.12, 3.2 parts per thousand), and strong 

offshore wind (0.52, 16.1 m/s). Area 13 was also closed on March 30 after 19 people became ill 

due to the consumption of norovirus contaminated raw oysters harvested between March 27 and 

March 30, 2010 (Figure 5C). The NORF model predicted two norovirus outbreaks in Area 13 on 

March 22 and 29, respectively, both with a probability of 0.68.  

Environmental conditions in Areas 12 and 13 are very similar and the monitoring stations in 

the two areas are also very close to each other. While there were no reported norovirus outbreaks 

in Area 12, the NORF model predicted outbreaks on March 13 (probability = 0.74), March 22 

(probability = 0.64), and March 29 (probability = 0.71).  

There were two reported norovirus outbreaks in April-May and December 2012 in Areas 23 

and 30, respectively (Figure 5D). Area 23 was closed on May 8, 2012 after 14 people became ill 

with norovirus after eating oysters at a restaurant on April 28 or 29. The Louisiana Department 

of Health and Hospitals ordered a recall of all oysters harvested from that area since April 26, 
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2012. Since there is no monitoring station in Area 23, the NORF model cannot be used to predict 

outbreaks in this area. The NORF model did predict a norovirus outbreak in Area 24/26 on April 

29, 2012, (probability = 0.67). However, Areas 22, 24, and 26 were not open for oyster 

harvesting (http://new.dhh.louisiana.gov/index.cfm/newsroom/detail/2484) during this time 

period, consequently it was not possible for norovirus outbreaks to occur in these areas.  Another 

reported norovirus outbreak occurred in Area 30 at the end of 2012 

(http://www.dhh.louisiana.gov/index.cfm/newsroom/detail/2732). Area 30 was closed on 

January 4, 2013 after 12 people became ill with norovirus after eating oysters harvested from this 

area between December 28, 2012 and January 4, 2013. The NORF model predicted a norovirus 

outbreak in Area 30 on December 29, 2012 (probability = 0.72) (Figure 5D), consistent with the 

observed norovirus outbreak. 

Predictions for another location. The U.S. Food and Drug Administration (FDA) warned 

consumers not to eat oysters harvested between December 26, 2013 and January 9, 2014 

from Copano Bay, Texas, after they were linked to a norovirus outbreak 

(http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm382247.htm) that caused 

six norovirus illnesses in Louisiana residents. The NORF model was employed to predict the 

probability of norovirus outbreak in the Copano Bay from January 1 – December 31, 2013. The 

model predicted the highest probability of a norovirus outbreak on December 29, 2013 with a 

probability of 0.53, below the 0.6 threshold probability defined for Louisiana, but above the 

lower threshold of 0.50. This suggests that the NORF model may be applicable to oyster growing 

areas beyond the Louisiana coast. However, new or site-specific definitions for wind direction 

(specifically offshore or onshore wind for each individual area) must be derived.  
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Discussion 

While a norovirus outbreak may theoretically occur at any probability, our findings, which 

are based on a comparison of model predictions with a limited number of observed outbreaks, 

suggest that there is little risk of an outbreak when the NORF model predicted probability is < 

0.5, and a high likelihood of an outbreak when the predicted probability is > 0.6.  

While it has been widely reported that norovirus outbreaks exhibit strong seasonality, with 

the outbreak peak occurring commonly in winter (Wang and Deng 2012, Westrell et al. 2010), to 

our knowledge, this is the first time that gage height has been identified as an environmental 

factor associated with oyster norovirus outbreaks. The practical significance of this finding is 

that extremely low tide (or gage height) in winter (during low temperature) could be used as an 

indicator of norovirus outbreaks.  

Our findings also suggest that norovirus outbreaks generally occur when extremely low gage 

height occurs in combination with low water temperature, low salinity, strong offshore wind, and 

heavy antecedent rainfall. Daily change in gage height was also a predictor, which may reflect an 

effect of the minimum daily gage height. The daily minimum water temperature was the second 

most influential predictor. Low temperature may cause the pore size of oyster gills to contract, 

thereby increasing the concentration of norovirus particles that are larger than the contracted 

pore size (Hopkins 1935). Since wind (the third environmental predictor) is defined as the 

product of wind speed and wind direction, both the speed and the direction affect norovirus 

outbreaks. As previously noted, low salinity may enhance the binding of viruses to fine sediment 

particles (Maalouf et al. 2010), which may help virus particles persist in an infectious state for 

several months.  The fifth predictor included in the NORF model was rainfall on the 9th day 
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before a norovirus outbreak. This suggests the possibility of a 9-day time lag between the release 

of virus from norovirus sources, such as inadequately treated/untreated sewage from failing 

wastewater treatment plants and faulty septic systems (Rajko-Nenow et al. 2013, Wang and 

Deng 2012, Flannery et al. 2012, Goblick et al. 2011, Burkhardt and Calci 2000), and the contact 

with an oyster growing area. The specific time lag for a given location is likely to depend on the 

size of drainage basin and the locations of the stations used to measure rainfall for a given oyster 

growing area.  

