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Abstract 

Background: With a tropical rainforest climate, rapid urbanization, changing demography and 

ecology, Singapore experiences endemic dengue, with the last large outbreak in 2013 culminating in 

22170 cases. In the absence of a vaccine on the market, vector control is the key approach for 

prevention. 

Objectives: We sought to forecast the evolution of dengue epidemics in Singapore to provide early 

warning of outbreaks and to facilitate public health response to moderate an impending outbreak.  

Methods: We developed a set of statistical models using least absolute shrinkage and selection 

operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a three-

month time horizon. This forecasting tool makes use of a variety of data streams, updatable weekly, 

including recent case data, meteorological data, vector surveillance data, and population-based 

national statistics. The forecasting methodology was compared to alternative approaches that have 

been proposed to model dengue case data (seasonal autoregressive integrated moving average and 

step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in 

Singapore. 

Results: Operationally useful forecasts were obtained at a three month lag using the LASSO-

derived-models. Based on mean average percentage error, the LASSO approach provided more 

accurate forecasts than the previously-published methods we assessed. We demonstrate its utility in 

Singapore’s dengue control program by providing a forecast of the 2013 outbreak for advance 

preparation of outbreak response.  

Conclusions: Statistical models built using machine learning methods such as LASSO have the 

potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such 

as dengue.  
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Introduction 

Dengue is an acute infectious disease common to tropical and sub-tropical areas. The dengue 

viruses are transmitted by Aedes mosquitoes, mainly Aedes aegypti and Aedes albopictus (Rosen 

et al. 1983). Globally, the World Health Organization has estimated that there are 50–100 million 

dengue infections per year (Rigau-Pérez et al. 1998), although more recent estimates have 

elevated this to 390 million of which ~96 million are symptomatic (Bhatt et al. 2013). Dengue 

infection in humans is mostly self-limiting—although antiviral drugs are under development 

(Lim et al. 2013; Rathore et al. 2011)—but may require hospital admission, and more severe 

manifestations of dengue may lead to death (Murphy and Whitehead 2011). Case fatality rates of 

dengue fever and severe dengue vary from 0–5% to 3–5% (Halstead 1999). 

The city-state of Singapore, which lies approximately 130km north of the equator, has a tropical 

rainforest climate in the Köppen–Geiger climate classification system (Peel et al. 2007) with no 

distinctive seasons. The climate, combined with Singapore’s highly urbanized environment, 

favors the presence of Aedes mosquitoes and transmission of dengue virus (Thu et al. 1998), thus 

making Singapore highly vulnerable to dengue outbreaks. All four serotypes are endemic to 

Singapore with frequent introduction and circulation of different genotypes of the virus (Lee et 

al. 2010, 2012) . With an annual notified incidence in the range of 20–330 per 100,000 people, 

the economic impact of dengue in Singapore from 2000 to 2010 was estimated to be US$0.85–

1.15 billion, or approximately US$200 per capita per year (Carrasco et al. 2011). Since 2003, 

over 100 dengue related deaths have been reported (MOH 2012).  

Antiviral drugs and vaccines have yet to reach the market (Douglas et al. 2013) and initial results 

from trials have been discouraging (Halstead 2012; Mahalingam et al. 2013; Sabchareon et al. 

2012). In the absence of an effective vaccine against dengue, suppressing the mosquito vector 
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population remains the key thrust of Singapore’s dengue control program (Lee et al. 2013). From 

2000 to 2009, the country  spent over US$85 million per annum (Carrasco et al. 2011) on this 

endeavour. The National Environment Agency (NEA) has, since 2006, introduced virological 

surveillance for early warning of outbreak (Lee et al. 2010) and a novel mosquito breeding index 

which estimates the spatial distribution of Ae. aegypti, the main dengue vector in Singapore. 

Previous predictive capability relies on a qualitative understanding based on temperature, 

circulating serotype, vector data from the field and estimated immunity level of the human 

population. If automated, statistical models hold the promise of being able to provide real-time 

quantitative forecasts of the appearance and evolution of a dengue outbreak, which may be used 

to efficiently guide the deployment of vector control operations. 

