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Abstract  

Background: Infant exposure to persistent organic pollutants (POPs) may contribute to obesity. 

However, many studies so far have been small, focused on transplacental exposure, used an 

inappropriate measure to assess postnatal exposure through breastfeeding if any, or did not 

discern between prenatal and postnatal effects.  

Methods: We pooled data from 7 European birth cohorts with biomarker concentrations of 

polychlorinated biphenyl 153 (PCB-153) (n=2487), and p,p'-dichlorodiphenyldichloroethylene 

(p,p'-DDE) (n=1864), estimating prenatal and postnatal POPs exposure using a validated 

pharmacokinetic model. Growth was change in weight-for-age z-score between birth and 24 

months. Per compound, multi-level models were fitted with either POPs total exposure from 

conception to 24 months, prenatal or postnatal exposure.  

Results: We found a significant increase in growth associated with p,p'-DDE, seemingly due to 

prenatal exposure (per interquartile increase in exposure, adjusted β=0.12; 95% CI: 0.03, 0.22). 

Due to heterogeneity across cohorts, this estimate cannot be considered precise, but does indicate 

that an association with infant growth is present on average. In contrast, a significant decrease in 

growth was associated with postnatal PCB-153 exposure (β=-0.10; 95% CI: -0.19, -0.01).  

Conclusion: To our knowledge, this is the largest study to date of POPs exposure and infant 

growth, and with state of the art exposure modelling. Prenatal p,p'-DDE was associated with 

increased infant growth, and postnatal PCB-153 with decreased growth at European exposure 

levels.  
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Introduction 

Rapid weight gain during the first few months of life is a predictor for later obesity (Monteiro 

and Victora 2005). Perinatal exposure to chemicals may contribute to obesity by affecting  

endocrine and neuronal pathways (La Merrill and Birnbaum 2011). Polychlorinated biphenyls 

(PCBs), p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and metabolite p,p'- 

dichlorodiphenyldichloroethylene (p,p'-DDE) were used in agriculture and industry until global 

efforts in the 1990’s to eliminate them (Stockholm Convention 2001). Substantial exposure is 

still observed due to the persistency of these lipophilic compounds (Longnecker et al. 2003). 

PCB-153 has a biological half-life of ~14 years (Ritter et al. 2011) and p,p'-DDE  ~13 years 

(Wolff et al. 2000).  

Epidemiological studies on perinatal POPs exposure, growth and obesity have focused on 

transplacental exposure, with inconsistent results for PCB and a predominantly positive 

association for p,p’-DDE (reviewed in Cupul-Uicab et al., 2013). However, substantial exposure 

occurs postnatally through breastfeeding, research on which is limited (Grandjean et al. 2003; 

Rogan et al. 1987; Pan et al. 2010; Patandin et al. 1998; Jacobson et al. 1990). Most studies were 

limited by sample size and with no or incomplete postnatal exposure (assessed using the product 

of POPs concentration and breastfeeding duration). Postnatal exposure needs to be considered 

but is challenging as multiple factors such as child growth and maternal weight gain also 

influence children’s internal concentrations. 

In the largest study to date on POPs and growth, we pooled data from 7 European birth cohorts 

to investigate the association between prenatal and postnatal POPs exposure and infant growth 

from birth to 24 months in singleton term children, and used a recently developed 

pharmacokinetic model (Verner et al 2013) to improve postnatal exposure assessment.  
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Methods 

Description of cohorts 

Previously, Govarts et al. (2012) identified 14 cohorts of women/child pairs with POPs measures 

from the Environmental Health Risks in European Birth Cohorts’ (ENRIECO) inventory 

(http://www.enrieco.org/). Eleven of these cohorts had relevant weight data and were invited to 

participate. Four  (FAROES2, FAROES3, INMA, RHEA) did not participate for reasons 

unrelated to this study hypothesis. Seven cohorts (N=2487) had PCB-153 and 5 cohorts 

(N=1864) had p,p’-DDE biomarkers. Concentrations were measured in cord serum/plasma in 

FLEHS I  (Koppen et al. 2009), GRD (Huisman et al. 1995, Walkowiak et al. 2001), Michalovce 

(Herz-Picciotto et al. 2003) and PELAGIE (Chevrier et al. 2013), in breast milk in ELFE 

(Vandentorren et al. 2009), and HUMIS (Eggesbø et al. 2009) and in maternal blood during 

pregnancy in Duisburg (Wilhelm et al. 2008, Wittsiepe et al. 2008). Table 1 lists population 

characteristics, while Supplemental Material, Table S1 contains cohorts’ descriptions and 

references. Each study was approved by national ethical committees. Mothers provided written 

informed consent prior to participation.  

Exposure assessment 

All cohorts provided lipid-adjusted and wet-weight concentrations, plus information on lipid 

measurement (Supplemental Material, Table S2). We replaced POP concentrations below the 

limit of detection/quantification (LOD/LOQ) (Table 2; Supplemental Material, Table S2) with 

LOD/LOQ divided by the square root of two (Hornung and Reed 1990). 

