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Abstract  

Background: Consumption of arsenic-contaminated drinking water adversely affects health. 

There is inter-individual variation in arsenic metabolism efficiency, partially due to genetic 

variation in the arsenic methyltransferase (AS3MT) gene region. 

Objectives: To assess the overall contribution of genetic factors to variation in arsenic 

metabolism efficiency, as measured by relative concentration of dimethylarsinic acid (DMA%) 

in urine. 

Methods: Using data on genome-wide single nucleotide polymorphisms (SNPs) and urinary 

DMA% for 2,053 arsenic-exposed Bangladeshi individuals, we employed various SNP-based 

approaches for heritability estimation and polygenic modelling.  

Results: Using data on all participants, the percent variance explained (PVE) for DMA% by all 

measured and imputed SNPs was 16% (p=0.08) and was reduced to 5% (p=0.34) after adjusting 

for AS3MT SNPs. Using information on close relatives only, the PVE was 63% (P=0.0002), but 

decreased to 41% (P=0.01) after adjusting for AS3MT SNPs. Regional heritability analysis 

confirmed 10q24.32 (AS3MT) as a major arsenic metabolism locus (PVE= 7%, p = 4.4x10-10), 

but revealed no additional regions. We observed a moderate association between a polygenic 

score reflecting elevated DMA% (composed of thousands of non-AS3MT SNPs) and reduced 

skin lesion risk in an independent sample (p < 0.05). We observed no associations for SNPs 

reported in prior candidate gene studies of arsenic metabolism. 

Conclusions: Our results suggest that there are common variants outside of the AS3MT region 

that influence arsenic metabolism in Bangladeshi individuals, but the effects of these variants are 

very weak compared to variants near AS3MT. The high heritability estimates observed using 

family-based heritability approaches suggest substantial effects for rare variants and/or 

unmeasured environmental factors.  
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Introduction 

Arsenic contamination of drinking water is a major public health problem in many countries, 

with more than 137 million people in more than 70 countries estimated to be exposed (IARC 

2004). Chronic exposure to arsenic has been linked to a wide array of health conditions (Rahman 

et al. 2009), including cancers of the lung, bladder, liver, kidney, and skin (Celik et al. 2008; Liu 

and Waalkes 2008; Mink et al. 2008; Yu et al. 2006; Yuan et al. 2010). Arsenic has also been  

associated with diabetes and cardiovascular disease, as well as neurological, reproductive, and 

respiratory conditions (Abhyankar et al. 2012; Golub et al. 1998; Huang et al. 2011; NRC 1999; 

Parvez et al. 2010; Vahidnia et al. 2007). Skin lesions are one of the earliest and most prevalent 

clinical manifestations of arsenic exposure and are considered the classical sign of arsenic 

toxicity (Yoshida et al. 2004).  

Arsenic consumed in drinking water enters the blood stream as inorganic arsenic (iAs), i.e. 

arsenite (AsIII) and arsenate (AsV), and is metabolized primarily in the liver. According to the 

classical Challenger model of arsenic metabolism (Rehman and Naranmandura 2012), AsIII, the 

predominant form of iAs in Bangladesh, is methylated using arsenic (+ 3 oxidation state) 

methyltransferase (AS3MT) as the key enzyme and S-adenosylmethionine (SAM) as the methyl 

donor (Thomas et al. 2007) to produce monomethylarsonic acid (MMAV). After the reduction of 

MMAV to monomethylarsonous acid (MMAIII), a second methylation step produces 

dimethylarsinic acid (DMAV). Some DMAV can then be reduced to DMAIII (Thomas et al. 2004; 

Thomas et al. 2007). The sum of urinary arsenic species (iAs, MMA and DMA, including AsIII 

and AsV, MMA III and MMAV as well as DMA III and DMAV) is regarded as a biomarker of 

recent inorganic arsenic exposure (Biggs et al. 1997), while the composition of urinary arsenic 

metabolites relative to total arsenic is believed to reflect arsenic methylation capacity. Higher 
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arsenic methylation capacity is associated with lower risk for arsenical skin lesions, the classical 

sign of arsenic toxicity (Ahsan et al. 2007; Gao et al. 2011; Kile et al. 2011; Lindberg et al. 2007; 

Pierce et al. 2013; Valenzuela et al. 2005). 

Familial aggregation and heritability analyses of arsenic metabolic profiles suggest that genetic 

factors influence inter-individual variation in arsenic methylation capacity (Chung et al. 2002; 

Tellez-Plaza et al. 2013). Candidate gene association studies have implicated single nucleotide 

polymorphisms (SNPs) in the arsenic (+3 oxidation state) methyltransferase (AS3MT) gene 

region in arsenic methylation capacity (Agusa et al. 2011; Rodrigues et al. 2012; Schlawicke 

Engstrom et al. 2009), and a recent genome-wide association study (GWAS) confirmed this 

finding, showing two clear association signals in the AS3MT region (Pierce et al. 2012; Pierce et 

al. 2013). In the GWAS, AS3MT was the only region in the genome harboring variants showing 

associations of genome-wide significance. It remains unclear if other SNPs that did not surpass 

the genome-wide significance threshold have weaker associations with arsenic methylation 

capacity.  