Any statistical approach to forecast dengue would need to meet certain criteria to be practical: (i) 

it uses only data that are available at the time the forecast is made; (ii) it is capable of forecasting 

weeks or months into the future to give a lead time for preparing a public health response (for 

instance, hiring of new control staff); (iii) its predictive performance is validated and 

demonstrated in data that were not used in its construction, to prevent over-fitting and ascertain 

confidence levels; and lastly, (iv) it is able to process new data rapidly. Population dynamic 

modeling of dengue exploits epidemiological or entomological knowledge and is valuable for 

modelling what-if scenarios, such as the effect of introducing changes to the host or mosquito 

populations (such as introducing vaccination into the pediatric vaccination schedule (Coudeville 

and Garnett 2012) or of releasing genetically modified sterile mosquitoes or those infected by 

Wolbachia (Hughes and Britton 2013)), and may be useful for predicting longer term changes to 

epidemic dynamics caused by changing levels of herd immunity or the age structure of a 

population (Cummings et al. 2009; Egger et al. 2008).	A limitation of population dynamic 
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models is that they are difficult to integrate with real-time data streams, such as meteorological 

or incidence data. Although success has been achieved for epidemiologically simpler diseases 

such as influenza (Baguelin et al. 2010; Ong et al. 2010), the complexity caused by  having 

several serotypes potentially circulating simultaneously and by the influence of the environment 

on the vector makes these models a relatively unattractive choice for short-term forecasts of 

dengue. In contrast, correlative statistical approaches—which describe the phenomenon but not 

the underlying process—are well suited to integration with multiple live data streams, and may 

have good predictive accuracy if future conditions do not stray too far from the conditions used 

to parameterize them. 

	Other researchers have sought to develop statistical time series models to predict dengue in 

Singapore. Earnest et al (2012) compared one-week-ahead dengue forecasts based on two 

popular modeling methods—the Autoregressive Integrated Moving Average (ARIMA) and the 

Knorr-Held two component (K-H) model—and showed that the K-H model was slightly more 

accurate Hii et al (2012a, 2012b) developed a forecasting model using Poisson multivariate 

regression to predict the number of cases over a 4-month interval, demonstrating that past 

temperature and rainfall data are good predictors of future dengue incidence. Another study 

(Althouse et al. 2011) predicted 1-week and 1-month dengue incidence in Singapore and 

Bangkok, respectively, based on internet search engine queries that might signal the early stages 

of an outbreak. The authors compared three statistical approaches based on these data—a step-

down linear regression, generalized boosted regression, and negative binomial regression—and 

concluded that the step-down linear model was superior.. While these previous models meet 

many of the criteria above, it is noteworthy that none has been validated against data not used in 
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their construction, and none was developed explicitly for operational use, suggesting that their 

predictive performance and usefulness to operations were not tested. 

In this paper, we describe a new approach to forecast dengue that is used by Singapore’s NEA in 

planning vector control and public communication. The model specifically optimizes predictive 

accuracy over a 3-month time horizon, with model complexity selected, and predictive 

performance evaluated, using out of sample forecasting. We show that this approach, which uses 

the least absolute shrinkage and selection operator (LASSO) to fit large regression models, has 

better predictive performance than other modeling approaches.  

Materials and Methods 

Statistical analyses 

LASSO: The Least Absolute Shrinkage and Selection Operator (LASSO) is a technique 

proposed in the 1990s (Tibshirani 1994) that has inspired much interest in the statistical 

methodology community on ‘small n large p’ problems (Tibshirani 1994).  This framework 

extends standard regression and related models such as logistic regression by simultaneously 

selecting which parameters to include in the model and what their values should be. Rather than 

optimizing the (log) likelihood 𝐿𝐿(𝑦𝑦|𝛽𝛽, 𝑥𝑥) for dependent variable 𝑦𝑦, independent variables 𝑥𝑥 and 

coefficients 𝛽𝛽, as in standard regression, LASSO optimizes the sum of the log-likelihood and a 

penalty term controlled by an additional parameter 𝜆𝜆, which controls model complexity. In 

particular, the optimal coefficients are the 𝛽𝛽s that maximise 

𝐿𝐿 𝑦𝑦 𝛽𝛽, 𝑥𝑥 − 𝜆𝜆 𝛽𝛽!
!

