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Abstract 

Background: Studies have shown associations between mortality and long-term exposure to 

particulate matter air pollution. Few cohort studies have estimated the effects of the elemental 

composition of particulate matter on mortality.  

Objectives: Our aim was to study the association between natural cause mortality and long-term 

exposure to elemental components of particulate matter.  

Methods: Mortality and confounder data from 19 European cohort studies were used. 

Residential exposure to eight a priori selected components of particulate matter (PM) was 

characterized following a strictly standardized protocol. Annual average concentrations of 

Copper (Cu), Iron (Fe), Potassium (K), Nickel (Ni), Sulfur (S), Silicon (Si), Vanadium (V) and 

Zinc (Zn) within PM size fractions <2.5µm (PM2.5) and <10µm (PM10) were estimated using 

land-use regression models. Cohort-specific statistical analyses of the associations between 

mortality and air pollution were conducted using Cox proportional hazards models using a 

common protocol followed by meta-analysis. 

Results: The total study population consisted of 291,816 participants, of which 25,466 died from 

a natural cause during follow-up (average time of follow-up 14.3 years). Hazard ratios were 

positive for almost all elements and statistically significant for PM2.5 S (1.14; 95% CI: 1.06, 1.23 

per 200 ng/m3). In a two-pollutant model, the association with PM2.5 S was robust to adjustment 

for PM2.5 mass, whereas the association with PM2.5 mass was reduced.    

Conclusions: Long-term exposure to PM2.5 S was associated with natural cause mortality. This 

association was robust to adjustment for other pollutants and PM2.5. 
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Introduction 

Studies have shown associations between long-term exposure to particulate matter air pollution 

and mortality, with exposure characterized as the mass concentration of particles smaller than 10 

µm (PM10) or 2.5 µm (PM2.5) (Brook et al. 2010; Brunekreef and Holgate 2002). Although these 

studies have identified associations between exposure to particulate matter mass and mortality, 

there is still uncertainty as to which particle components are the most harmful. In addition, 

particulate matter effect estimates for long-term studies on mortality have differed among 

studies, and an explanation for this might be differences in the chemical composition of 

particulate matter (Hoek et al. 2013). 

Particulate matter is a heterogeneous mixture varying spatially and temporally in chemical 

composition related to the sources from which it originates (Kelly and Fussell 2012; Stanek et al. 

2011). Components for which associations with a range of health endpoints have been reported 

in epidemiological and / or toxicological studies include (transition) metals, elemental carbon, 

inorganic secondary aerosols (sulfate, nitrate), and organic components, but the evidence is not 

consistent (Kelly and Fussell 2012; Stanek et al. 2011).  

Most studies that have assessed mortality in association with exposure to elemental components 

have been short-term exposure studies and their results have varied considerably (Kelly and 

Fussell 2012; Stanek et al. 2011). Few studies have investigated mortality in relation to long-

term exposure to particle components. A lack of spatially resolved elemental composition 

measurement data and exposure models for elemental composition partly explains this (De 

Hoogh et al. 2013). The U.S. Six City and American Cancer Society cohort studies have 

suggested an association between long-term exposure to sulfate and mortality (Dockery et al. 

1993; Krewski et al. 2000; Pope et al. 1995; Pope et al. 2002), but no other particle composition 
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parameters have been evaluated in these studies. A cohort study among California Teachers 

found no statistically significant associations between all-cause mortality and long-term 

exposures to PM2.5 and several of its constituents, including elemental carbon, organic carbon 

(OC), sulfates, nitrates, iron, potassium, silicon, and zinc, although statistically significant 

associations were reported for more specific outcomes, especially ischemic heart disease 

mortality (Ostro et al. 2011).  

In the framework of the multi-center ESCAPE (European Study of Cohorts for Air Pollution 

Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts – Integrated 

Methodologies for Assessing Particulate Matter) projects, we added standardized exposure 

assessment for air pollution to mortality data from 19 ongoing cohort studies across Europe. 

Associations of particle mass (PM2.5, PM10, PMcoarse, and PM2.5 absorbance) and nitrogen oxides 

(NO2 and NOx) with natural cause mortality in the same cohorts have been reported previously 

(Beelen et al. 2014). We found a statistically significant elevated hazard ratio for PM2.5 of 1.07 

(95% CI: 1.02, 1.13) per 5 µg/m3. In this paper we report associations with particle elemental 

composition in 19 European cohorts to assess whether specific components are associated with 

natural cause mortality. A second aim was to assess whether the previously reported association 

with PM2.5 mass was explained by specific elements. Associations of particle composition and 

cardiovascular mortality have been published separately (Wang et al. 2014).   

Methods 

As described earlier, the association between natural cause mortality and particle components 

was analyzed in each cohort separately following the analysis protocol of the ESCAPE study 

(Beelen et al. 2014). A common STATA script was used which was explained in a training 

workshop for all local analysts. Cohort-specific results were sent to the coordinating institute 
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(IRAS, Utrecht University) for central evaluation. Cohort-specific effect estimates were 

combined by random-effects meta-analysis. Pooling of the cohort data was not possible due to 

data transfer and privacy issues.  

Study populations 

Nineteen cohorts from 12 countries across Europe were selected (Table 1, and Supplemental 

Material “Description of each cohort and study area” and Figure 1). The study areas of most 

cohorts consisted of a large city with surrounding smaller rural communities. Some cohorts 

included large regions of the country such as EPIC-MORGEN in the Netherlands, and the 

VHM&PP cohort in Austria. All included cohort studies were approved by the institutional 

medical ethics committees and undertaken in accordance with the Declaration of Helsinki. Each 

cohort study followed the rules for ethics and data protection set up in the country in which they 

were based. All participants gave consent according to national rules. 

Mortality outcome definition 

In all cohorts, follow-up was based upon linkage to mortality registries. Natural cause mortality 

was defined on the basis of the underlying cause of death recorded on death certificates as ICD-9 

codes: 001-779 and ICD-10 codes: A00-R99.  