In this study, we search for evidence that additional genetic variants (other than the known 

AS3MT variants) influence arsenic methylation capacity, measured as the relative concentration 

of DMA in urine, using various approaches to evaluate polygenic susceptibility. We use SNP-

based heritability methods to estimate the heritability in arsenic metabolism efficiency that is 

attributable to measured and imputed genome-wide SNPs, which we also refer to as the PVE 

(percent variance explained) by measured SNPs. We use a “family-based” version of this method 

to estimate the full narrow-sense heritability, which reflects the additive contributions of all 

variants, including unmeasured rare variants (Yang et al. 2010; Zhou et al. 2013). We also 

conduct regional heritability analyses to estimate the heritability due to common SNPs in each 
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segment of the genome (Nagamine et al. 2012). We used polygenic scoring (Purcell et al. 2007) 

to assess the polygenic contribution of arsenic metabolism variants that passed a significance 

threshold to skin lesion risk. In addition, we evaluated associations of 20 SNPs reported to be 

associated with arsenic methylation capacity in prior studies. 

Material and Methods 

Study population 

The Health Effects of Arsenic Longitudinal Study (HEALS) is a large prospective cohort study 

of the health consequences of arsenic exposure. Details of the study design have been published 

previously (Ahsan et al. 2006a). 11,746 healthy married adults (18-75 years old) were enrolled in 

2000-2002. At baseline, study interviewers collected information on demographic and lifestyle 

characteristics, conducted clinical examinations, and obtained bio-specimens (blood and urine). 

Water samples from all 5,966 wells serving the 25-km2 study area were collected. Follow-up 

surveys and comprehensive physical examinations are conducted every two years. 

Approximately 1000 of the HEALS subjects in this analysis were randomly selected to have their 

metabolites measured, while the others had metabolite data available due to prior ancillary 

studies. Only HEALS samples were used for the primary analyses described below, including 

chip heritability, regional heritability and associations for candidate SNPs. For the polygenetic 

scoring analyses, in addition to all 2,053 HEALS samples with metabolite data which were 

constituted of training set, HEALS also contributed 1,285 controls and 24 skin lesion cases to the 

test set. 

The Bangladesh Vitamin E and Selenium Trial (BEST) is a 2×2 factorial randomized 

chemoprevention trial evaluating the effects of vitamin E and selenium supplementation on non-

melanoma skin cancer risk (Argos et al. 2013). A total of 7,000 individuals have been 
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randomized to one of four treatment arms: vitamin E only (100 IU/day), L-selenomethionine 

only (200 µg/day), both vitamin E and selenium, and placebo. All participants were required to 

have existing arsenic-related skin lesions to be eligible. BEST participants are residents of 

roughly the same geographic area as HEALS, and the studies have very similar protocols, 

questionnaires, and biospecimen collection procedures. Biological samples, including all 

fractions of blood including DNA and RNA, urine, toenails, and tumor samples were collected at 

baseline, along with clinical and covariate data. In this study, 1,990 BEST participants living in 

the Araihazar area were randomly selected for genotyping. These 1,990 skin lesions cases were 

included in the polygenic scoring analyses only, as a part of the “testing set” (see below). 

SNP genotyping 

A sample of 5,499 individuals was selected from HEALS (n=3,454) and BEST (n=2,045) for 

genome-wide SNP genotyping using Illumina’s Cyto12 SNP array (~300,000 SNPs). For 

HEALS, DNA was extracted from clotted blood using Flexigene DNA kits (Cat#51204) from 

Qiangen. For BEST, DNA was extracted from the whole blood using the QIAamp 96 DNA 

Blood Kit (cat # 51161) from Qiagen, Valencia, USA. Genotyping methods and quality control 

have been described previously (Pierce et al. 2012; Pierce et al. 2013). Genotyping was 

conducted in two batches. 5,354 participants and 257,747 SNPs passed our quality control (QC) 

filters. QC included sample-level filters (excluding samples with call rate <0.97, outlying 

heterozygosity values, and gender mismatches) and marker-level filters (excluding SNPs with 

call rates <0.95 and Hardy-Weinberg P<10-10, and minor allele frequency <0.01) as described 

previously (Pierce et al. 2012; Pierce et al. 2013). Total genotyping rate among eligible samples 

was 99.8%. Genotype imputation was conducted using the MaCH software and the HapMap 3 
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GIH reference panel (Gujarati Indians in Houston), yielding genotypes for 1,211,988 SNPs after 

QC, and restricting to SNPs with an imputation accuracy of r2 >0.3 (Li et al. 2010). 

Measurements of arsenic in water and urine 

Urinary arsenic was measured at the Trace Metals Core Laboratory at Columbia University, 

which is a member of the quality control program run by Institute de Sante Publique du Quebec 

and uses their quality control samples to standardize the measurements of urinary arsenic. The 

laboratory has consistently measured urinary arsenic concentration with correlation >0.97 for 

blinded quality control samples. Urinary creatinine was measured by a colorimetric diagnostics 

kit (Sigma, St Louis, MO, USA). The sum of urinary arsenic concentration was divided by 

creatinine to obtain creatinine-adjusted total arsenic concentration (µg/g creatinine) (Basu et al. 