. 
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The penalty term 𝜆𝜆 controls model complexity: for a specific value of the penalty parameter, the 

optimal fit will have some (or many) coefficients set to 0, i.e. some covariates are not used in the 

model. The penalty term is usually selected by cross-validation, in which (i) the data are 

partitioned into several training and test sets, (ii) for each training set, a series of values of 𝜆𝜆 are 

considered, (iii) for each 𝜆𝜆, the best values of 𝛽𝛽 are found and then used to predict the test data so 

that the out-of-sample performance can be measured. The value of 𝜆𝜆 that maximised the average 

out-of-sample performance is then used to select the final model. This implicitly means that the 

model complexity is selected to optimize predictive accuracy for a given set of independent 

variables. We used the glmnet algorithm (Friedman et al. 2010) implemented in the R statistical 

language (R Core Team 2014) to fit the models. 

Our approach was to develop a tailored submodel unique to each forecast window from 1 week 

to 12 weeks in the future. For each submodel, the outcome variable is the weekly number of 

cases (natural log transformed, with 1 added to avoid logging 0), and a large set of potential 

input variables were considered (details may be found in the data section). The formulation for 

each submodel is a multivariable	linear regression. LASSO was used to select a (potentially 

different) set of predictors for each forecast window along with the values of their coefficients, 

with ten-fold cross validation used to determine optimal model complexity, before the forecasts 

were ‘stitched together’ graphically to create the impression of a single predictive routine. 

Covariates were considered at lags of up to 20 weeks, based on a previous study by Hii et al 

(2012a, 2012b), but in contrast to their approach we allowed the effect of a single factor (such as 

temperature) to have multiple lags in influencing future dengue cases. The framework used in 

developing the models is presented in Figure 1. 



Environ Health Perspect DOI: 10.1289/ehp.1509981 
Advance Publication: Not Copyedited 

 

9 
 

Other approaches 

We applied two of the statistical methods used by Earnest et al (2012) and Althouse et al (2011) 

to compare with the LASSO approach described above.  

In the SARIMA algorithm, models are composed of non-seasonal factors (p, d, q) and seasonal 

factors (P, D, Q), where d and D define the order (i.e. number of weeks in the past) of 

nonseasonal and seasonal differencing in the time series (between successive values, used to 

reduce the effects of non-stationarity of the time series), p and P the autoregressive (AR) terms, q 

and Q the moving average terms, respectively.  SARIMA models can vary from very simple—

for instance, a non-seasonal AR1 model, where the dependent variable is regressed upon itself 

(𝑦𝑦! = 𝛽𝛽! + 𝛽𝛽!𝑦𝑦!!! + 𝜖𝜖!)—to very complex, where the dependent variable depends on several 

past weeks, on moving averages of past weeks’ data, and on recurrent seasonal factors, in this 

case 52 weeks ago. The values of (p, d, q, P, D, Q) with the lowest Akaike information 

criterion (AIC) during model training are selected for the optimal model. (A definitive 

introduction is provided by (Chatfield 2013).) 

In the step-down linear regression (LR) model, we developed a submodel for each forecast 

window as in the LASSO approach, starting with a model containing all predictors (at multiple 

lags) and progressively eliminating variables one at a time according to AIC score, until no 

further improvement was possible without removing two or more terms simultaneously. 

Model Comparison 

Models were compared using the mean absolute percentage error (MAPE), as proposed by 

Armstrong (1985) and modified and re-proposed by Flores (1986), for each forecast window.  If 

𝐷𝐷!!! is the actual number of dengue cases w weeks after time t when the prediction is made, and 
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𝐷𝐷!!!!  is the number of cases forecasted by model m, the MAPE for that model and forecast 

window is 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚,𝑤𝑤 =
100%
𝒱𝒱

𝐷𝐷!!! − 𝐷𝐷!!!!

𝐷𝐷!!!!∈𝒱𝒱

 

where 𝒱𝒱 is the validation set. We used data from 2001 to 2010 as training data to parameterize 

the models and from 2011 to 2012 to validate the models, with the validated models being 

applied in 2013 to evaluate their performance. The same training and validation datasets were 

used for all three models. 

Predictions are accompanied by 95% intervals using point estimates from the models with 

overlaid error using the estimated standard deviation of residuals from the fitted model, and 

calculated the coverage of these intervals, i.e. the proportion of time points in which the eventual 

data point fell within the prediction interval, to compare whether the actual coverage of the three 

approaches was at or above the nominal coverage.  