We estimated individual-specific cord blood concentration (prenatal exposure) and cumulative 

postnatal exposure using a validated pharmacokinetic model (Verner et al. 2013). Two 

compartments representing maternal and child lipids are connected through placental diffusion 
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and excretion/intake of breast milk (Supplemental Material, Figure S1A). To generate 

individual-specific profiles of child POPs concentrations (e.g., Supplemental Material, Figure 

S1B), the pharmacokinetic model incorporated: maternal age, pre-pregnancy weight, gestational 

age, sex, child’s weight at birth and several time points, total breastfeeding duration 

(exclusive/partial). We used fixed values for gestational weight gain and postpartum maternal 

weight (Verner et al. 2013), as this information was not collected in some cohorts and therefore 

could not be imputed within cohort-specific multiple imputation models, in contrast with missing 

data for other covariates (see below). Most studies did not distinguish exclusive from partial 

breastfeeding, therefore, we used total breastfeeding duration. Breast milk consumption rate was 

based on exclusive/partial breastfeeding data from the general population (Arcus-Arth et al. 

2005). Measured POP concentrations in maternal blood, cord blood or breast milk (ng/g lipids) 

were used to estimate individual-specific maternal daily dose and subsequently to simulate 

complete time-course of  child concentrations: iterative model simulations adjusting the maternal 

daily dose provided matching simulated and measured blood or breast milk POP concentrations 

at the time of collection.  

We abstracted the simulated cord blood concentration at delivery as the common prenatal 

exposure estimate across cohorts (vs. measures taken in different biological matrices sampled at 

different times). We calculated postnatal cumulative exposure 0-24 months as area under the 

curve (AUC) (Supplemental Material, Figure S1B). We added prenatal (multiplied by gestational 

age) to postnatal to get total exposure from conception to 24 months. The 3 exposure metrics are 

expressed as average concentrations over their respective time periods (ng/g lipids). Model 

simulations were performed using acsIX (Aegis Technologies Group, Inc., Huntsville, AL, 

USA). 
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Outcome variable 

Cohorts provided weight and height data with minimum 2 time points after birth to 3 years. 

Michalovce had data up to 4 years, Duisburg had data at 1.5 and 6.5 years. Weight and height 

data were measured for the study by nurses or doctors (GRD, Michalovce), or recorded during 

pediatric examinations in children’s health cards that were obtained by study staff (FLEHS I) or 

parent-reported (Duisburg, ELFE, HUMIS, PELAGIE). We estimated weight at exactly 24 

months using a cohort-specific, sex-specific multi-level (mixed) linear model fitted with cubic 

polynomials and random effects for infant. We then created cohort-specific, sex-specific weight-

for-age z-scores at birth and 24 months. Intra-class correlations between predicted and observed 

values at 24 months (±14 days) in infants with available data ranged from 0.84 (ELFE males) to 

≥0.90 (ELFE females, FLEHS I, HUMIS, PELAGIE). GRD, Michalovce and Duisburg had no 

children with observed data at 24 months. The difference between the child’s z-score  at birth 

and 24 months (change in weight-for-age z-score), was analysed as a continuous outcome.  

Statistical analysis 

We imputed missing data (outcome, exposure, covariate) by cohort, using multiple imputation by 

chained equations (ICE) (Rubin 1987; van Buuren 2007), and performed pharmacokinetic model 

simulations for each imputation set. The pharmacokinetic model used lipid-adjusted 

concentrations since they are more stable over time (Phillips et al. 1989). Some observations in 

all cohorts except ELFE and HUMIS were missing lipid-adjusted concentrations, and these were 

imputed in a cohort-specific model including wet-weight concentrations. We assessed 

correlations between exposures and covariates using Pearson’s correlation coefficients. We 

combined exposure, outcome and covariate data from individual cohorts into a pooled dataset to 

analyse as a single dataset, using a multi-level (mixed) linear regression model to estimate 
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associations between infant growth and separately, total, prenatal and postnatal exposure. For 

each compound, we tested for heterogeneity by fitting a model with random intercepts and slopes 

by cohort. There was significant heterogeneity for all exposures (Supplemental Material, Table 

S3). However, in the case of p,p’-DDE, which was available in only 5 cohorts, we had less 

power to fit a complex model (i.e. confidence intervals were severely inflated, Supplemental 

Material, Table S4). Therefore, models were fitted with random intercepts for p,p’-DDE, and 

random intercepts and slopes for PCB-153. Models were fitted via maximum likelihood, using 

the STATA 12.0 “mi estimate” function to pool five imputation results. For prenatal and 

postnatal exposure, models were fitted first with either prenatal or postnatal concentrations in the 

model and then with both (prenatal and postnatal mutually adjusted). We checked for collinearity 

between prenatal and postnatal exposure with variance inflation factors (VIFs) greater than 5-10 

suggesting a problem with collinearity (Kleinbaum et al. 2013). 