2005). Of the 3,364 genotyped HEALS participants who passed QC, 2,053 had existing data on 

arsenic metabolites, as described previously (Ahsan et al. 2007). High performance liquid 

chromatography (HPLC) was used to separate arsenobetaine, arsenocholine, iAsV, iAsIII, MMA, 

and DMA (Reuter et al. 2003), and their concentrations were measured using inductively 

coupled plasma-mass spectrometry with dynamic reaction cell.  Because AsIII can oxidize to AsV 

during sample transport, storage, and preparation, we express total iAs (i.e., AsIII + AsV). iAs%, 

MMA%, and DMA% were calculated as percentages of the sum of urinary arsenic, after 

subtracting arsenobetaine and arsenocholine (forms of non-toxic organic arsenic from dietary 

sources) from total arsenic. Drinking water arsenic concentrations were analyzed by graphite 

furnace atomic absorption or by inductively coupled plasma-mass spectrometry when 

concentrations were below 5 µg/L (Cheng et al. 2004; van Geen et al. 2003).  
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Ascertainment of skin lesions 

At baseline and each follow-up interview of HEALS, skin lesions were ascertained using a 

structured protocol by trained study physicians. Through the whole-body examination, the study 

physician recorded the presence or absence of melanosis, leucomelanosis, and keratosis as well 

as their location, size, and shape. For the purposes of this analysis, skin lesion cases were defined 

as participants diagnosed with any type of skin lesion. In BEST, skin lesions were evaluated 

using similar protocols as those used in HEALS.  All BEST participants had existing arsenic-

related skin lesions at baseline. 

Estimation of variance in arsenic metabolism efficiency explained by SNPs (i.e., 
heritability) 

Our analysis sample was composed of 2,053 HEALS participants with data on genome-wide 

SNPs and arsenic metabolites. Because HEALS participants are selected from a relatively small 

geographic region, a subset of our participants are genetically related to another participant, as 

described previously (Pierce et al. 2012). We used the DMA% variable to represent arsenic 

metabolism efficiency because it is strongly and inversely correlated with both iAs% and 

MMA% and because DMA% showed the strongest association with 10q24.32 variants in our 

prior GWAS (Pierce et al. 2012). 

To estimate the proportion of variance explained (PVE) in DMA% by genetic factors (i.e., the 

“heritability”), we used a linear mixed model (LMM) approach originally proposed by Yang, et 

al (Yang et al. 2010). This method is often referred to as genomic restricted maximum likelihood 

estimation (GREML). The general purpose of the GREML method is to estimate the proportion 

of variation in a phenotype that is due to all measured SNPs.  This is fundamentally different 

from the traditional GWAS approach, because our goal is to estimate variance explained by all 
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SNPs as opposed to testing individual SNPs for association with a phenotype. The GREML 

method is well-established, has been described in detail, and exploits the fact that genotypic 

similarity (i.e., “relatedness”, measured using SNPs) will be correlated with phenotypic 

similarity for phenotypes that are influenced by genetic variation.  The GREML method can 

utilize data on very distantly-related individuals, individuals that are typically considered 

“unrelated” in traditional GWAS.  A LMM is used to estimate the “percent variance explained” 

(PVE) by measured SNPs for a phenotype, as implemented  in the Genome-wide Complex Trait 

Analysis (GCTA) software package (Yang et al. 2011).  For a detailed description of the analytic 

method, see Supplemental Material, LMM Analysis. .  

In order to quantify genetic similarity between individuals, an n-by-n genetic relationship matrix 

(GRM) is constructed, where n is the sample size (n=2,053), and each element represents the 

degree to which a pair of individuals are related.  Each element of the GRM is the genome-wide 

proportion of alleles shared IBS (identical by state) between two participants, as described by 

Yang et al. (Yang et al. 2011), referred to here as “KIBS”.  Under circumstances where the 

individuals are closely related, KIBS is a good estimate of allele sharing IBD, KIBD (identical by 

decent, where the shared alleles are inherited from the same ancestor) because KIBS will capture 

information on all variants in the genome.  However, KIBS is not an ideal estimate of KIBD for 

distantly-related individuals, because it will primarily capture only information on measured 

SNPs (Zaitlen et al. 2013).  Thus, SNP-based heritability estimates obtained from very distantly-

related individuals, will tend to be lower than the true narrow-sense heritability.   

Using the GREML method, we obtained three different types of PVE/heritability estimates. First 

we estimated PVE using all participants (using the full IBS-based GRM). Next, we estimated 

PVE using modified GRM in which distant relatives were assumed to be unrelated (i.e., KIBS 
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values lower than 0.05 were set to zero), producing an estimate of the IBD-based GRM (Zaitlen 

et al. 2013). This provides an estimate of the full narrow-sense heritability (h2) which includes 

the additive effects of all genetic variation, including non-genotyped variants, but is prone to bias 

due to shared environment. This h2 estimate is comparable to those generated in family-based 

heritability studies. We also estimated the PVE after excluding individuals from close-relative 

pairs to produce a dataset of only distantly related individuals (all KIBS < 0.05). This method 

provides an estimate of the heritability due to measured SNPs (hg
2).  The PVE estimate based on 

the full GRM (the first one described above) is essentially a mix of h2 and hg
2. Covariates 

included in the LMM were age (continuous), sex (men Vs. women), batch effect (batch 1 Vs. 2, 

binary), water arsenic quartiles (categorical), smoking status (non-smoker, former smoker and 

current smoker, categorical) and BMI (≥10.2, 18.5~25.0 and  ≥25.0, categorical). Twenty 

principal components (PCs, continuous) were included to minimize potential biases caused by 

population structure (PCs generated using EIGENSTRAT (Patterson et al. 2006). PVE analyses 

were first run using only genotyped SNPs to construct the GRM and then run again using both 

genotyped and imputed SNPs to construct the GRM. 