Data 

Weekly covariates were used in order to match the frequency of reported dengue data made 

available by Singapore’s Ministry of Health, with finer resolution data coarsened to this level, 

and coarser data assumed to be homogeneous over each reporting interval. The time horizon 

used for all variables unless otherwise denoted was January 2001 to December 2012. The 

variables used and their sources are:  

Case data: The weekly number of cases (natural log transformed, +1) is provided by the 

Ministry of Health, Singapore, and can be obtained from their Weekly Infectious Diseases 

Bulletin (Ministry of Health, Singapore). 
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Population data: Mid-year population sizes for residents and foreign non-residents were 

obtained for each year from the Singapore Department of Statistics (Department of Statistics 

Singapore), natural log transformed, and applied to all weeks within the corresponding calendar 

year.. These were applied to all weeks within that calendar year. 

Meteorological data: Weekly mean temperature (T) in degrees Celsius, maximum hourly 

temperature and number of hours of high temperature (> 27.8℃) each week, and weekly 

relative humidity (RH) were obtained from the Meteorological Services Singapore. Absolute 

humidity for any week (𝐻𝐻!) was calculated from the weekly mean temperature (𝑇𝑇) and relative 

humidity (𝐻𝐻!) using standard formulae (Xu et al. 2014). 

Vector surveillance data: The weekly breeding percentage (BP) is an in-house index developed 

by NEA, which provides an estimate of the proportion of Ae. aegypti, the primary vector of 

dengue in Singapore, compared to all Aedes spp. As part of vector control operations, potential 

breeding sites are sought, samples are taken when breeding is found, and the species is 

determined in our laboratory.  Because this is part of routine vector control and not solely for 

surveillance, efforts are not temporally or spatially regular, and tend to favour outbreak periods 

and areas with transmission. This has the effect of biasing estimates upwards for both (i) total 

incidence of breeding sites and (ii) Ae. aegypti breeding.  To overcome the biases in data 

collection, we use the proportion of identified Ae. aegypti breeding out of all identified breeding 

sites to quantify the amount of ‘relevant’ breeding. The justification for this assumption is two-

fold: (1) another Aedes species, Ae. albopictus, is so widespread that the amount of Ae. 

albopictus breeding found is a good proxy for total effort in identifying breeding sites, and (2) 

that Ae. aegypti is the primary vector for dengue in Singapore, being more efficient at 

transmission, being more often found to be infected, and being necessary for sustained 
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transmission in any neighborhood.  The breeding percentage for week 𝑡𝑡, 𝐵𝐵𝑃𝑃!, was calculated 

from the weekly number of Aedes mosquito breeding sites recorded during ground inspections 

carried out by NEA using the following formula: 

𝐵𝐵𝑃𝑃! =
𝑁𝑁!"#$%&'(𝑡𝑡)
𝑁𝑁!"!#$(𝑡𝑡)

 

where 𝑁𝑁!"#$%&'(𝑡𝑡) and 𝑁𝑁!"!#$(𝑡𝑡) are the number of breeding sites containing only Ae. aegypti or 

containing either Ae. aegypti or Ae. albopictus, respectively, in week 𝑡𝑡. This index has been 

found to have a high correlation with dengue cases (unpublished data) and to be negatively 

correlated in space with Chikungunya cases, for which Ae. albopictus is the more competent 

vector (Ng et al. 2009). 

Trend and seasonality data: Besides the climatic factors, dengue is also affected by other factors 

such as changes to vector control and circulating serotypes. To address the impact of such non-

climatic factors on disease dynamics, we decompose dengue incidence into terms for trend and 

for annual seasonality.  

To account for changes, both gradual and abrupt, we extracted trends and seasonality from the 

weekly time series by using the Breaks For Additive Seasonal and Trend (BFAST) algorithm 

(Verbesselt et al. 2010). Specifically, BFAST decomposes time series into seasonality and trend 

components through iterative estimation of time series parameters and the detection of break 

points, delimiting time windows in which different seasonal and trend patterns apply. Within 

each time window, the effect of seasonality is assumed to be sinusoidal, but the characteristics of 

the sinusoidal functions vary across time windows. Similarly, trend is defined to be piecewise 

linear between breakpoints.  The inferred seasonal and trend terms are extracted from BFAST 

and allowed to be used as covariates in the LASSO model. 
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Results 

Data are presented in Figure 2. There is little overall variation in weather seasonality in 

Singapore over this time period (2001 to 2010), with slightly hotter temperatures (around 1–2°C 

higher) registered in the middle of the year, along with slightly higher absolute humidity. 