We identified 9 potential confounders and intermediate covariates a priori using directed acyclic 

graphs (DAGs) (Supplemental Material, Figures S2A, B, and C for total, prenatal, and postnatal 

exposure DAGs, respectively): maternal pre-pregnancy body mass index (BMI, continuous), 

maternal age (years, continuous), education (low, medium, high), smoking during pregnancy 

(yes/no), Roma ethnicity (yes/no), nulliparous (yes/no), gestational age (weeks, continuous), 

birth weight (kg, continuous), total breastfeeding (months, continuous), maternal gestational 

weight change (kg). Categories for primary and secondary education varied, so we combined 

categories to create relative low, medium, and high per cohort. ELFE and FLEHS I had no 

ethnicity information (important due to a large Roma population in Michalovce), so we assumed 

their ethnicity was not Roma. We made additional adjustment for maternal gestational weight 

change in FLEHS I, HUMIS, PELAGIE and Michalovce. Similarly, we assessed the results’ 
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sensitivity to maternal consumption of fatty fish (meals/week HUMIS, FLEHS I), total fish 

(g/week, PELAGIE, MICHALOVCE) by adjusting for these covariates.  

We looked at the effect of removing each cohort in turn. We assessed assumptions of normality 

and linearity using informal diagnostic plots, and assessed the combination of high leverage and 

residuals in order to fit regression models with and without influential observations. Results are 

change in weight-for-age z-score from birth to 24 months for the interquartile range (IQR) of 

exposure.  

Results 

Table 1 summarises cohort characteristics. Duisburg infants were slowest and ELFE infants 

fastest growers. Total breastfeeding duration varied (2.3 to 12 months), as did infants with no 

breastfeeding: Duisburg, ELFE, HUMIS had none, Michalovce 0.2 %, FLEHS I 25.4 %, GRD 

38.1 % and PELAGIE 40.9 %.  

Table 2 shows estimated prenatal and postnatal infant blood POPs concentrations. For prenatal 

concentrations, PELAGIE was lowest and GRD highest for PCB-153, and HUMIS lowest and 

Michalovce highest for p,p’-DDE . PELAGIE had lowest postnatal exposures, while ELFE had 

highest PCB-153 and Michalovce highest p,p’-DDE. Measured biomarker concentrations were 

not substantially different to the estimated cord blood (prenatal) concentrations (Supplemental 

Material, Table S5). 

Prenatal and postnatal exposures were highly correlated (PCB-153 r=0.71, p,p’-DDE r=0.88, 

Supplemental Material, Table S6), although this varied across the cohorts. Overall correlations 

between prenatal PCB-153/p,p’-DDE concentrations were moderate (r=0.65), varying from 

r=0.11 to r=0.65 across cohorts (data not shown), while correlations between total breastfeeding 
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and postnatal POPs exposure were lower (PCB-153 r=0.43, p,p’-DDE r=0.31) (Supplemental 

Material, Table S6).  

VIFs for prenatal and postnatal exposure in the same model varied across cohorts from low (i.e. 

FLEHS I, PELAGIE) to high (i.e. HUMIS, ELFE), and were below 5 for the pooled dataset 

(Supplemental Material, Table S7). 

Table 3 shows the relation between total exposure from conception to 24 months and infant 

growth. Individual cohort analyses showed significant associations only for GRD (PCB-153), 

and Duisburg (p,p’-DDE).  The pooled data showed non-significant associations between change 

in weight-for-age z-score and PCB-153 (β=-0.06; 95% CI: -0.15, 0.03 for an IQR increase of 152 

ng/g lipid) and p,p’-DDE (β=0.04; 95% CI: -0.001, 0.07 for an IQR increase of 515 ng/g lipid).   

Figure 1 shows the secondary analyses assessing which of prenatal and postnatal exposure is the 

more important contributor towards associations with total exposure. After adjustment for 

prenatal exposure, postnatal PCB-153 was associated with a significant decrease in change in 

weight for age z-score β=-0.10 (95% CI: -0.19, -0.01) for an IQR increase of 183 ng/g lipid 

(Figure 1A). Prenatal p,p’-DDE was associated with a significant increase in change in weight-

for-age z-score β=0.12 (95% CI: 0.03, 0.22) for an increase of 388 ng/g lipid after adjustment for 

postnatal exposure (Figure 1B). 

In general, leaving out one cohort did not have a substantial influence on the prenatal and 

postnatal pooled estimates, with point estimates for the partial sample within the CI of the overall 

pooled result. However, for prenatal p,p’-DDE, removing Michalovce doubled the estimate 

(from 0.12; 95% CI: 0.03, 0.22 to 0.23; 95% CI: –0.09, 0.54) and made it non-significant 

(Supplemental Material, Table S8). 
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Additional adjustment for fish consumption or maternal gestational weight change, did not 

materially affect results (data not shown). Complete case and multiple imputation analyses gave 

essentially the same results, as did estimates of prenatal exposure from biomarker concentrations 

and pharmacokinetic modelled estimations (Supplemental Material, Table S9). The normality 

and linearity assumptions of our models held (data not shown). There was no material difference 

in estimates from regression models fitted without influential observations (data not shown). 