Regional heritability analysis 

We also conducted genome-wide “regional heritability analysis” using the Regional Genomic 

Relationship Mapping (REACTA) software (Nagamine et al. 2012). This method quantifies the 

contribution of specific genomic region to the heritability of a phenotype using a mixed model 

that includes random effects for a specific region and a residual whole-genome effect. The 

whole-genome additive effect was estimated by using all SNPs to construct the GRM, whereas 

the regional effect was estimated using only SNPs from a specific region to estimate a local 

GRM. We estimated the regional heritability across all 22 autosomes among all the non-close 
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relatives (KIBS < 0.05, n =1,338). With an overlap of 50 SNPs between windows, therefore, 

4,924 windows based on 100-SNP size for the genotyped SNPs and 4,787 windows based on 

300-SNP sized window for the imputed data respectively were analyzed. P-values for the 

heritability estimates assessed using a Bonferroni-corrected p threshold (0.05/4,924 or 4,787 = 

1.0x10-5).  

Polygenic scoring 

Because AS3MT variants that influence arsenic metabolism influence arsenical skin lesion risk 

(Ahsan et al. 2006b; Pierce et al. 2013), we assessed the potential polygenic contribution of 

arsenic metabolism-related SNPs to skin lesion risk. We generated a polygenic model for 

DMA% using data from all 2,053 HEALS participants with arsenic metabolite data. Using this 

model, we generated SNP-based polygenic scores in an independent dataset of 2,014 skin lesion 

cases (1,990 BEST samples and 24 HEALS samples) and 1,285 controls from HEALS, and we 

tested the score for association with case-control status. In order to ensure our polygenic scoring 

analysis was not influenced by the contributions of highly correlated SNPs, we pruned out 

170,512 SNPs to produce a dataset of genotyped SNPs with no pairwise r2 values greater than 

0.2 using the --indep-pairwise command in PLINK 

(http://pngu.mgh.harvard.edu/~purcell/plink/). To ensure we were evaluating associations for 

non-AS3MT SNPs only, we further excluded 36 SNPs within +/- 1Mb of the AS3MT transcribed 

region. We also removed 9,852 SNPs with low minor allele frequencies (MAF < 0.05), resulting 

in 77,347 SNPs that were included in the polygenic score analysis. 

The polygenic analysis was conducted as follows:  Among the 2,053 participants with DMA% 

data (the “training set”), we estimated a beta coefficient for the association between the minor 

allele of each SNP and DMA% using linear mixed regression, adjusting for age (continuous), 
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sex, concentration of water arsenic (continuous), and genotyping batch (binary). For each 

individual in the case-control sample (the “testing set”), a polygenic score was calculated as 

follows: using the results from the analysis of the training set, we first set a p-value threshold to 

select SNPs for inclusion in the polygenic model. Several p-value thresholds were used: 10-4, 

10-3, 0.01, 0.1, 0.3 and 0.5. For each SNP with a p-value below this threshold, the number of 

minor alleles carried by each individual in the testing set (0, 1, or 2) was multiplied by the SNP's 

beta coefficient derived from the training set. For each individual, these weighted allele counts 

were then summed over all SNPs passing the threshold and divided by the total number of 

summed SNPs to produce the polygenic score (as implemented in the PLINK “score” command 

(Purcell et al. 2007). These scores were then tested for association with the skin lesion phenotype 

using mixed linear regression models adjusting for gender, age and genotyping batch 

implemented in Genome-wide Efficient Mixed Model Association (GEMMA) (Zhou and 

Stephens 2012).  To approximate the corresponding odds ratio (OR), the beta coefficient was 

first divided by (x(1-x)), where x is the proportion of cases in our sample, in order to estimate the 

beta from a logistic model. This quantity was exponentiated to obtain an OR. 

Analysis of candidate variants identified in prior studies 

We identified 20 variants in 15 genes with previously-reported associations with arsenic 

metabolism phenotypes (Agusa et al. 2012; Breton et al. 2007; Chen et al. 2012; Chiou et al. 

1997; Engstrom et al. 2011; Engstrom et al. 2010; Paiva et al. 2010; Porter et al. 2010; Rodrigues 

et al. 2012; Schlawicke Engstrom et al. 2009; Steinmaus et al. 2007). We examined their 

associations with arsenic metabolism phenotypes (i.e., residuals from mixed models) in our 

GWAS data using linear regression models adjusted by sex, age and genotyping batch. For those 
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candidate SNPs that were not genotyped in our study, we identified proxy SNPs with r2 >0.8 that 

were genotyped in our study based on HapMap2 CHB+JPT data.  

Standard protocol approvals, registrations, and patient consent 

The study protocol was approved by the Institutional Review Boards of The University of 

Chicago, Columbia University, and the Bangladesh Medical Research Council and all study 

participants provided informed consent. 

Results 

Characteristics of HEALS participants and their associations with DMA% are shown in Table 1. 

In a multivariate model, older age (>50), female sex, and lower arsenic in either water or urine 

were associated with higher arsenic metabolism efficiency (higher DMA%). Compared to 

participants with BMI between 18.5 and 25.0, people of both higher and lower BMI had elevated 

DMA%. No association was observed for smoking status.  BEST participants do not have 

DMA% data and were only involved in the polygenic scoring analyses; thus, there participants 

are not included in Table 1. 

Two types of PVE estimates for DMA% are presented in Table 2, those based on genotyped 

SNPs only, and those based on genotyped and imputed SNP.  Below we discuss the results 

obtained using genotyped and imputed SNPs. The PVE estimate for DMA% was 16% (p=0.08) 

when using a GRM calculated from all 2,053 participants. After adjusting for sex, age, 

concentration of water arsenic (quartiles), genotyping batch, BMI, and smoking status, the 

estimate decreased to 12% (p=0.16). Subsequent adjustment for the top 20 principal components, 

the estimate changed to 15% (p = 0.10). The PVE estimate deceased to 5% after adjusting for 
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two SNPs in the AS3MT region identified in our prior GWAS (rs9527 and rs11191527) (Pierce et 

al. 2012; Pierce et al. 2013).  