Exposure assessment  

Particle composition concentrations at the baseline residential addresses of study participants 

were estimated by land use regression models following a standardized procedure described 

elsewhere (Beelen et al. 2013; De Hoogh et al. 2013; Eeftens et al. 2012a). Measurements of 

particles with aerodynamic diameter <2.5µm (PM2.5) and <10µm (PM10) were performed at 20 

sites in each of the study areas. Within each study area, each of the 20 sites was measured during 
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three two-week periods (during summer, winter, and an intermediate season) within one year. 

The total measurement period over all study areas was between October 2008 and May 2011. 

PM filters were weighed before and after each measurement centrally at IRAS, Utrecht 

University and were then sent to Cooper Environmental Services (Portland, OR, USA) to detect 

elements. All filters were analyzed for elemental composition using X-Ray Fluorescence (XRF) 

(De Hoogh et al. 2013). The three two-week measurements were averaged, adjusting for 

temporal trends using data from a background monitoring site with continuous data (Cyrys et al. 

2012; De Hoogh et al. 2013; Eeftens et al. 2012b).  

In ESCAPE we a priori selected eight of the 48 measured elements for further epidemiological 

evaluation based upon evidence of health effects (toxicity), representation of major 

anthropogenic sources, a high percentage of detected samples (>75%), and good precision of 

measurements (coefficient of variation < 10% for all elements, except Ni and V due to low 

concentration levels). We selected Cu, Fe, and Zn mainly for (nontailpipe) traffic emissions; S 

for long-range transport; Ni and V for mixed oil burning/industry; Si for crustal material; and K 

for biomass burning (Viana et al. 2008). Elements may have multiple sources, so they do not 

necessarily represent single sources.  

Predictor variables for nearby traffic intensity, population/household density, and land use were 

derived from Geographic Information Systems (GIS), and were evaluated to explain spatial 

variation of annual average concentrations using land use regression modeling. If values of 

predictor variables for the cohort addresses were outside the range of values for the monitoring 

sites, values were truncated to the minimum and maximum values at the monitoring sites. 

Truncation was performed to prevent unrealistic predictions (e.g. related to too small distance to 

roads in GIS) and because we did not want to extrapolate the derived model beyond the range for 
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which it was developed.  Truncation has been shown to improve predictions at independent sites 

(Wang et al. 2012). 

The results of the land use regression models were then used to estimate ambient particle 

composition concentration at the participants’ baseline addresses. A detailed description of the 

land use regression models for each of the 8 elements is presented in Supplemental Material, 

Tables S1-S9. 

Statistical analyses 

Cohort specific analyses 

Cox proportional hazards models were used for the cohort specific analyses following the 

analysis protocol in the ESCAPE study (Beelen et al. 2014). Age was used as the time scale 

because of evidence of better adjustment for potential confounding by age (Thiébaut and 

Bénichou 2004). Censoring occurred at the time of death for non-natural causes, emigration, loss 

to follow-up for other reasons, or at end of follow-up, whichever came first. Air pollution 

exposure was analyzed as a linear time-invariant variable. Potential confounders were available 

from questionnaires at baseline. We specified three confounder models with increasing levels of 

adjustment a priori. Confounder models were selected based upon previous cohort studies of air 

pollution and mortality and availability of data in a majority of the cohorts. The specific 

variables included as model covariates are listed for each cohort in Supplemental Material, 

Tables S10–S28. Model 1 included only age (time axis), gender, and calendar time (year(s) of 

enrollment, continuous for baseline periods of 5 years or less). Model 2 added the following 

individual level variables (as available for the individual cohorts): smoking status 

(never/former/current), smoking intensity, smoking duration, environmental tobacco smoke, fruit 

intake, vegetables intake, alcohol consumption (linear and squared term), body mass index 
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(BMI) (linear and squared term), educational level (low, medium, high), occupational class 

(white/blue collar classification), employment status, and marital status. Model 3 added area-

level socio-economic status (SES) variables, including mean income, percentage of people with a 

low income, unemployment rate, and educational level or deprivation index, which were defined 

for most of the cohorts at the neighborhood or municipality level (see Supplemental Material, 

Tables S10–S28 for details).  

Model 3 was selected as the main confounder model. Only subjects with complete information 

for Model 3 variables were included in the analyses. 

Two-pollutant models were conducted for each element by adjusting for particle mass (PM2.5, 

PM10, PMcoarse), PM2.5 absorbance, NO2, NOx, and other elements in separate models. As two 

pollutants may reflect the same source, two-pollutant models representing the independent effect 

of two pollutants may be difficult to interpret. Therefore, each two-pollutant model was 

restricted to data from studies for which the correlation between the two pollutants was ≤ 0.7. 

In sensitivity analyses, we added prevalent hypertension and physical activity to Model 3, and 

additionally adjusted for the classical cardiovascular risk factors prevalent diabetes and 

cholesterol level. Extended confounder models were used in sensitivity analyses because some 

potential effects of air pollution might be mediated (e.g. hypertension) or affected (physical 

activity) by these factors. 

All cohort-specific analyses were done in STATA versions 10-12 (StataCorp, College Station, 

TX, USA). 
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Meta-analysis 

Meta-analyses of cohort-specific effect estimates were conducted using the Dersimonian-Laird 

method with random effects (DerSimonian and Laird 1986). To keep exposure contrasts broadly 

comparable among pollutants, hazard ratios (HR) and 95% confidence intervals (CIs) were 

estimated for fixed increments corresponding to the mean difference between the 10th and 90th 

percentiles of measured pollutant concentrations across all study areas. Heterogeneity among 

cohorts was quantified by the I2 statistic and tested by the X2 test from Cochran’s Q statistic 

(Higgins and Thompson 2002).  

We tested whether effect estimates differed for cohorts for which the land use regression model 

cross-validation explained variance was smaller or larger than 50% by computing the X2 test of 

heterogeneity. In addition, we tested whether effect estimates differed by region of Europe 

(North: Sweden, Norway, Finland, Denmark; West and Middle: United Kingdom, the 

Netherlands, Germany, France, Austria, and Switzerland; South: Italy and Greece). We did not 

perform effect modification analyses for individual-level variables as this paper focuses on 

differences in effect estimates related to elemental composition. Only sex was an effect modifier 

for the association between PM2.5 and natural mortality in the same cohorts (Beelen et al. 2014). 