The potential significance of the NORF model is that it may allow oyster norovirus 

outbreaks to be predicted in advance (if forecasting data are available), or at the onset of 

outbreak, making it possible to prevent or at least reduce the risk of norovirus to human health, 

and costly oyster recalls. Potential users of the NORF model include, but are not limited to, state 

public health agencies and federal public health and food safety agencies. If the NORF model 

produces an alert, a responsible agency would need to take water and oyster samples from the 

high-risk area to confirm the alert, in which case the infected oyster growing area could be 

closed. 

Conclusions 

We developed a probability-based model for predicting oyster norovirus outbreaks. The 

NORF model is based on 5 independent predictors, including gage height, temperature, salinity, 

rainfall, and wind. The model was developed using the Artificial Neural Network (ANN) 

Toolbox in the MATLAB program and 14 years of historical data collected from Louisiana 

oyster harvesting areas along the Gulf of Mexico. The NORF model was validated with 7 

additional years of data that were not used in the model development. Our findings suggest that 
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oyster norovirus outbreaks are predictable, and in our study area, the NORF model predicted 

historical outbreaks when the estimated probability was > 0.6, while no outbreak occurred when 

the probability was < 0.5. However, more outbreak data are needed to confirm the threshold 

probability for norovirus outbreaks. Gage height and temperature were the most important 

environmental predictors of oyster norovirus outbreaks while wind, rainfall, and salinity also 

predicted norovirus outbreaks. While the NORF model was specifically developed for oyster 

harvest areas along Louisiana Gulf coast, the methods and particularly the environmental 

variables presented in this paper may be generally applicable to oyster harvesting waters in other 

regions. If the model is confirmed for Louisiana and other areas, it may provide an effective 

means to predict potential oyster norovirus outbreaks in advance or at the onset of outbreaks, 

making it possible to prevent or at least reduce the risk of norovirus to human health and costly 

oyster recalls.    
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Table 1. Norovirus outbreaks during 1994-2013*. 

Norovirus Outbreak Period Areas 
01/25/1996-02/16/1996 6, 7 
02/08/1996-02/23/1996 6, 7 
12/22/1996-01/03/1997 6, 7 
03/01/2002-03/31/2002  1 
03/12/2002-13/28/2002 6, 7 
12/10/2007-12/21/2007 3 
03/20/2010-03/25/2010 3 
03/06/2010-03/24/2010 7 
03/27/2010-03/30/2010 13 
04/26/2012-05/08/2012 23 
12/28/2012-01/04/2013 30 
* Norovirus outbreak data were collected from Louisiana Morbidity Reports 

(http://dhh.louisiana.gov/index.cfm/newsroom/archives/126). 
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Figure Legends 

Figure 1. Oyster harvesting areas along Louisiana coast, U.S.A. 

Figure 2. Relationships between the frequency distribution of norovirus outbreaks (vertical axis) 

and normalized environmental predictors (horizontal axis): (a) gage height (GH) and daily 

change in gage height (DCGH), (b) temperature (T), (c) salinity (S), and (d) wind (W). 

Figure 3. Comparison between the NORF model predicted probabilities of norovirus outbreak 

and the observed norovirus outbreak probabilities (0 or 1) in oyster harvesting areas along 

Louisiana Gulf Coast: (a) Areas 6 and 7 with outbreaks in February and December 1996, (b) 

Areas 1, 6, and 7 with outbreaks in March 2002, and (c) Area 3 with an outbreak in December 

2007 (Note: The red horizontal line denotes the threshold probability of 0.6 for norovirus 

outbreaks, implying that a norovirus outbreak would occur if the model predicted probability is 

greater than or equal to 0.6. Likewise, the yellow horizontal line satnds for the threshold 

probability of 0.5 for non-outbreak, meaning that there would be no norovirus outbreaks if the 

model predicted probability is less than 0.5). 

Figure 4. Sensitivity of NORF model output to environmental predictors. Filled columns 

indicate percent changes in the probability (model output) predicted by the NORF model due to 

positive changes to model input variables, while the hollow columns indicate percent changes in 

the model output due to negative changes to model input variables. 

Figure 5. Comparison between the NORF model predicted probabilities and the observed 

probabilities (0 or 1) of the norovirus outbreaks in oyster harvesting areas along Louisiana Gulf 

Coast: (a) Areas 2 and 3 with outbreaks in March 2010, (b) Area 7 with an outbreak in March 

2010, (c) Area 13 with outbreaks in March in 2010, and (d) Area 26 with an outbreak in April 

2012 and Area 30 with an outbreak in December 2012.  
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