Discussion 

We found that prenatal p,p’-DDE exposure was significantly associated with increased infant 

growth and postnatal PCB-153 exposure with decreased infant growth. Our estimates suggest 

that on average, children with an 388 ng/g higher prenatal concentration of p,p’-DDE would 

weigh 200 g more than other children at 24 months of age, while children with an 183 ng/g 

higher postnatal concentration of  PCB-153 would weight 200 g less.  

Prenatal PCB-153 concentrations were not significantly associated with infant growth. Since 

PCB-153 is a proxy biomarker for a number of PCB congeners of varying toxicity (Glynn et al. 

2000), inconsistent results from previous studies  (i.e. Gladen et al. 2000; Blanck et al. 2002; 

Hertz-Picciotto et al. 2005; Lamb et al. 2006; Karmaus et al. 2009; Verhulst et al. 2009; Cupul-

Uicab et al. 2010; Mendez et al. 2011; Valvi et al. 2012; Cupul-Uicab et al. 2013; Warner et al. 

2013; Valvi et al. 2014) could be due to heterogeneity in the underlying PCB congeners mixture. 

Indeed higher chlorinated PCBs have been associated with increased abdominal obesity in 

seniors, while the lower chlorinated PCBs showed an inverse relation (Lee et al. 2012). 

The negative change in weight z-score associated with postnatal PCB-153 exposure is unlikely to 

be an an artifact of design (i.e. including weight in the pharmacokinetic model) as we did not 
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find a significant association with postnatal p,p’-DDE exposure. Grandjean et al. (2003) also 

reported attenuated growth of breastfed children exposed to major PCB congeners (138, 153 and 

180) at 18 months. Concentrations in that study were higher than in ours, while total 

breastfeeding duration was similar. However, 4 other studies reported no significant associations 

(Rogan et al. 1987; Pan et al. 2010; Patandin et al. 1998; Jacobson et al. 1990). Two studies 

investigated PCB concentration in formula-fed and breastfed babies  (Patandin et al. 1998; 

Jacobson et al. 1990), while 3 estimated postnatal exposure simply as the product of PCB 

concentration and exclusive/total breastfeeding duration (Grandjean et al. 2003; Pan et al. 2010; 

Rogan et al. 1987). Exposure assessment that does not account for the dilution effect from 

weight increases in the growing child would lead to differential misclassification,  

overestimating exposure in the heavier children. Therefore, this would bias results upwards, and 

if the association between PCB-153 and growth is negative, could explain null findings reported 

in previous studies. The significant decline in birth weight of 150 g (95% CI : -250, -50) per 1 

µg/L increase in PCB-153 reported by Govarts et al. (2012), indicates that PCB-153 may have a 

similar mode of action transplacentally and postnatally.  

Prenatal p,p’-DDE exposure was significantly associated with increased change in weight-for-

age z-score, a positive trend seen in 4 of the 5 cohorts. A change in z-score of 0.12 is modest, 

below the 0.67 cut-point for rapid growth (Monteiro and Victora 2005). Conversely, postnatal 

p,p’-DDE exposure was not associated with infant growth, consistent with 2 previous studies 

(Pan et al. 2010; Rogan et al. 1987). Two limitations apply when interpreting this evidence. 

Firstly, we found significant heterogeneity when pooling the cohorts in the p,p’-DDE analysis, 

however, fitting a more flexible model was not possible. Therefore, our estimate of the average 

effect does not account for the magnitude of variation among the cohorts.. Secondly, although 
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VIFs were below 5, variance doubled when prenatal and postnatal were mutually adjusted, 

suggesting collinearity. However, although our point estimate may be uncertain, the confidence 

intervals incorporate uncertainty generated by any collinearity (Kleinbaum et al. 2013). The 

more appropriate prenatal p,p’-DDE estimate probably lies between the unadjusted and adjusted 

one. 

Our p,p’-DDE results are plausible. The majority of previous studies also found a positive 

association between p,p’-DDE and: rapid growth and higher BMI in infancy (Verhulst et al. 

2009; Mendez et al. 2011; Valvi et al. 2014) , overweight and BMI around 7 years (Valvi et al. 

2012, Warner et al. 2013), weight-for-height at puberty in males (Gladen et al. 2000) and in 

adulthood for females (Karmaus et al. 2009). Studies with high concentrations, however, 

reported no significant associations (Garced et al. 2012; Cupul-Uicab et al. 2010; Cupul-Uicab et 

al. 2013; Gladen et al.2004). This could be chance findings or suggest a mode of action that 

operates at lower-doses, in line with the non-monotonic relationship seen between endocrine-

disrupting chemicals (EDCs) and hormones (Vandenberg et al. 2012). No studies to date 

reported a negative effect of DDE on growth/BMI (Cupul-Uicab et al. 2013, Table S7). 