All tests were two-sided and p values of <0.05 were deemed statistically significant. 

All meta-analyses were conducted in STATA, version 12.1 (StataCorp, College Station, TX, 

USA). 
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Results 

Characteristics of the study population 

The total study population consisted of 291,816 participants contributing 4,168,461 person-years 

at risk (average time of follow-up 14.3 years), of which 25,466 died from a natural cause during 

follow-up (Table 1). Cohorts were recruited mostly in the 1990s. Cohorts differed in the number 

of participants, the mean baseline age, and the availability of specific covariate data (Table 2, 

and Supplemental Material Tables S10–S28). Age, gender, smoking status (current, former, or 

never smoker), and an area-level SES variable were available for all cohorts. Smoking intensity 

(average cigarettes/day) and duration (years of smoking) were available as continuous variables 

for all cohorts with the exception of the VHM&PP (Vorarlberg state) and E3N (Paris and 

surrounding rural areas) cohorts, for which only smoking status was available. VHM&PP had 

data on occupation and employment status, but not on education. On average, we had complete 

Model 3 covariate information for more than 90% of cohort participants. 

Air pollution exposure 

Substantial variations of estimated annual mean concentrations at participant addresses were 

observed within and between the majority of cohorts and elements (see Figure 2 and 

Supplemental Material, Figure S1 for PM2.5 and PM10 elemental composition concentrations, 

respectively). The largest within-cohort contrasts were found for Cu, Fe, Si, and Zn, with the 

largest contrasts generally found in South European study areas. The main exception was Si 

where the largest within-area contrast was found for the North European study areas 

(Supplemental Material, Figure S1). The smallest within-cohort contrasts were found for S.  

Higher concentrations of most elements were observed in Southern study areas. Estimated 

annual mean S in PM2.5 concentrations, for example, show a steady increasing north− south 
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gradient with averages from 635 ng/m3 for FINRISK, Finland to 1626 ng/m3 for EPIC-Athens, 

Greece. Correlations between elements and particle mass varied considerably among elements 

and cohorts; average correlations between elements and mass (in the same PM size fraction) 

were ~0.5, with a range from ~0.3 to ~0.7 (Supplemental Material, Table S29), indicating that 

associations with individual elements could be estimated after adjusting for PM mass in the 

majority of cohorts. . 

Good land use regression exposure models were developed for Cu, Fe, and Zn in both fractions 

(PM10 and PM2.5), as indicated by average cross-validation explained variances (R2) between 

55% and 81%, although R2 values varied between areas (see Supplemental Material, Tables S1–

S9). Traffic variables were the dominant predictors, reflecting nontailpipe emissions (De Hoogh 

et al. 2013). In general, models for the other elements performed moderately well, with average 

cross-validation R2 values between ~50% and ~60%. However, for PM2.5 S the average cross-

validation R2 was 30% (range 2 to 67%, Supplemental Material, Table S6), consistent with the 

relatively low spatial variation of sulfur concentrations.  

Single pollutant results 

Positive HRs were estimated for almost all exposures, with a statistically significant association 

for PM2.5 S (HR = 1.14; 95% CI: 1.06, 1.23 per 200 ng/m3) (Table 3, Figure 3, and Supplemental 

Material, Figures S2–S15). Borderline statistically significant associations (p > 0.05 and ≤ 0.10) 

were found for PM2.5 Si (HR = 1.09; 95% CI: 0.99, 1.09 per 100 ng/m3), PM10 Ni (HR = 1.09; 

95% CI: 1.00, 1.19 per 2 ng/m3) and PM10 K (HR = 1.03; 95% CI: 1.00, 1.06 per 100 ng/m3). 

The evidence for an association was smaller for Zn and V. Estimates did not support associations 

of mortality with the non-tailpipe traffic pollutants Cu and Fe. In general, HRs based on 

confounder Model 1 (adjusted for calendar year and gender only) were the highest, while HRs 
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moved closer to the null after adjustment for individual level confounders (Model 2). Sensitivity 

analyses showed that especially smoking variables were responsible for this decrease (Beelen et 

al. 2014). In contrast, additional adjustment for area-level socio-economic status variables 

(Model 3) had relatively little influence on HRs (Table 3). Cohort specific HRs for PM2.5 S were 

above 1 for all cohorts, except for SDPP and KORA (Figure 3). There was no statistical evidence 

of  heterogeneity among the individual cohort effect estimates for PM2.5 S (I2 = 0, p = 0.94). 

Average correlation between PM2.5 S and PM10 S over the different cohorts was 0.56 with a 

range of 0.18-1.00 (data not shown). The HR for PM10 S was also positive (HR = 1.09; 95% CI: 

0.99, 1.19 per 200 ng/m3), although not statistically significant (Figure 3). 

For the other elements there was more heterogeneity among individual cohort effect estimates, 

although for most elements heterogeneity was low (I2 < 25%) to moderate (I2 25–50%) and not 

statistically significant (Table 3 and Supplemental Material, Figures S2–S15). 

Two-pollutant results 

Results from the two-pollutant models suggested that the associations of elements were generally 

robust to adjustment for other elements and pollutants (see Supplemental Material, Figures S16 

and S17). We also investigated whether the previously reported association between natural 

cause mortality and PM2.5 mass (Beelen et al. 2014) was robust to adjustment for PM2.5 S. The 

median correlation between PM2.5 and PM2.5 S over the cohorts was 0.53 (range 0.26 – 0.86) 

(Supplemental Material, Table S29). The combined effect estimate for PM2.5 S from the two-

pollutant model adjusted for PM2.5 did not differ from the single-pollutant model estimate (Table 

4). However, the HR for PM2.5 was closer to the null and statistically non-significant when 

adjusted for PM2.5 S (HR = 1.07; 95% CI: 1.02, 1.13 vs HR = 1.02; 95% CI: 0.96, 1.09 per 5 

µg/m3). In addition, Table 4 shows the two-pollutant model results for PM2.5 Si, PM10 K and 
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PM10 Ni as the single-pollutant associations for these elements were borderline statistically 

significant. After adjustment for PM2.5 S, associations with PM10 Ni (HR = 1.09; 95% CI: 0.98, 

1.22 vs HR = 1.06; 95% CI: 0.95, 1.18 per 2 ng/m3) were slightly reduced (Table 4).  