Relative humidity does not display any notable patterns, while the breeding percentage (i.e. the 

relative amount of Ae. aegypti) varies without any clear pattern. In contrast, dengue fluctuates 

between low level endemic and larger epidemic states. 

In cross-validation, 12 sets of optimal model complexity parameters were selected for the 12 

forecast windows. These included covariates whose effect was lagged from 1 to 20 weeks, and 

counting each lag separately in a total of 226 data streams, including seasonality and trend. We 

present the 12-week forecasts, including 95% prediction intervals, at various time points over the 

period 2001–2012 in Figure 3 for the LASSO and two other methods (step-down linear 

regression and SARIMA) (Dynamic 12-week forecasts for each model are presented in 

Supplemental Material, Video Files S1, S2, and S3). The LASSO and step-down approaches 

yield forecasts that can more accurately presage short-term incidence than the SARIMA model. 

The start and end of several epidemics are accurately forecasted by both LASSO and step-down 

approaches, although the peak of the large 2005 outbreak is not well described by the LASSO 

model. 

The relative forecast accuracy is assessed more formally by dividing the dataset into training 

(2001–2010) and validation sets (2011–2012), and comparing the Mean Absolute Percentage 

Error (MAPE) of the best guess of the forecast and the coverage of the forecast interval.  The 

results (Figure 4) support the use of LASSO to construct the forecasts: the LASSO approach 

yields more accurate forecast time periods for all except the first two-week window, in which the 
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performance of LASSO and step-down approaches are approximately equal. It is notable how 

slowly the MAPE degrades over time under the LASSO approach, with a rise from 17% error 

(95%CI 16—19%) forecasting one week to 24% error (95%CI 22—26%) forecasting three 

months into the future. In contrast, both the step-down and SARIMA approaches had a MAPE of 

29% at three months ahead (95%CI 26—32% [SARIMA], 27—32% [step-down]). In addition, 

while the LASSO and SARIMA predictions were conservative, in the sense that the actual 

coverage of prediction intervals exceeded the target of 95%, the step down approach led to 

forecasts that under-stated uncertainty, with a coverage that sometimes fell below the nominal 

level of 95% (Figure 4). 

Interpretation of climatic and other factors is made difficult because the strength of their 

association varies between forecast windows and they operate over different time lags, however 

recent dengue incidence (the autoregressive component) over a lag window of 1–5 weeks 

generally increased the forecast number of dengue cases, higher average weekly temperatures 

had a mostly dampening influence on forecast dengue cases, consistent with some findings in the 

literature (Morin et al. 2013), while the breeding percentage, reflecting the preponderance of Ae. 

aegypti, was mostly positively correlated with forecast dengue incidence. Dengue incidence over 

the next 4–5 weeks is positively associated with high levels of absolute humidity over the last 

month, and negatively associated with high humidity 15–20 weeks ago. 

The forecasts at various time points in Singapore’s record breaking 2013 epidemic, in which 

22170 cases were reported, are presented in Figure 5. Early in the epidemic (Figure 5a), the 

model forecast was of a mild rise, which was exceeded by the actual epidemic. By February 

(Figure 5b), the forecast was an almost perfect match to the data. At the end of April (Figure 5c), 

the forecast was of a decline, but the range of possible scenarios (the 95% interval for the 
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forecast) included the subsequently observed peak at ~800 cases per week. The end of the 

epidemic, starting in July, was also successfully forecast. Overall, the model predicted a slightly 

more rapid end to, and smaller size of, the epidemic than occurred. 

Discussion 

Penalized regression, of which LASSO is the most prominent methodology, is an idea that dates 

back to the 1990s (Tibshirani 2011), and which has over the last decade led to substantial 

theoretical and methodological advances in “small n large p” problems in which the number of 

observations is smaller than the number of potential predictors. By optimizing a combination of 

model goodness of fit (via the likelihood) and model complexity (via a penalty that grows with 

the size of the parameters in the model), and using cross-validation to identify the optimal 

penalty term, penalized regression can simultaneously handle both model building and parameter 

estimation, avoids over-fitting, and improves out-of-sample predictive accuracy (Hoerl and 

Kennard 1970; Zhao et al. 2006). By shrinking regression coefficients of less importance to or 

towards zero, and thereby retaining only the most important predictors, LASSO is able to obtain 

good interpretability and stability (Zhao et al. 2006).  