Our approach has strengths and limitations. We pooled data from 7 European birth cohorts, 

examining associations between POPs and infant growth across larger samples of individuals 

with heterogeneous and distinct prenatal/postnatal exposure profiles. Compared with single 

cohort studies, the pooled design controls better for unmeasured confounding (including from 

other compounds), since the underlying confounder-structure varies across cohorts. Furthermore 

it reduces or eliminates reporting bias by showing results for all eligible European cohorts. 
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We attempted to isolate prenatal from postnatal exposure, however, as discussed, the p,p’-DDE 

results suggest some collinearity. To ascertain a closer estimate of prenatal exposure, we would 

ideally restrict our analyses to babies who were not breastfed. Too few cohorts had non-breastfed 

babies (3 for PCB-153, 2 for p,p’-DDE), precluding meaningful sensitivity analyses.  

Our postnatal exposure modelling was more appropriate than the simple models used in previous 

studies, which only incorporated breastfeeding. The pharmacokinetic model generated exposure 

profiles based on cord, maternal blood or breast milk levels and known determinants of 

children’s blood concentration. This model was validated in Michalovce and an Inuit cohort with 

repeated POPs measurements: estimated concentrations from the pharmacokinetic model 

explained from 40 % to 83 % of p,p’-DDE and 51 % to 81 % of PCB-153 measured in children’s 

blood at 6 and 16 months  (Verner et al. 2013). Estimations based on maternal blood were better 

than cord blood estimations, which were better than breast milk estimations. Repeated samples 

for model validation (e.g., cord/child blood concentrations) were unavailable in other cohorts in 

this study. It may be that the model predictability is lower in these cohorts, and model accuracy 

is lower in cohorts with estimations made from cord blood/breast milk. Despite these limitations, 

pharmacokinetic modeling presents a major improvement on metrics that do not account for 

important parameters (i.e. change in child weight, breast milk consumption or lipid content). We 

did not have POPs dietary exposure information, however, breastfeeding is the main determinant 

of infant blood concentrations (Ayotte et al. 2003). Few cohorts distinguished exclusive from 

partial breastfeeding, therefore, we used total duration and descriptions of breast milk 

consumption in the general population. Furthermore, information on gestational weight gain and 

weight changes after pregnancy, influential in sensitivity analyses (Verner et al. 2013), were not 

available in most cohorts. These factors may have decreased model precision, and could lead to 
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small differential misclassification, overestimating heavier children’s blood concentrations and 

resulting in a positive bias (in this case towards the null). 

We added together the prenatal and postnatal exposure AUCs to assess total exposure from 

conception to 2 years, which has not been investigated in previous studies. Our prenatal AUC 

was calculated as the cord blood exposure estimate multiplied by gestational age. Although 

prenatal concentrations would be influenced by maternal weight gain over pregnancy, which 

would vary the volume of distribution, this information was not available in some of the cohorts. 

Our prenatal AUC is not expected to be more biased than using cord-blood concentration as a 

proxy for prenatal exposure. Furthermore, adjustment for maternal gestational weight gain in 

cohorts where this was available did not affect our results (data not shown).  

We used lipid-adjusted POP concentrations in our pharmacokinetic model, assuming an 

equilibrium across body lipids. Differential transport, or protection of the placenta or mammary 

gland due to molecular size, could require a conversion factor. However, considerable 

uncertainty is associated with conversion factors due to the variability from factors other than 

differing measurement matrices (i.e. maternal body weight), which are not taken into account. 

Study-specific conversion factors are also difficult to apply to other studies with differing 

distributions of underlying co-factors. We therefore decided against applying conversion factors. 

In addition, we were not able to test for exposure to combinations of these POPs and other 

EDCs, and may have missed important mixture effects.  

We modelled weight at 24 months using a mixed-model for growth with cubic polynomials, 

standardising the children’s weights using cohort-specific data. Infant growth between 0-24 

months has previously been identified as a risk factor for obesity at a later age (Monteiro and 
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Victora 2005). We did not test growth from birth to 6 months or 12 months as only 4 cohorts had 

appropriate measurements, and possibly missed a critical window for growth trajectory (Botton 

et al. 2008). 

We did not have information fatty fish intake in all cohorts, however, restricting analysis to the 4 

cohorts where this was available found no material difference (data not shown).  

Breastfeeding duration unadjusted for other covariates is associated with reduced growth in our 

study. Breastfeeding is an important contributor to postnatal POP exposure and relates to 

nutritional intake and other socio-economic factors. However, additional adjustment for 

breastfeeding duration in the postnatal PCB-153 model had limited impact on the estimates (i.e. 

β=-0.12; 95% CI -0.21, -0.03 vs. β=-0.10; 95% CI -0.19, -0.01). Breastfeeding reduced the 

estimated increase in infant growth from prenatal p,p’-DDE by 14% (i.e. β=0.14; 95% CI: 0.06, 

0.22 vs. β=0.12; 95% CI: 0.03, 0.22), possibly reflecting increased PCB-153 breastfeeding 

exposure.  