The PVE estimates for DMA% based on the modified GRM in which KIBS < 0.05 were set to 

zero (i.e., based on all participants and defining distant relationships as unrelated) was 63% 

(p=0.0002). After adjusting for covariates, the estimate decreased to 54% (p=0.001). This 

estimate decreased to 41% (p=0.01) after adjusting for the two SNPs in the AS3MT region. After 

eliminating close relative pairs from the dataset (no KIBS > 0.05), our sample size was too small 

(n=1, 338) to generate a non-zero heritability estimate using GCTA (data not shown).  

However, we were able to use the dataset of distant relatives (no KIBS > 0.05) to conduct regional 

heritability analysis. The most significant regional PVE estimates were obtained for two adjacent 

windows in the 10q24.32 region harboring AS3MT, and these accounted for approximately 7% 

the variation in DMA% (p = 4.4x10-10 and 8.2x10-8) (Figure 1A&B, w1 & w2). The regional 

heritability results based on genotyped data are same as those based on imputed data (data not 

shown). After Bonferroni correction, no region showed a significant PVE estimate other than 

10q24.32.  Regional heritability analyses using the full dataset (i.e., both close and distant 

relatives) produced very similar results (see Supplemental Material, Figure S1.).   

Polygenic scores for DMA% were not significantly associated with skin lesion status when using 

p-value thresholds of p<10-4, p<10-3and p<0.01 (unless including AS3MT SNPs when using a 

threshold of  <10-4 ; however, polygenic scores for DMA% were associated with skin lesion 

status when p-value threshold of <0.1, <0.3 and <0.5 were used to construct the score (Table 3). 

For example, when a threshold of p<0.5 was applied, the beta coefficient for the association 

polygenic scores for DMA% was -0.05 (p =0.02), suggesting that many alleles that cause very 
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small increases in DMA% are also inversely associated with skin lesions. The beta coefficients 

(and ORs) in Table 3 correspond to a one standard deviation change in the polygenic score.  

Table 4 shows associations between arsenic metabolite percentages and variants that have shown 

suggestive evidence of association with arsenic metabolites in prior candidate gene studies. No 

SNP showed significant evidence of association (p<0.05) except for MTHFR-rs1801133 (p=0.03 

for MMA%) and DNMT1-rs2228612 (p= 0.04 for DMA% and p= 0.03 for iAs%). However, the 

directionality of association was consistent with the prior publications for MTHFR-rs1801133 

only.  DNMT1-rs2228612 showed an association in the opposite direction to the association 

previously reported.  

Discussion 

In this work, we have assessed, for the first time, the overall contribution of genetic variation to 

arsenic methylation capacity, as measured by DMA%, using SNP-based heritability methods. 

The PVE estimates obtained using information on close relatives only were 63%, consistent with 

estimates obtained from a recent family-based study (52%) (Tellez-Plaza et al. 2013). When 

including distantly-related individuals in the analysis, PVE estimates were much lower (16%). 

Overall, these results suggest that the excess heritability observed in studies of close relatives is 

due to variants not represented on the genotyping/imputing array (e.g., rare variants) or bias due 

to shared environmental factors. In regional heritability analyses, the AS3MT region produced the 

only significant PVE estimate. These results suggest that among common variants captured on 

our genotyping platform, AS3MT SNPs are the major genetic determinants of arsenic 

methylation capacity in this population and that contributions of other common variants to 

methylation capacity are substantially weaker than the effects of AS3MT variants. 
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Prior studies have examined familial aggregation patterns for arsenic methylation phenotypes. A 

study of Chileans with long-term exposure to high levels of arsenic in drinking water 

demonstrated that urinary concentrations of iAs, MMA, and DMA, as well as their ratios, were 

strongly correlated among siblings (r = ~80), after adjustment for the sum of urinary arsenic. 

Lower correlations were observed for father-mother pairs (r=0.18), suggesting that genetic 

factors influence arsenic metabolic profiles (Chung et al. 2002). A population-based study in 

Taiwan found that patients with Blackfoot disease, an arsenic-induced peripheral vascular 

disease, were three times more likely to have a family history of Blackfoot disease than 

community controls (Chen et al. 1988), also suggesting that genetic factors influence arsenic 

metabolism and/or toxicity. Our estimate based on close relatives (48% or 63%) is similar to the 

heritability estimated in a recent study of Native American families (52%) (Tellez-Plaza et al. 

2013).  Genetic factors play a clear role in determining relative concentrations of arsenic species 

in urine (i.e., arsenic methylation capacity).  

The association between variants in the 10q24.32/AS3MT region with arsenic methylation 

capacity is consistent across many candidate genes studies (Agusa et al. 2011; Rodrigues et al., 

2012; Schlawicke Engstrom et al. 2009) and has recently been confirmed in a genome-wide 

association study (Pierce et al. 2012; Pierce et al. 2013). In addition to AS3MT, dozens of 

candidate genes have been examined for association with arsenic methylation capacity in prior 

candidate gene studies, based on various hypotheses related to methyltransferases, one-carbon 

metabolism, and reduction reactions (Schlawicke Engstrom et al. 2009). GSTO1, GSTO2 (Paiva 

et al. 2010; Rodrigues et al. 2012), MTHFR (Steinmaus et al. 2007), PNP (De Chaudhuri et al. 