Sensitivity analyses 

Additional adjustment for hypertension and physical activity, and for diabetes and cholesterol, 

had little effect on combined HRs compared with Model 3 HRs (see Supplemental Material, 

Table S30).  

Because the VHM&PP cohort had a weight of ~47% in the pooled PM2.5 S analyses (Figure 3), 

we conducted a sensitivity analyses without this cohort. Confidence intervals became slightly 

wider, but PM2.5 S HR remained similar after exclusion of the VHM&PP cohort: (HR = 1.12; 

95% CI: 1.01, 1.24 compared with HR = 1.14; 95% CI: 1.06, 1.23 before exclusion). Effect 

estimates for all elements were similar for the cohorts for which the land use regression model 

cross-validation explained variance was < 50% or >50% (for example, for PM2.5 S, HR = 1.12; 

95% CI: 1.01, 1.25; N=14 and HR = 1.16; 95% CI: 1.05, 1.28; N=4, respectively) (p = 0.65). 

PM2.5 S effect estimates were also not statistically different between the cohorts in different 

regions: 1.17 (95% CI: 0.94, 1.45) for North (N=7); 1.13 (95% CI: 1.04, 1.23) for West and 

Middle (N=7); and 1.27 (95% CI: 0.92, 1.75) for South (N=4) (p = 0.78). For the other elements 

also no significant differences were found between effect estimates based on validation R2 or 

region (data not shown). 

Discussion 

Long-term exposure to PM2.5 S was positively associated with natural cause mortality, with no 

indication of heterogeneity among individual cohort effect estimates.  
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The association between PM2.5 S and mortality was robust to adjustment for co-pollutants 

including PM2.5 mass. The PM2.5 mass effect estimate was reduced and became statistically non-

significant when adjusted for PM2.5 S.  

Comparison of S mortality associations with previous studies 

Only a few studies have estimated associations of mortality with long-term exposures to particle 

components. Sulfate has received the most attention in epidemiological studies. Elemental sulfur 

is assumed to be present as a marker for sulfate. Several cohort studies suggested an association 

between long-term exposure to sulfate and mortality. An association between sulfate and 

mortality was reported in the Six Cities study (Dockery et al. 1993). The adjusted HR comparing 

the cities with the highest and lowest sulfate concentrations (a contrast of 8 µg/m3) was 1.26 

(95% CI: 1.08; 1.47), corresponding to a HR of 1.03 (95% CI: 1.01; 1.05) per 1 µg/m3. Within 

the initial ACS study the adjusted HR of all-cause mortality for areas with the highest and lowest 

concentrations of sulfate (19.9 µg/m3 contrast) was 1.15 (95% CI: 1.09, 1.22) (Pope et al. 1995), 

resulting in a HR of 1.01 (95% CI: 1.00; 1.01) per 1 µg/m3. Pope et al. (2002) investigated 

additional years of follow-up in the ACS Study and estimated an HR for sulfate and natural 

mortality of about 1.01 (95% CI: 1.00; 1.01) per 1 µg/m3 (Pope et al. 2002). A recent analysis of 

the ACS cohort reported that sulfate, elemental carbon, and ozone all had positive and 

statistically significant associations with all-cause mortality, but sulfate had the most robust 

association (HR = 1.01 (95% CI: 1.00; 1.01) per 1 µg/m3) (Smith et al. 2009). In the recent 

National Particle Component Toxicity (NPACT) initiative, a similar risk for the association 

between sulfur exposure and all-cause mortality (HR 1.09 per 200 ng/m3) was estimated using 

ACS cohort data (Lippmann et al. 2013). Within the NPACT initiative also data from the 

Women’s Health Initiative–Observational Study (WHI-OS) cohort were used to study the 



 

19 
 

association with cardiovascular mortality and (fatal and non-fatal) cardiovascular events (Vedal 

et al. 2013). Long-term exposure to air pollutant concentrations was estimated with a national 

exposure spatial model. No association was found with all cardiovascular deaths and sulfur (HR 

1.01; 95%: 0.92, 1.12 per 0.25 µg/m3), but the association with cardiovascular events was 

statistically significant (HR 1.09; 95%: 1.05, 1.14 per 0.25 µg/m3). A cohort study of ~45,000 

active and former female public school professionals in the California Teachers Study 

investigated the association between mortality and long-term exposures to PM2.5 and several of 

its constituents, including elemental carbon, organic carbon, sulfates, nitrates, iron, potassium, 

silicon, and zinc (Ostro et al. 2011). Participants whose residential addresses were within 8 or 30 

km of a monitor collecting PM2.5 constituent data were included in the analyses. No statistically 

significant associations between all-cause mortality and PM2.5 mass or any of its measured 

constituents were reported. The HR for sulfate was 1.06 (95% CI: 0.97, 1.16) for an interquartile 

range contrast of 2.2 µg/m3, corresponding to a HR of 1.03 per 1 µg/m3. However, the HR for 

sulfate and ischemic heart disease mortality was 1.48 (95% CI: 1.20, 1.82) for an interquartile 

range contrast of 2.2 µg/m3.    