Michalovce is a large cohort accounting for 38 % (PCB-153) and 50 % (p,p’-DDE) of our total 

population. Although Michalovce drives the precision of the associations, these relations held 

after removing these children from the analyses. The postnatal PCB-153 and prenatal p,p’-DDE 

estimates became non-significant, as expected with a large sample size reduction, and the later 

doubled in size. 

Conclusion 

In a large and heterogenous European population, we found an increase in infant growth 

associated with prenatal p’p-DDE and a decrease associated with postnatal PCB-153 exposure. 
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To understand the importance of POPs breastfeeding exposure on health, future investigations 

should assess both prenatal and postnatal exposure.  
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Table 1. Characteristics of the cohorts [median (range) or N (%)]. 

Characteristic Duisburg 
(Germany, 
2000-2002) 
(n=222) 

ELFE 
(France,  
2007) 
(n=35) 

FLEHS I 
(Belgium, 2002-
2004) 
(n=134) 

GRD 
(Germany, 
Netherlands, 
1990-1995) 
(n=588) 

HUMIS 
(Norway, 2002-
2006) 
(n=399) 

Michalovce 
(Slovakia, 2002-
2004) 
(n=938) 

PELAGIE 
(France, 
 2002-2006) 
(n=171) 

Change in weight-for-age z-score 0-24 
months 

-0.13 
(-2.74–4.83) 

0.06 
(-2.38–2.21) 

0.04 
(-2.59–3.40) 

-0.03 
(-3.87–3.46) 

-0.03 
(-3.91–3.83) 

-0.01 
(-5.01–3.72) 

0.03 
(-2.85–3.63) 

Missing (%) 0 0 0 0 1 3 0 
Weight 24m (kg) 13.56 

(10.35–17.50) 
12.00 
(9.93–13.47) 

12.53 
(10.01–15.87) 

13.21 
(9.89–18.54) 

12.19 
(8.36–18.49) 

13.66 
(10.08–20.26) 

12.39 
(8.86–16.78) 

Missing (%)     1 2  
Height 24m (cm) 87.4 (76.6–95.8) 87.6 (82.9–104.7) 88.0 (77.7–94.4) 88.6 (80.5–98.1) 86.3 (71.2–108.3) 86.2 

(74.9–96.3) 
87.5 
(78.8––96.3) 

Missing (%) 0 0 0 0 1 2 0 
Birth weight (g) 3.460 

(1.960–4.925) 
3.340 
(2.800–4.110) 

3.383 
(2.600–4.530) 

3.500 
(2.140–5.000) 

3.680 
(2.030–5.100) 

3.370 
(2.060–5.060) 

3.370 
(2.320–4.760) 

Missing (%) 0 0 0 0 0 3 0 
Birth length (cm) 52 

(42–61) 
49 
(47–52) 

50.7 
(48.2–53.1) 

52.5 
(44–60) 

51 
(42–55) 

50 
(40–57) 

50 
(43–55) 

Missing (%) 0 0 0 0 10 22 0 
Gestational age (weeks) 40 

(37–42) 
40 
(38–41) 

40 
(37–41) 

40 
(37–43) 

40 
(37–44) 

40 
(37–43) 

40 
(37–42) 

Missing (%) 1 0 0 0 5 10 0 
Sex        

Male 108 (48.7) 18 (51.4) 72 (53.7) 322 (54.8) 203 (51.1) 477 (51.0) 92 (53.8) 
Female 114 (51.4) 17 (48.6) 62 (46.3) 266 (45.2) 195 (49.0) 459 (49.0) 79 (46.2) 

Missing (%) 0 0 0 0 1 2 0 
Maternal age (years) 31.9 

(19.3–42.6) 
32.9 
(24.3–41.3) 

31.1 
(20.3–41.1) 

29        
(18–40) 

29         
(16–42) 

25.7 
(17.9–45) 

31.1 
(20.1–45) 

Missing (%) 0 0 0 0 0 11 0 
Maternal pre-pregnancy BMI 23.0 

(14.9–51.4) 
21.5 
(18.1–27.7) 

22.4 
(16.9–37.4) 

22.1 
(15.0–48.3) 

23.3 
(16.6–43.8) 

21.2  
(14.5–40.7) 

21.9  
(17.3–37.6) 

Missing (%) 0 1 1 1 6 44 0 
Maternal pre-pregnancy weight (kg) 65   

(42–140) 
58  
(47–78) 

62 
(45–112) 

64 
(44–133) 

66 
(43–120) 

58  
(38–115) 

58 
(46–105) 

Missing (%) 0 0 1 1 4 44 0 
Maternal gestational weight gain (kg) NA NA 15.0  

(1.0–30.0) 
NA 14.0  

(-3.0–31.0) 
14.0  
(1.0–35.0) 