2008), GSTM1 (Breton et al. 2007; Chiou et al. 1997; Steinmaus et al. 2007) and several other 

genes have even been reported to be associated with the arsenic methylation capacity (Agusa et 
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al. 2012; Engstrom et al. 2011; Engstrom et al. 2010; Ghosh et al. 2008; Hernandez and Marcos 

2008; Porter et al. 2010; Schlawicke Engstrom et al. 2009). However, many of these studies were 

limited by small sample sizes, and the genetic variants under investigation have not shown a 

great deal of consistency across studies (e.g., (Ahsan et al. 2007; Hernandez and Marcos 2008; 

Xu et al. 2009). In this (MTHFR rs1801133), and this association is very weak compared to 

SNPs in the 10q24.32 region. However, lack or replication could potentially be due to the fact 

that genetic variants can have different patterns of association in different populations due to 

population differences in linkage disequilibrium (LD) with causal variants, differences in allele 

frequency, and/or differences in the prevalence of environmental exposures that interact with the 

variant to influence the phenotype of interest.  

In this study, we used four different modeling approaches to estimate heritability (i.e., PVE).  

First, we estimated overall heritability using the full IBS-based covariance matrix for all study 

participants, including closely-related individuals. This estimate should fall between the full 

narrow sense heritability and the heritability that can be explained by measured SNPs (h g
 2).  

Second, we estimated heritability focusing on close relatives, by using an IBD-based kinship 

matrix assuming zero relatedness between pairs of individuals whose estimated relatedness was 

less than 0.05. This is an estimate of the full narrow-sense heritability (h2), capturing 

contributions of rare variants, but is prone to bias due to shared environmental factors.  Third, we 

estimated heritability due to genotyped SNPs (hg
2) useing the IBS-based matrix constructed after 

removing close relatives from the datset. This is a more conservative approach to estimating 

heritability, as the presense of close relatives may cause bias due to shared environmental 

exposures. Fourth, we conducted regional heritability analyses using either the full IBS-based 

matrix or removing close relatives, but focusing on a small region of the genome. While the low 
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heritability observed may reflect a limited contribution of common variants to arsenic 

methylation capacity, we do not have ideal power to accurately estimate modest heritability 

values. Excluding close relatives is an impotant consideration when conducting SNP-based 

heritiability estimation, as relatives may be more likely to share similar (unmeasured) 

environmental exposures that influence the phenotype, potentially inflating heritability estimates 

(Yang et al. 2010). We have a substantial number of related individuals in our analysis, with only 

1,338 samples remaining after removing related individual pairs with a relationship coefficient 

>0.05.  

The polygenic scoring analyses suggested that there may be common SNPs with weak effects on 

arsenic metabolism outside of the AS3MT region. For these analyses we make the assumption 

that SNPs influencing arsenic metabolism will also influence risk for skin lesions. This 

assumption holds for DMA%-associated variants in the AS3MT region is supported by multiple 

studies reporting and inverse association between DMA% and skin lesion risk (Ahsan et al. 

2007; Gao et al. 2011; Kile et al. 2011; Lindberg et al. 2007; Pierce et al. 2013; Valenzuela et al. 

2005). The observation that associations at less stringent P-value thresholds implies that there are 

many variants with very weak effects on arsenic metabolism that also influence skin lesion risk. 

In order to identify such variants with very weak effects, association studies with larger sample 

sizes would be needed.    

Arsenic induced skin lesions are also influenced by many non-genetic factors, and we have 

assessed associations for several such factors in prior studies of this population. For example, we 

have reported that skin lesion risk is associated with arsenic and BMI (Argos et al. 2011), dietary 

(Pierce et al. 2011), as well as smoking and occupational risk factors (Melkonian et al. 2011). 

While these associations are clearly important as potential determinants of arsenic toxicity, we 
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do not consider them in our polygenic scoring analysis, as they are not potential confounders of 

the association between a SNP (or a SNP score) and skin lesion status. 

In this work, we chose to use DMA% as a measure of arsenic methylation capacity. Alternative 

measures of methylation capacity include iAs%, MMA%, and metabolite ratios, which are 

highly correlated with DMA%. We chose to present results for DMA% in this work in part 

because DMA% showed the strongest associations with SNPs in the AS3MT region in our prior 

GWAS (Pierce et al. 2012), as compared to iAs%, MMA%, and metabolite ratios. Furthermore, 

PVE estimates for MMA% or iAs% was similar to those for DMA%, but somewhat weaker in 

magnitude (results upon request). 

Although our study is the first SNP-based heritability study of arsenic methylation capacity, it 

has several limitations. First, our total sample size for metabolism study was only 2,053, which is 

relatively small for SNP-based heritability estimation. This hindered our ability to estimate 

heritability with high precision and to estimate heritability using a smaller, “unrelated” subset of 

study participants. Larger sample size, as well as denser SNP measurements (such as genome-

wide sequencing), would enhance our ability to estimate heritability and conduct polygenic 

scoring analysis. We were able to measure arsenic metabolites in urine only and not in other 

relevant specimens such as blood, although this is a limitation of most studies of arsenic 

metabolism.  