The estimated effect of PM2.5  S on natural cause mortality in our study population (HR 1.14 per 

0.2 µg/m3 S) corresponds to a HR of 1.24 (95% CI: 1.10, 1.41) per 1 µg/m3 sulfate, assuming all 

S is present as sulfate (sulfate to S ratio of 3). Our effect estimate is thus much larger than the 

estimate from the US cohort studies that investigated total mortality. A major difference between 

our study and these US studies is that our study was based upon contrasts within study areas, 

whereas the US studies focused on between-area contrasts. Sulfate is mostly formed in the 

atmosphere by oxidation of gaseous sulfur dioxide (SO2) emissions (U.S. Environmental 

Protection Agency 2004). Sulfate is concentrated in fine particles that can be transported over 
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long distances, resulting in a high regional background with typically small spatial variation 

within metropolitan areas (U.S. Environmental Protection Agency 2004). Most of our study 

areas comprised a major city and smaller surrounding communities, with some cohorts covering 

a larger area (e.g., the Vorarlberg region). Consistently, the exposure contrast in our study was 

much smaller than in the US studies, both for the S measurements (De Hoogh et al. 2013), and 

cohort exposures. Measured urban background PM2.5 S concentrations were on average 9% 

higher than regional background concentrations. Concentrations at traffic sites were only 2% 

higher than at urban background sites. Predictor variables in the land use regression models for 

PM2.5 S included especially traffic at various scales, population or address density, and urban 

green space (see Supplemental Material, Tables S1–S9). Presumably because of the small 

measured within-study area contrasts, the average cross-validation R2 was 30% for PM2.5 S, with 

a range of 7 – 70%. Because land use regression models were developed for each study area 

separately, we could not exploit between-study area variations in PM2.5 S that would have 

improved the model performance. In the ESCAPE study, which focuses on within-area contrasts 

in pollution, these models reflect a combination of variation in primary sulfate emissions and 

secondary sulfate formation (De Hoogh et al. 2013). Depending on meteorological conditions, 

SO2 to sulfate conversion rates of 1-5% per hour have been estimated (U.S. Environmental 

Protection Agency 2004), implying that some conversion already occurs at scales of 10 - 50 km 

(a typical wind speed is 10 km/hour). A study in Berlin, Germany documented measurable 

sulfate formation within 50km of the source (Lammel et al. 2005).  

PM2.5 mass also was associated with mortality in the three US studies (Dockery et al. 1993; Pope 

et al. 1995; Pope et al. 2002). However, sulfate concentrations were highly correlated with PM2.5 

mass concentrations in the US studies, and thus associations between mortality and sulfate may 
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be difficult to distinguish from associations between mortality and PM2.5 mass. The median 

correlation between estimated PM2.5 and PM2.5 S over the 19 cohorts in our study was 0.53 

(range 0.26 – 0.86), which made it possible to estimate mutually-adjusted associations with 

PM2.5 S and PM2.5 mass. The lower correlation in our study probably reflects the finer spatial 

resolution at which concentrations were estimated. The median correlation of measured within-

area contrast in PM2.5 and S was very similar (0.6) to the median correlation within cohorts, 

suggesting that the moderate model R2 values for S did not artificially induce the low correlation. 

Another study that reported evidence of effects of sulfur on mortality was an intervention study 

in Hong Kong that studied the effects of limiting the sulfur content of fuel oils used in both 

power plants and vehicles (Hedley et al. 2002). Initial findings indicated a decrease in sulfur 

dioxide that was associated with prompt and persistent reductions in mortality, suggesting that 

higher mortality prior to the limitation may have been related to sulfate and/or sulfur dioxide. 

Subsequent analysis, however, revealed that the reduction in sulfur dioxide was highly correlated 

with reductions in both vanadium and nickel derived from residual oil emissions (Hedley et al. 

2006). In our study correlations between elements were smaller, suggesting that the association 

between PM2.5 S and mortality is not explained by exposure to other elements such as V and Ni. 

This is also supported by the robust HRs for PM2.5 S after adjustment for co-pollutants. 

However, we cannot rule out the possibility that the association with PM2.5 S may be due to other 

correlated PM components. 

Interpretation of S associations 

Toxicological studies have provided little support for a causal effect of sulfate, despite fairly 

consistent associations in epidemiological studies (Kelly and Fussell 2012). Sulfate may 

indirectly affect health e.g. by solubilizing metals and thereby increasing their bioavailability, 
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and by catalyzing the formation of secondary organic PM (Kelly and Fussell 2012). We 

identified associations with small-scale spatial variations in S and we speculate that this may 

reflect an influence of primary combustion from S containing fuels and serve as a marker of 

within-city air pollution differences, i.e., between city centers and surrounding areas. 

Associations with other elements 

None of the other elements evaluated in our analysis were significantly associated with mortality, 

though HRs were positive for almost all elements. There was greater heterogeneity among 

individual cohort effect estimates for elements other than PM2.5 S, though for most elements the 

heterogeneity was not statistically significant. There was little evidence of associations with Cu 

and Fe, which were mainly selected as markers of (non-tailpipe) traffic emissions. Source 

apportionment studies conducted elsewhere have reported that Fe is mostly associated with road 

dust and brake abrasion, while Cu is associated with tire and brake abrasion (reviewed by Viana 

et al. 2008). Our land use regression models had the best fit for these elements because traffic 

predictors were available and traffic sites were overrepresented in the measurement campaign. 

Therefore, we believe that the lack of an association in our study is unlikely to be due to 

exposure measurement error. In our previous analysis of the same set of cohorts we estimated 

non-significant positive HRs for NO2 (1.01; 95% CI: 0.99, 1.03 per 10 µg/m3), NOx (1.02; 95% 

CI: 1.00, 1.04 per 20 µg/m3) and PM2.5 aborbance (1.02; 95% CI: 0.97, 1.07 per 10-5/m), 

pollutants affected by tailpipe emissions (Beelen et al. 2014). 

In single pollutant models we found borderline statistically significant positive associations 

between natural cause mortality and Si in PM2.5, but not Si in PM10, despite substantially higher 

Si concentrations in the coarse fraction. Source apportionment studies suggest that Si is primarily 

associated with crustal material in resuspended soil and road dust (Viana et al. 2008). In our 
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previous analyses we did not find an association between mortality and coarse particles (Beelen 

et al. 2014).  

Source apportionment studies suggest that both V and Ni are linked to crude oil and derived 

mainly from shipping emissions, and that K is linked to biomass burning (Viana et al. 2008). In 

single pollutant models we found borderline statistically significant associations for Ni and K in 

PM10. General industry and port land use were the only predictor variables available for Ni and 

V in our exposure models. A specific predictor variable for wood smoke was not available (De 

Hoogh et al. 2013). The lack of more specific predictors in the V, Ni, and K exposure models 

may have limited our ability to detect element-specific mortality associations for these PM 

components.  