13.0  
(5.0–31.0) 

Missing (%) 222 35 60 588 8 250 0 
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Characteristic Duisburg 
(Germany, 
2000-2002) 
(n=222) 

ELFE 
(France,  
2007) 
(n=35) 

FLEHS I 
(Belgium, 2002-
2004) 
(n=134) 

GRD 
(Germany, 
Netherlands, 
1990-1995) 
(n=588) 

HUMIS 
(Norway, 2002-
2006) 
(n=399) 

Michalovce 
(Slovakia, 2002-
2004) 
(n=938) 

PELAGIE 
(France, 
 2002-2006) 
(n=171) 

Maternal height (cm) 168 
(151–183) 

163       
(148–173) 

168       
(150–183) 

170 
(150–193) 

168       
(149–199) 

165       
(133–186) 

165        
(150–190) 

Missing (%) 0 1 1 0 3 0 0 
Parity        

0 0 (0.0) 12 (34.3) 84 (62.7) 294 (50.0) 154 (38.6) 391 (41.7) 68 (39.8) 
≥1 222 (100.0) 23 (65.7) 50 (37.3) 294 (50.0) 245 (61.4) 547 (58.3) 103 (60.2) 

Missing (%) 0 0 0 0 0 1  0 
Education        

Low 50 (22.5) 1 (2.9) 5 (3.7) 73 (12.4) 53 (13.4)        177 (19.0)        29 (17.0)        
Medium 83 (37.4) 8 (22.9) 96 (73.3)  184 (31.4) 253 (64.1)  687 (73.7) 26 (15.2)        

High 89 (40.1) 26  (74.3)  30 (22.9)  330 (56.2) 89 (22.5) 68 (7.3)  116 (67.84) 
Missing (%) 0 0 3 1 4 6 0 

Maternal smoking during pregnancya        
No 169 (76.1) 33(100.0) 120 (90.2) 438 (74.5) 357 (89.5) 805 (85.8) 137 (80.6) 

Yes 53 (23.9)       0 13 (9.8) 150 (25.5) 42 (10.5) 133 (14.2) 33 (19.4) 
Missing (%) 0 2 1 0 0 0 1 

Ethnicity        
Caucasian 211 (95.1) NA NA 588 (100.0) 374 (98.2) 738 (80.7) 171 (100.0) 

Inuit 0 NA NA 0 2 (0.5) 0 0 
Roma 0 NA NA 0 1 (0.3) 177 (19.3) 0 
Other 11 (5.0) NA NA 0 4 (1.1) 0 0 

Missing (%) 0 35 134 0 17 23 0 
Sample type        

Blood mother 216 0 0 0 0 0 0 
Cord blood 0 0 130 267 0 880 168 
Breastmilk 0 35 0 321 399 0 0 

Missing (%) 6 0 4 0 0 58 3 
Sample collection time (days from birth) -51 

(-107–42) 
51 
(36–70) 

0          
(0–0) 

CB: 0 (0–0)   
BM: 14 (14–14)  

32  
(2–158) 

0          
(0–0) 

0          
(0–0) 

Missing (%) 6 0 4 0 18 58 3 
Total breastfeeding (months) 6.9 

(0.2–18) 
5.0 
(1.6–23) 

3 
(0–48) 

2.3 
(0–6) 

12 
(1–31.2) 

5 
(0–48) 

3.1  
(0–24.8) 

Missing (%) 38 2 42 5 0 5 8 
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Characteristic Duisburg 
(Germany, 
2000-2002) 
(n=222) 

ELFE 
(France,  
2007) 
(n=35) 

FLEHS I 
(Belgium, 2002-
2004) 
(n=134) 

GRD 
(Germany, 
Netherlands, 
1990-1995) 
(n=588) 

HUMIS 
(Norway, 2002-
2006) 
(n=399) 

Michalovce 
(Slovakia, 2002-
2004) 
(n=938) 

PELAGIE 
(France, 
 2002-2006) 
(n=171) 

No months breastfeeding 0 (0) 0 (0) 34 (25.4) 224 (38.1) 0 (0) 2 (0.2) 70 (40.9) 
Missing (%) 38 2 42 5 0 5 8 

Exclusive breastfeeding (months) 4.8  
(0–9.9) 

NA 
 

0 
(0–1) 

NA 
 

5          
(0–10) 

3          
(0–12) 

NA 
 

Missing (%) 39 35 76 588 0 3 171 

Continuous measures described by median (min-max); categorical measures described by frequencies (%).NA Not available BM breastmilk; CB cord blood; ELFE 

Etude Longitudinale Française depuis l'Enfance (French longitudinal study of children);  FLEHS I Flemish Environment and Health Survey I; GRD Groningen–

Rotterdam–Düsseldorf; HUMIS Human Milk Study; PELAGIE Endocrine disruptors: longitudinal study on pathologies of pregnancy, infertility and childhood. 
aIn PELAGIE smoking status at inclusion used as proxy of smoking during pregnancy.