Conclusions 

In conclusion, in this SNP-based heritability study of arsenic metabolism efficiency, we 

estimated total narrow-sense heritability for DMA% to be 48-63% (using data on close relatives 

only), but the heritability due to measured SNPs was substantially lower (13-16%). Because the 
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larger narrow-sense (“family-based”) estimate captures the effects of measured common variants 

and unmeasured rare variants (as well as shared environmental influences), and the smaller 

“unrelated” estimate captures the effects of measured common variants only, our results suggests 

that rare variants (e.g., AS3MT coding variants) and/or unknown or poorly-measured 

environmental/lifestyle factors that cluster in families (e.g., dietary factors) make a substantial 

contribution of inter-individual variation in arsenic methylation capacity.  Moderate associations 

between a polygenic score for DMA% (composed of non-AS3MT SNPs) and skin lesion status 

were detected, suggesting the existence of additional common variants that have very weak 

effects on arsenic metabolism efficiency. Our regional heritability analyses did not detect 

additional susceptibility regions, consistent with the hypothesis that the effects of common 

variants outside of the 10q24.32/AS3MT region are likely to be very weak. While these findings 

may not apply to other populations, our results suggest that future studies of Bangladeshi 

individuals with comparable exposure levels will have to have large sample sizes in order to 

detect associations between DMA% and common SNPs outside of the AS3MT region.  Studies of 

rare variants may reveal genetic effects that contribute to the high heritability estimates observed 

in our family-based heritability analyses.  

This work enhances our knowledge regarding the genetic architecture of arsenic methylation 

capacity in a population where the public health impact of arsenic exposure is substantial.  

Understanding the determinants of arsenic metabolism is critical because metabolism efficiency 

will likely affect the internal (or biological effective) dose which will in turn impact risk for all 

arsenic-related health conditions.  Understanding these determinants will improve our ability to 

identify high-risk subgroups and develop interventions to enhance metabolism efficiency or 

reduce exposure.   
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Table 1. Characteristics of HEALS participants and their associations with arsenic metabolism 1 

efficiency, i.e., DMA%  (n=2,053).a 2 

Characteristic Number (%)b DMA% 
β SE P 

Gender            
 Women 1,015 (49.4) Referent  

        Men 1,038 (50.6) -2.98 0.41 <0.0001 
Age    

17-29 438 (21.3) Referent  
30-39 589 (28.7) -0.06 0.44 0.90 
40-49 557 (27.1) 0.16 0.46 0.74 

                    50-70  469 (22.8) 1.20 0.51 0.02 
Water arsenic (µg/L)     

 Quartile 1 (0-8) 514 (25.3) Referent  
 Quartile 2 (9-49 ) 503 (24.8) -1.04 0.43 0.02 

 Quartile 3 (50-127) 507 (25.0) -1.68 0.43 <0.0001 
 Quartile 4 (128-864) 507 (25.0) -2.57 0.43 <0.0001 

Smoking status    
 Never 1,161 (56.6) Referent  

 ever 892 (43.5) -0.15 0.44 0.73 
BMI(kg/m2)     

10.2-18.4 864 (42.1) Referent  
18.5-24.9 1,059 (51.6) 0.89 0.32 0.005 
25.0-51.8 130 (6.3) 2.22 0.65 0.0006 

Urinary arsenic adjusted for creatinine (µg/g)   
Quartile 1 (11-89) 426 (20.9) Referent  

Quartile 2 (90-176) 556 (27.2) -0.19 0.44 0.66 
Quartile 3 (177-343) 595 (29.2) -1.25 0.43 0.004 

Quartile 4 (344-8,556.0) 464 (22.7) -2.74 0.46 <0.0001 
Prevalent skin lesion     

No 1974 (96.7) Referent  
Yes 67 (3.3) -0.59 0.87 0.49 

aβ, SE and P-values were obtained from mixed linear regression models, adjusting for  age, sex, 3 
genotyping batch, smoking, BMI, and arsenic concentrations in drinking water. bCategorical variables are 4 
presented as counts and percentages (water arsenic, urinary arsenic and prevalent skin lesion may not add 5 
up to total due to missing values). 6 
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Table 2. Estimates of the percent variance explained (PVE) by genetic factors for DMA% obtained from linear mixed regression 1 

models. 2 

HEALS participants 
included Covariate adjustments 

All genotyped SNPs 
(n=257,747)  All genotyped and imputed SNPs 

(n=1,211,988) 
PVE SE P PVE SE P 

        
All participanta 

(n = 2, 053) 
 
 

No adjustment 13% 10 0.09 16% 12 0.08 
Adjusting for covariatesb 10% 10 0.15 12% 12 0.16 

Further adjusting for PCsc 11% 11 0.16 15% 12 0.10 
Adjusting for 2 10q24.32 SNPs 3% 10 0.36 5% 12 0.34 

All participants, defining 
distant relationships as 

“unrelated”d 

(n = 2,053) 

No adjustment 48% 13 0.0004 63% 16 0.0002 
Adjusting for covariatesb 42% 14 0.002 54% 17 0.001 

Adjusting for 2 10q24.32 SNPs 35% 14 0.007 41% 17 0.01 

PCs, principle components.  3 
aUsing the full GRM, KIBS on all individuals. The PVE is in between the full narrow-sense heritability and the heritability due to measured SNPs. 4 
bCovariates including gender, age (continuous), concentration of water arsenic (quartiles), genotyping batch, BMI and smoking status. cTwenty 5 
principal components as additional covariates to minimize inflation in significance testing caused by population stratification. dUsing a modified 6 
GRM, with KIBS set as 0 if KIBS <0.05 (i.e., ignoring distant relationships). This approximates the KIBD for all individuals. The PVE corresponds to 7 
the full narrow-sense heritability.  8 
After eliminating close relative pairs from the dataset (KIBS > 0.05), our sample size was too small (n=1, 338) to generate a non-zero heritability 9 
estimate using GCTA. 10 
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Table 3. Associations between polygenic scores for DMA% and skin lesion status.a 1 