Strengths and limitations  

Our study has several strengths: large sample size, broad European coverage, adjustment for a 

wide range of potential (individual) confounders, and multiple elements with a high percentage 

of detected samples (>75%) and good precision of measurements in all 19 cohorts (coefficient of 

variation < 10% for all elements, except Ni and V due to low concentration levels). An 

advantage compared with previous long-term studies of elemental composition that compared 

between-city variation and ignored within-city variation, is that we could estimate spatial 

contrasts at much smaller spatial scales using land use regression models that were developed in 

a standardized way for all 19 cohorts.  

We used data from measurements in 2008–2011 to develop land use regression models that were 

applied to addresses at baseline, mostly in the mid-1990s. Emissions of sulfur in Europe have 

been reduced following a series of control measures during the last two decades (Fowler et al. 
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2007). However, recent studies in the Netherlands, Rome, the UK, and Vancouver have reported 

that the spatial contrast of nitrogen dioxide air pollution has been stable over a period of 10 years 

or longer (Cesaroni et al. 2012; Eeftens et al. 2011;Gulliver et al. 2013; Wang et al. 2013). In 

addition, spatial models for black smoke and sulfur dioxide in the UK provided reasonable 

predictions, even going back to the 1960s, with a correlation between 1962 and 1991 

concentrations of 0.53 for black smoke and 0.26 for sulfur dioxide (Gulliver et al. 2011). 

However, we cannot rule out the possibility that spatial contrasts for specific components may 

have been less stable over time.  

We did not account for residential mobility during follow-up in the current analyses. In our 

previous analysis of natural cause mortality in association with particulate matter and nitrogen 

oxides in the same cohorts, HRs for participants who moved during follow-up did not differ 

significantly from HRs for the complete study population, though they were slightly higher 

(Beelen et al. 2014). 

We investigated 8 a priori selected elements in both the PM2.5 and PM10 fractions, so there might 

be some spurious associations due to multiple comparisons. In addition, correlated elements may 

act as surrogates for elements that are the actual causes of increased mortality. Although for 

almost all elements HRs were positive, the association with PM2.5 S clearly was the strongest. In 

addition, the PM2.5 S mortality associations were robust to adjustment for other elements, as well 

as particle mass. In addition, cohort-specific PM2.5 S HRs were almost all above 1 (Figure 3) and 

there was no significant heterogeneity among cohort-specific PM2.5 S HRs (Table 3), indicating 

consistency among the cohort results.  The strength of the association, its consistency among 

cohorts, and its robustness to adjustment decrease the likelihood that the association is a spurious 

finding. 
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Differences in the accuracy of exposure estimates could bias effect estimates and standard errors 

for individual elements. When the measurements of two elements are correlated, part of the 

association between mortality and the element with more measurement error could be shifted to 

the estimate of association with the element with less measurement error. Accuracy of exposure 

estimates may depend on both the precision of the measurements as well as the performance of 

the exposure models. The eight selected elements were detected in large majority (>75%) of the 

samples. Measurement precision was best for S, Cu, and Fe but poorer for Ni and V, especially 

in study areas with low concentration levels (De Hoogh et al. 2013).  

Conclusion 

In conclusion, long-term exposure to PM2.5 S was associated with natural cause mortality. This 

association was robust to adjustment by other pollutants, including particle mass. 
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Table 1. Description of the included cohort studies. 

Cohorta N totalb N NMc Mean age 
(years) at 
baseline 

± SD 

Baseline period Total follow-up 
time in person-

years (mean 
follow-up) 

Study area description 

FINRISK, Finland 10,224 602 47.9 ± 13.2 1992; 1997; 2002; 2007 108,434 (10.6) Greater Helsinki Area and Turku city and its rural surroundings 
HUBRO, Norway 18,102 1182 48.3 ± 15.2 2000-2001 173,798 (9.6) City of Oslo 
SNAC-K, Sweden 2401 395 70.3 ± 8.1 2001-2004 15,568 (6.5) City of Stockholm 
SALT/Twin gene, Sweden 5473 581 58.0 ± 9.9 1998-2002 47,767 (8.7) Stockholm County 
60-y/IMPROVE, Sweden 3612 303 60.4 ± 0.1 1997-1999 40,612 (11.2) Stockholm County 
SDPP, Sweden 7408 248 47.1 ± 5.0 1992-1998 102,831 (13.9) Stockholm County 
DCH, Denmark 35,458 3770 56.7 ± 4.4 1993-1997 469,571 (13.2) City of Copenhagen and surrounding areas 
EPIC-MORGEN, 
Netherlands 

16,446 795 43.9 ± 10.9 1993-1997 217,722 (13.2) Cities of Amsterdam, Maastricht and Doetinchem and 
surrounding rural areas 

EPIC-PROSPECT, 
Netherlands 

15,670 1269 57.7 ± 6.0 1993-1997 202,809 (12.9) City of Utrecht and surrounding rural areas 

SALIA, Germany 4352 618 54.5 ± 0.6 1985-1987; 1990-1994 81,093 (18.6) Areas in the cities of Dortmund, Duisburg, Essen, 
Gelsenkirchen and Herne situated in the Ruhr Area and 
adjacent towns Borken and Dülmen 

EPIC-Oxford, UK 8598 443 45.0 ± 13.1 1993-2001 110,097 (12.6) Urban and rural areas in a buffer of 10 km around London-
Oxford area 

KORA, Germany 8399 673 49.5 ± 13.8 1994-1995; 1999-2001 88,592 (10.5) City of Augsburg and two adjacent rural counties 
VHM&PP, Austria 117,824 13,081 41.9 ± 14.9 1985-2005 2,039,328 (17.3) State of Vorarlberg, excluding high mountain areas (> 600m) 

and areas within 300m of state border 
SAPALDIA, Switzerland 1250 65 42.0 ± 11.9 1991 20,294 (16.2) City of Lugano 
E3N, France 10,915 516 53.0 ± 6.8 1993-1996 147,021 (13.5)  City of Paris and surrounding rural areas  
EPIC-Turin, Italy 7261 302 50.4 ± 7.5 1993-1998 97,549 (13.4) City of Turin 
SIDRIA-Turin, Italy 5054 129 44.2 ± 6.2 1999 55,667 (11.0) City of Turin 
SIDRIA-Rome, Italy 9177 239 44.3 ± 6.0 1999 102,856 (11.2) City of Rome 
EPIC-Athens, Greece 4192 255 49.4 ± 11.7 1994-1999 46,852 (11.2) Greater Athens Area 
aOrder of cohorts is North to South gradient, bTotal study population: Number of observations with complete data for all Model 3 (main model) covariates. 
cNumber of deaths from natural-cause mortality.
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Table 2. Population characteristics of the included cohort studies at baseline.  