Despite being a well-established methodology that is frequently used in bioinformatics and other 

big-data applications (González-Recio et al. 2009; Shi et al. 2007; Wu et al. 2009), there are few 

applications of LASSO in epidemiology (for instance, Walter and Tiemeier 2009) or neglected 

tropical diseases. In this paper, we have demonstrated the use of LASSO in forecasting an 

endemic and high-burden disease—dengue—in Singapore which, by virtue of its location near 

the equator and concomitant lack of seasonality, leads to unpredictable outbreaks above the usual 

endemic level. The methodology has several advantages over traditional approaches: (i) model 

selection is rapid (approximately 2 minutes), automatic and objective, in contrast to more 
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laborious and sometimes subjective approaches such as the Hosmer-Lemeshow (2000) 

purposeful approach to model building or common approaches such as forward selection using 

p-values (Grechanovsky and Pinsker 1995); (ii) tautologically, by selecting the model 

complexity using cross validation to optimize predictive performance, predictive performance of 

the routine is optimized, and so the task of making better and more accurate forecasts is reduced 

to that of finding potentially informative covariates; (iii) LASSO allows large numbers of 

possible predictors to be considered without prejudicing the accuracy of the routine, as non-

predictive variables obtain zero coefficients for optimal values of the penalty term and thereby 

drop-out of the final model; (iv) By using distinct models for 1-week forecasts, 2-week forecasts, 

and so on, the variables used and the values of their associated coefficients can be tailored to the 

specific requirements of forecasting at different lengths into the future. While recent dengue 

cases (over the last 4 weeks) are important in forecasting for 1–12 weeks, average temperature is 

not useful in short-term forecasts (1–3 weeks) though it is for longer forecasts (4–12 weeks), 

highlighting the need for separate submodels for different forecast windows. Having distinct 

submodels also obviates the need to forecast future values of the predictors, as would be the case 

if a single model for one-week ahead were used and then iterated to obtain longer term forecasts.  

This approach led to high accuracy for both immediate (next week, MAPE 17%) and longer term 

(3 months, MAPE 24%) predictions. Although the forecast accuracy degrades as the forecast 

window is extended (see Figures 4), this degradation is surprisingly slight and we were able to 

predict the large outbreaks of both 2013 and 2014 over 10 weeks in advance, giving advance 

warning to allow operations to be rolled out.  We restricted the forecast window to 12 weeks to 

avoid the higher level of inaccuracy that accompanies longer term projection and because short 
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(several weeks) and medium term (several month) projections are the most useful for local 

planning purposes. 

There are, however, some limitations to this approach, the most major of which is that, although 

very good predictive accuracy can be achieved, the collection of 12 models built using LASSO 

methods are not amenable to interpretation as they are constructed for their predictive accuracy, 

not to explain the etiology of outbreaks. In particular, attempts to explain to stakeholders why the 

model forecast a large epidemic in 2013 were hindered by the numerous covariates acting at 

different lags. Interpretation is increasingly difficult at longer forecast windows. For example, 

around 60 predictors out of the complete set of more than 200 were selected for the 12-week-

ahead sub-model. Among these 60 variables, often the same covariate at different lags was 

selected, and frequently with differently signed coefficients at those different lags. The 

complexity needed for good forecasts reflects the multitude of factors operating on the vector 

and virus-vector interactions. One plausible way to reduce the apparent complexity would be to 

combine our approach with a mechanistic model of drivers of the mosquito life cycle, for 

instance via the Focks model (1995), with output from the mechanistic model replacing some or 

all of the environmental drivers in the statistical model. The variables we used include 

meteorological data, case data, vector surveillance data and human population data. Other 

relevant indicators of risk, particularly on circulating serotypes, genotypes, and evidence on herd 

immunity via occasional sero-epidemiological surveys, may subsequently be incorporated. 