P-value 
threshold 

non-AS3MT SNPs AS3MT SNPs included 
Num. of SNPs Betab SE P OR (95%CI)c Num. of SNPs Betab SE P OR (95%CI)c 

p<10-4 11 -0.007 0.007 0.34 0.97 (0.91, 1.03) 13 -0.02 0.007 0.01 0.93 (0.87, 0.98) 
p<10-3 87 0.001 0.008 0.89 1.00 (0.94, 1.07) 89 -0.005 0.008 0.53 0.98 (0.92, 1.05) 
p<0.01 801 0.01 0.01 0.22 1.06 (0.97, 1.15) 803 0.01 0.01 0.35 1.04 (0.96, 1.14) 
p<0.1 7810 -0.03 0.02 0.04 0.87 (0.76, 0.99) 7812 -0.04 0.02 0.03 0.86 (0.75, 0.99) 
p<0.3 23281 -0.04 0.02 0.04 0.85 (0.73, 0.99) 23283 -0.04 0.02 0.03 0.85 (0.73, 0.98) 
p<0.5 38644 -0.05 0.02 0.02 0.82 (0.70, 0.96) 38646 -0.05 0.02 0.01 0.82 (0.70, 0.96) 

aThe polygenic model was developed using all 2,053 participants with DMA% data and SNP data. The testing set was an independent set of 2014 2 
cases and 1285 controls. bThe polygenic scores have been standardized, so the β coefficients from the mixed linear regression model correspond to 3 
a one standard deviation change in the polygenic score, adjusted for sex, age and genotyping batch. cOdds ratios (ORs) were calculated by dividing 4 
the beta coefficient by (x(1-x)), where x is the proportion of cases in our sample, in order to estimate the beta from a logistic model. This quantity 5 
was exponentiated to obtain an OR. 6 
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Table 4. Association between arsenic metabolism phenotypes and candidate SNPs with associations reported in prior studies. 1 

Gene Reported SNP Function Population Sample Size References P for associationa 
DMA% MMA% iAs% 

GSTO1-1 rs4925 Ala140Asp Bangladesh 1800 (Rodrigues et al. 2012) 0.46 0.94 0.60 
   Taiwan 247 (Chen et al. 2012)    
GSTO2-2 rs2297235 UTR-5 Bangladesh 1800 (Rodrigues et al., 2012) 0.96 0.78 0.54 
      Bangladesh 1800       
  rs156697 Asn142Asp Chile 207 (Paiva et al. 2010) 0.51 0.72 0.55 
CHDH rs9001b Glu40Ala Argentina 111 

(Schlawicke Engstrom et al. 2009) 

0.51 0.23 0.79 
  rs7626693 intron Argentina 111 0.28 0.19 0.44 
MTRR rs1801394c Ile49Met Argentina 111       
GLRX rs3822751c intron Argentina 111    
      Argentina 111    
PRDX2 rs10427027 3'-UTR Argentina 111 0.26 0.82 0.21 
  rs12151144b intron Argentina 111 0.26 0.82 0.21 
DNMT rs16999593 His97Arg Argentina 111 0.15 0.59 0.11 
TXNRD2 rs5746847b intron Argentina 108 (Engstrom et al. 2010) 0.48 0.61 0.62 
Apex1 rs1130409c Asp148Glu Argentina 108      
GSTM1 gene deletion  Bangladesh 97 (Breton et al. 2007)        
      Taiwan 115 (Chiou et al. 1997)       
      Argentina 170 (Steinmaus et al. 2007)       
GSTT1 gene deletion  Taiwan 115 (Chiou et al. 1997)    
MTHFR rs1801133 C677T Argentina 170 (Steinmaus et al. 2007) 0.053 0.03 0.20 
  rs1801131 A1298C Argentina 170 0.75 0.14 0.78 
GSTP1 rs1695  Ile105Val Vietnam 190 (Agusa et al. 2012) 0.85 0.52 0.49 
CBS rs234709c intron Argentina 142 (Porter et al. 2010)        
  rs4920037 intron Argentina 142 0.25 0.21 0.50 
DNMT1 rs2228612b intergenic Bangladesh 361 

(Engstrom et al. 2011)  
0.04 0.31 0.03 

DNMT3B rs6087990b intergenic Bangladesh 361 0.66 0.15 0.61 
DNMT3B rs2424913 intergenic Bangladesh 361 0.46 0.19 0.97 
aP values are based on a linear mixed regression model (GEMMA) to account for relatedness. Adjustments include sex, age, and genotyping batch. 2 
bUsing rs2241807 data as a proxy of rs9001 (r2 = 0.81); rs10427027, rs5748485 and rs11672909 are proxies for rs12151144, rs5746847 and 3 
rs2228612 (r2 = 1.0). r2 values are based on HapMap GIH data. cNo data on tag SNPs was available for rs1801394, rs3822751, rs1130409 and 4 
rs234709. 5 
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Figure Legend 1 

Figure 1. Regional heritability estimates (A) and corresponding P-values (B) for DMA%, 2 

excluding close relatives (KIBS < 0.05, n= 1,338). Estimates were obtained using measured and 3 

imputed SNPs with a window size 100 SNPs with a 50 SNP overlap between windows.  4,924 4 

tests were conducted. The red line represents the Bonferroni-corrected P-value threshold. The 5 

two windows adjacent/overlapping windows that surpass the P-value threshold reside in the 6 

10q24.32 region and are labelled “w1” and “w2”.  7 

  8 
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Figure 1. 1 
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