Cohorta % 
women 

% never 
smokers 

Cigarettes 
/ dayb 

Years of 
smokingb 

BMI 
(kg/m2) b 

Fruit intakec Alcohol 
intaked 

% married / 
living with 

partner 

% low 
educational 

level 

% employed / 
self-

employed 
FINRISK, Finland 54% 45% 3.8 ± 7.8 8.6 ± 12.2 26.4 ± 4.6 66% 0.9 ± 1.3 70% 31% 69% 
HUBRO, Norway 56% 46% 6.8 ± 8.4 11.6 ± 14.4 25.7 ± 4.1 40% 51% 50% 18% 73% 
SNAC-K, Sweden 60% 44% 7.1 ± 9.5 9.8 ± 15.2 26.0 ± 4.1 NA 22% 54% 21% 29% 
SALT/Twin gene, 
Sweden 

56% 39% 8.5 ± 9.7 16.7 ± 17.3 28.6 ± 4.1 NA NA 68% 22% NA 

60-y/IMPROVE, 
Sweden 

53% 41% 8.0 ± 9.1 15.2 ± 16.4 26.8 ± 4.2 64% 8.9 ± 9.7 72% 28% 51% 

SDPP, Sweden 62% 37% 8.5 ± 8.8 12.3 ± 12.4 25.6 ± 4.0 92% 1.3 ± 1.9 84% 26% 92% 
DCH, Denmark 54% 36% 6.3 ± 10.4 18.7 ± 17.1 26.0 ± 4.1 183.2 ± 151.2 21.7 ± 22.8 69% 30% 80% 
EPIC-MORGEN, 
Netherlands 

54% 35% 10.4 ± 11.1 14.3 ± 13.7 25.2 ± 4.0 171.9 ± 129.2 12.7 ± 18.0 68% 12% NA 

EPIC-PROSPECT, 
Netherlands 

100% 45% 5.7 ± 7.4 15.2 ± 16.5 25.5 ± 4.1 231.6 ± 139.2 9.0 ± 12.4 77% 22% NA 

SALIA, Germany 100% 75% 2.6 ± 6.6 4.4 ± 10.5 NA NA NA NA 29% NA 
EPIC-Oxford, UK 75% 60% 5.5 ± 8.8 7.3 ± 11.5 24.3 ± 4.3 253.6 ± 216.5 10.0 ± 12.3 67% 34% 77% 
KORA, Germany 51% 44% 9.2 ± 13.3 12.0 ± 14.2 27.2 ± 4.6 60% 16.3 ± 22.3 76% 13% 58% 
VHM&PP, Austria 56% 70% NA NA 24.8 ± 4.3 NA NA 68% NA 69% 
SAPALDIA, 
Switzerland 

56% 45% 11.1 ± 14.4 11.1 ± 13.0 23.8 ± 3.9 NA NA 58% 11% 81% 

E3N, France 100% 49% NA NA 22.8 ± 3.3 236.2 ± 162.5  12.4 ± 15.4 NA 5% NA 
EPIC-Turin, Italy 48% 43% 7.2 ± 8.2 17.6 ± 16.3 25.3 ± 3.8 318.2 ± 182.2 18.1 ± 20.3 86% 44% NA 
SIDRIA-Turin, Italy 52% 38% 9.3 ± 10.2 11.3 ± 10.6 NA NA NA 95% 18% 72% 
SIDRIA-Rome, Italy 53% 35% 10.1 ± 10.5 11.7 ± 10.4 NA NA NA 100% 45% NA 
EPIC-Athens, 
Greece 

55% 40% 1.7 ± 15.0 10.8 ± 13.1 27.5 ± 4.5 402.6 ± 258.2 9.2 ± 14.5 78% 24% 67% 

aOrder of cohorts is North to South gradient. bMean ± SD. cMean ± SD (g/day) or percentage reporting daily fruit consumption. For SDPP it is percentage 

daily/weekly fruit consumption. dMean ± SD (g/day) or percentage reporting daily alcohol consumption. For FINRISK it is number of glasses of 

alcoholic drink during last week. For SDPP it number of glasses of alcoholic drinks per day. For HUBRO it is the percentage reporting weekly alcohol 

consumption. NA is not available or available with large number of missings (e.g. BMI in SALIA and smoking variables in E3N).  

A detailed description of each cohort can be found in Supplemental Material, Tables S10–S28. 
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Table 3. Association between natural cause mortality and exposure to elemental composition of PM: Results from random-effects 