 27 

Table 2. Infant blood concentrations for PCB-153 and p,p’-DDE prenatal and postnatal exposure, estimated through pharmacokinetic modelling 

(ng/g lipid).  

 Prenatal  PCB-153 Postnatal  PCB-153  Prenatal  p,p’-DDE Postnatal p,p’-DDE 
Study  N Mean ± sd Median <LOD 

 n (%) 
Mean ± sd Median N Mean ± sd Median <LOD 

n (%) 
Mean ± sd Median 

Duisburga 215 63.6 ± 45.9 56.7 0d 126.1 ± 98.8 108.7 215 141.4 ± 205.1 95.2 0d 255.3 ± 287.6 178.1 
ELFEb 35 92.6 ± 41.9 83.3 0 301.1 ± 133.0 268.1 0 NA NA NA NA NA 
FLEHS Ic 129 54.0 ± 38.4 41.3 6 (4.5)d 66.5 ±  69.6 47.1 130 214.7 ± 244.5 145.6 0d 272.6 ± 412.9 150.6 
GRDc 321 184.7 ± 72.9 176.7 0 280.4 ± 152.0 252.4 0 NA NA NA NA NA 
HUMISb 399 36.4 ± 17.1 33.1 0d 104.7 ± 52.2 96.8 399 63.4 ±  94.8 42.1 0d 177.3 ± 236.9 123.1 
Michalovcec 880 164.4 ± 219.2 111.2 2 (0.2) 292.4 ± 425.4 175.3 880 540.5 ± 459.0 413.5 6 (0.7) 954.3 ± 1032.8 619.6 
PELAGIEc 168 43.0 ± 31.5 32.1 0d 48.3 ±  55.9 26.2 168 73.5 ±  74.4 53.9 28 (16.4)d 75.7 ±  99.8 36.6 

NA not available; LOD limit of detection.  
aPrenatal and postnatal concentrations estimated from maternal blood concentration. bPrenatal and postnatal concentrations estimated from breast milk 

concentration. cPrenatal and postnatal concentrations estimated from cord blood concentrations. dProvided limit of quantification (LOQ) instead of LOD. 
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Table 3. Associations between total exposure from conception to 2 years to PCB-153 (152 ng/g) 

and p,p’-DDE (515 ng/g) and change in weight-for-age z-score.  

 
PCB-153 p,p'-DDE 

Cohort N β (95% CI) N β (95% CI) 
Duisburg 222 0.13 (-0.19, 0.46) 222 0.54 (0.22, 0.86) 
ELFE 35 -0.19 (-0.74, 0.35) 

 
NA 

FLEHS I 134 0.06 (-0.50, 0.62) 134 0.05 (-0.22, 0.32) 
GRD 588 -0.24 (-0.39, -0.09) 

 
NA 

HUMIS 399 -0.32 (-0.72, 0.08) 399 -0.26 (-0.56, 0.04) 
Michalovce 938 0.01 (-0.02, 0.03) 938 0.02 (-0.02, 0.06) 
PELAGIE 171 0.44 (-0.24, 1.12) 171 0.73 (-0.34, 1.81) 
Pooled estimate (random) 2487 -0.06 (-0.15, 0.03) 1864 0.04 (-0.001, 0.07) 

NA not available. Results for both pooled sample and individual cohorts are per IQR increase for the 

pooled sample (ng/g lipid).  Models adjusted for birth weight, parity, gestational age, maternal smoking 

during pregnancy, maternal age at birth, maternal height and weight, Roma ethnicity and breastfeeding, 

and, for the pooled estimate, fitted with random intercept (p,p’-DDE) and random intercept and slope 

(PCB-153) by cohort. 
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Figure Legend 

Figure 1. Associations between change in weight-for-age z-score and total exposure from 

conception to 2 years, prenatal exposure (unadjusted and adjusted for postnatal exposure) and 

postnatal exposure  (unadjusted and adjusted for prenatal exposure) to A) PCB-153 and B) p,p’-

DDE. Results per IQR increase (ng/g lipid). PCB-153 IQRs: total exposure 152 ng/g, prenatal 

exposure 120 ng/g, postnatal exposure 183 ng/g. p,p’-DDE IQRs: total exposure 515 ng/g, 

prenatal exposure 388 ng/g, postnatal exposure 571 ng/g. Models adjusted for birth weight, 

parity, gestational age, maternal smoking during pregnancy, maternal age at birth, maternal 

height and weight, Roma ethnicity and breastfeeding, and fitted with random slope (p,p’-DDE) 

and slope (PCB-153) by cohort. Prenatal unadj. Prenatal exposure adjusted for covariates except 

postnatal; Prenatal adj. Prenatal exposure adjusted for covariates including postnatal; Postnatal 

unadj. Postnatal exposure adjusted for covariates except prenatal; Postnatal adj. Postnatal 

exposure adjusted for covariates including prenatal. 
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Figure 1. 
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