However, because comprehensive analysis of genotype and serotype of dengue cases in 

Singapore started around 2006, and testing protocols have evolved since, we need to explore the 

best way to incorporate these sources of information.  
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The forecasting tool described in this paper has become an integral part of Singapore’s dengue 

control program. The final model is embedded in a “real-time” schedule, with data (at present) 

being updated weekly and predictions sent out to our operational partners (examples of the 

forecasts used in the 2013 outbreak are shown in Figure 5), including the Ministry of Health and 

the Environmental Public Health Operations Department of NEA. During the 2013 epidemic, our 

forecasts helped guide hospital bed management and public health interventions, including pre-

emptive source reduction measures, recruitment of ground staff, and education campaigns. In 

late March 2013, our models forecasted an earlier than usual increase in dengue cases in June 

2013, which could potentially peak at 800 cases/week. Specifically, the forecast predicted a peak 

in case count of 863 during the 26th week of 2013, which is very close to the observed number 

of cases, which peaked at 842 cases/week during the 25th week. On top of resource planning, 

this also facilitated early risk communication to the public, and the advanced launch of Dengue 

Campaign in April, two months ahead of its traditional June launch.  

Future work will automate the data handling process so that predictions can be generated and 

posted online without the routine being rerun manually; such automation will also allow the 

forecast to be made daily and hence to be genuinely ‘real time’.   Extending the forecasts beyond 

12 weeks may be challenging as some of the key drivers, such as local weather conditions, may 

have a short term but strong effect on dengue that requires integrating the predictive model with 

weather forecasting models, where longer term forecasts may not be readily available. 
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Figure Legends 

Figure 1: Model framework. Raw data from 2001 to 2010 including dengue cases, breeding percentage, 

temperature, humidity and population statistics are collated from Ministry of Health, National 

Environment Agency, and Department of Statistics Singapore before being transformed and divided into 

sets each containing predictors and a single output (dengue incidence at a future time point). In the third 

step, the LASSO method is employed to train and select the optimal models for future dengue forecast. In 

total 12 models are generated, one per forecast week. In the final step, the 12 models are aggregated 

together to make predictions over a 12-week window. 

Figure 2: Model input from 2001 to 2012. (a) dengue incidence, (b) breeding percentage (BP), defined 

as the proportion of Ae. aegypti, the primary vector of dengue in Singapore, compared to all 

Aedes spp (c) temperature, (d) relative humidity and (e) absolute humidity from 2001 to 2012. Data 

sources are described in the text. 

Figure 3: Comparison of dengue forecast from 2001 to 2012. Dengue forecast using (a) LASSO, (b)  

step-down linear regression and (c) SARIMA. For the LASSO, step-down linear regression and SARIMA 

methods, we selected all the data (2001 to 2012) except the year being forecast to develop the model (to 

approximate the out of sample predictive performance in the other results). In each plot, red lines 

represent model-based point estimates and the pink contours represent corresponding 95% prediction 

intervals. Each segment of predicted data (i.e., each pink and red region) represents the estimates from 

one 12-week forecast made at a previous point in time. Forecasts at other times are suppressed to simplify 

the figure, but are presented in Supplemental Material, Video Files S1, S2, and S3. 

Figure 4: Comparison of model performance among SARIMA, Step-Down linear regression and 

LASSO using Mean Absolute Percentage Error (MAPE %) and coverage of nominal 95% intervals. 

(a) MAPE comparison among LASSO, step-down linear regression and SARIMA over 1 to 12 weeks 

forecast windows. MAPE with 95% confidence intervals for  LASSO, step-down linear regression and 

SARIMA are represented with vertical bars, filled orange polygons and filled blue polygons, respectively. 

The MAPE degrades slower over time under the LASSO approach, with a rise from 17% error forecasting 

one week to 24% error forecasting three months, although the LASSO approach yields comparable 

accuracy as step-down linear regression and SARIMA for the first two weeks. (b) Coverage of LASSO, 

step-down LR and SARIMA. For each forecast window period, the percentage coverage is calculated 

using the number of observations which fall within the 95% interval derived by overlaying the estimated 

error distribution on top of the forecast. The dashed line represents the nominal coverage of 95%. 
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Figure 5: Illustration of model forecast in 2013 at weeks 1 (a), 8 (b), 16 (c) and 24 (d) using the 

LASSO method. In each panel, the x-axis represents time (2012/2013) and the y-axis the weekly number 

of dengue cases. The black lines indicate observed cases, the black dots indicate predicted (forecast) 

cases, and the pink contours indicate 95% intervals for the forecasts. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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