meta-analyses (HRs and 95%-CIs) (using main confounder models 1, 2 and 3).a  

Exposure Number of 
cohorts 

Model 1b 
 

Model 2b Model 3b p-value 
model 3 

I2 (p-value)c 

PM2.5 Cu 19 1.08 (1.00, 1.17) 1.00 (0.94, 1.06) 0.98 (0.92, 1.04) 0.54 16.4 (0.25) 
PM10 Cu 19 1.07 (1.00, 1.15) 1.02 (0.95, 1.08) 1.01 (0.95, 1.07) 0.83 43.5 (0.02) 
PM2.5 Fe 19 1.12 (1.05, 1.18) 1.04 (0.99, 1.10) 1.03 (0.98, 1.09) 0.20 10.1 (0.33) 
PM10 Fe 19 1.08 (1.02, 1.15) 1.03 (0.97, 1.09) 1.02 (0.97, 1.08) 0.44 43.9 (0.02) 
PM2.5 Zn 19 1.07 (1.00, 1.15) 1.04 (1.00, 1.08) 1.03 (0.99, 1.08) 0.17 21.4 (0.19) 
PM10 Zn 19 1.09 (1.01, 1.17) 1.04 (1.00, 1.09) 1.04 (0.99, 1.09) 0.18 31.5 (0.09) 
PM2.5 S 18d 1.29 (1.11, 1.50) 1.16 (1.08, 1.25) 1.14 (1.06, 1.23) 0.003 0 (0.94) 
PM10 S 18d 1.23 (1.07, 1.42) 1.09 (1.00, 1.19) 1.09 (0.99, 1.19) 0.11 29.8 (0.11) 
PM2.5 Ni 14e 1.12 (1.02, 1.22) 1.05 (0.97, 1.15) 1.05 (0.97, 1.13) 0.27 20.3 (0.23) 
PM10 Ni 17f 1.22 (1.05, 1.41) 1.09 (1.00, 1.19) 1.09 (1.00, 1.19) 0.08 30.3 (0.12) 
PM2.5 V 15g 1.22 (1.03, 1.44) 1.07 (0.95, 1.20) 1.07 (0.93, 1.23) 0.35 32.5 (0.11) 
PM10 V 18d 1.07 (0.93, 1.24) 1.04 (0.96, 1.12) 1.03 (0.95, 1.12) 0.46 5.7 (0.39) 
PM2.5 Si 16h 1.18 (1.03, 1.34) 1.10 (0.99, 1.21) 1.09 (0.99, 1.09) 0.10 31.6 (0.11) 
PM10 Si 18d 1.13 (1.00, 1.28) 1.04 (0.97, 1.11) 1.03 (0.97, 1.11) 0.37 47.6 (0.01) 
PM2.5 K 18i 1.06 (0.98, 1.14) 1.05 (0.99, 1.11) 1.07 (0.99, 1.15) 0.12 28.6 (0.13) 
PM10 K 18j 1.05 (0.99, 1.12) 1.03 (1.00, 1.06) 1.03 (1.00, 1.06) 0.08 0 (0.74) 
aHRs are presented for the following increments: 5 ng/m³ PM2.5 Cu, 20 ng/m³ PM10 Cu, 100 ng/m³ PM2.5 Fe, 500 ng/m³ PM10 Fe, 10 ng/m³ PM2.5 

Zn, 20 ng/m³ PM10 Zn, 200 ng/m³ PM2.5 S, 200 ng/m³ PM10 S, 1 ng/m³ PM2.5 Ni, 2 ng/m³ PM10 Ni, 2 ng/m³ PM2.5 V, 3 ng/m³ PM10 V, 100 ng/m³ 

PM2.5 Si, 500 ng/m³ PM10 Si, 50 ng/m³ PM2.5 K, and 100 ng/m³ PM10 K. bModel 1: adjusted for gender and calendar time; Model 2: as in Model 1 

also adjusting for smoking status, smoking intensity, smoking duration, environmental tobacco smoke, fruit intake, vegetables intake, alcohol 

consumption, body mass index, educational level, occupational class, employment status, marital status; and Model 3: as in Model 2 also adjusting 

for area-level socio-economic status. cI2 and Cochran’s test for heterogeneity for model 3. dNo modeled air pollution estimates available for 

SAPALDIA. eNo modeled air pollution estimates available for SNAC-K, SALT/Twin gene, 60-yr/IMPROVE, SDPP. fNo modeled air pollution 

estimates available for HUBRO, SAPALDIA. gNo modeled air pollution estimates available for HUBRO, KORA, VHM&PP, SAPALDIA. hNo 

modeled air pollution estimates available for HUBRO, SAPALDIA, EPIC-Athens. iNo modeled air pollution estimates available for SALIA. jNo 

modeled air pollution estimates available for HUBRO.  
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Table 4. Results from random-effects meta-analyses from single pollutant and two-pollutant 

models for association with natural cause mortality (using main model 3) (HRs and 95%-CIs).a  

Exposure Adjusted for Single pollutant Two-pollutant 
PM2.5 Sb PM2.5 1.15 (1.06, 1.24) 1.13 (1.03, 1.24) 
PM2.5 Sc PM10 Ni 1.14 (1.04, 1.25) 1.14 (1.04, 1.25) 
PM2.5 Sd PM2.5 Si 1.14 (1.05, 1.23) 1.13 (1.04, 1.22) 
PM2.5 Se PM10 K 1.16 (1.06, 1.27) 1.15 (1.05, 1.26) 
PM2.5

b PM2.5 S 1.07 (1.02, 1.13) 1.02 (0.96, 1.09) 
PM10 Nic PM2.5 S 1.09 (0.98, 1.22) 1.06 (0.95, 1.18) 
PM2.5 Sid PM2.5 S 1.09 (0.98, 1.21) 1.08 (0.97, 1.20) 
PM10 Ke PM2.5 S 1.03 (0.99, 1.08) 1.02 (0.98, 1.06) 
aLimited to studies for which correlation between 2 pollutants was < 0.7. HRs are presented for the 

following increments: 200 ng/m³ PM2.5 S, 5 µg/m3 for PM2.5, 2 ng/m³ PM10 Ni, 100 ng/m³ PM2.5 Si, 100 

ng/m³ PM10 K. bFINRISK and SAPALDIA not included. cHUBRO, SALIA and SAPALDIA not 

included. dHUBRO, SAPALDIA and EPIC-Athens not included. eFINRISK, HURBO and SIDRIA-Rome 

not included. 
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Figure Legends 

Figure 1. Cohort locations in which elements were measured. 

Figure 2. Description of estimated annual mean PM2.5 elemental composition concentrations 

(ng/µg3) at participant addresses in each cohort. The solid circle and bars shows the median and 

25%, 75% percentile of elemental composition concentrations; the x shows the 5% and 95% 

percentile values. 

Figure 3. Adjusted hazard ratio (HR) between natural cause mortality and (A) a 200-ng/m³ 

increment in PM2.5 S and (B) a 200-ng/m³ increment in PM10 S (using main model 3): Results 

from cohort-specific analyses and from random-effects meta-analyses. 
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Figure 1. 
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Figure 2. 
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Figure 3A. 
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Figure 3B. 
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