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Abstract 

Background: There is limited knowledge about the extent to which estimates of air pollution 

effects on health are affected by the choice for a specific exposure model.  

Objectives: We aimed to evaluate the correlation between long-term air pollution exposure 

estimates using two commonly used exposure modeling techniques [dispersion and land use 

regression (LUR) models], and in addition, to compare the estimates of the association between 

long-term exposure to air pollution and lung function in children using these exposure modeling 

techniques.  

Methods: We used data of 1058 participants of a Dutch birth cohort study with measured forced 

expiratory volume in 1 second (FEV1), forced vital capacity (FVC) and peak expiratory flow 

(PEF) at the age of 8 years. For each child, annual average outdoor air pollution exposure 

[nitrogen dioxide (NO2), mass concentration of particulate matter with diameters <2.5 and <10 

µm (PM2.5, PM10), and PM2.5 soot] were estimated for the current addresses of the participants by 

a dispersion and a LUR model, respectively. Associations between exposures to air pollution and 

lung function parameters were estimated using linear regression analysis with confounder 

adjustment.    

Results: Correlations between LUR and dispersion modeled pollution concentrations were high 

for NO2, PM2.5 and PM2.5 soot (R: 0.86-0.90) but low for PM10 (R: 0.57). Associations with lung 

function were similar for air pollutant exposures estimated using LUR and dispersion modeling, 
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with the exception of associations of PM2.5 with FEV1 and FVC, which were stronger but less 

precise for exposures based on LUR compared with dispersion model. 

Conclusions: Predictions from LUR and dispersion models correlated very well for PM2.5, NO2 

and PM2.5 soot but not for PM10. Health effect estimates did not depend on the type of model 

used to estimate exposure in a population of Dutch children. 

  



5 

 

 Introduction 

Currently, there is an increased interest in estimating health effects with individual estimates of 

exposure taking into account intra-urban differences in air pollution levels (Brauer et al. 2008; 

Gehring et al. 2013; Molter et al. 2013) because of potential underestimation of health effects 

based on exposure assignment at community level (Jerrett et al. 2005a; Miller et al. 2007).  

Land use regression (LUR) modeling and dispersion modeling have been extensively applied to 

characterize small-scale spatial variability of air pollution (Jerrett et al. 2005b). These 

approaches are based on distinctive methodological principles. LUR modeling combines data 

from air pollution measurements with data from geographic information systems (GIS) and 

stochastic modeling that exploits land use, geographic and traffic characteristics to explain 

spatial concentration variations at measured sites. Dispersion modeling relies on deterministic 

(e.g. Gaussian plume) equations and utilizes data on emission, meteorological conditions and 

topographical data to simulate the physico-chemical processes of transport and atmospheric 

chemistry when estimating outdoor air pollution concentrations (Jerrett et al. 2005b). Currently, 

comparisons of the prediction ability of LUR and dispersion models at cohort addresses are 

scarce (Beelen et al. 2010; Briggs et al. 2000; Cyrys et al. 2005; Dijkema et al. 2011; Gulliver et 

al. 2011; Marshall et al. 2008).  

Recent studies have raised the importance of comparing alternative exposure metrics and 

relevant health effects in epidemiological studies (Baxter et al. 2013; Ozkaynak et al. 2013). The 
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impact of dispersion and LUR modeling on health effect estimates has only been investigated in 

a Californian study and a French study on the effects of air pollution on pregnancy outcomes. 

These studies reported comparable results for the two modeling approaches (Sellier et al. 2014; 

Wu et al. 2011). However, only NO2 and PM10 models were compared in these studies.  

The aims of this study were to 1) evaluate the agreement between long-term air pollution 

exposure estimates for NO2, PM2.5, PM2.5 soot, and PM10 based on dispersion modeling and LUR 

modeling, and 2) to evaluate whether associations between long-term air pollution exposures and 

lung function in children differ depending on the exposure modeling approach used.   

Methods 

Study population 

We included participants from the Dutch PIAMA (Prevention and Incidence of Asthma and Mite 

Allergy) birth cohort study. For the study, pregnant women were recruited in 1996-1997 during 

their second trimester of pregnancy from a series of areas in the north, West, and center of The 

Netherlands. Non-allergic pregnant women were invited to participate in a “natural history” 

study arm. Pregnant women identified as allergic through a validated screening questionnaire 

were primarily allocated to an intervention arm with a random subset allocated to the natural 

history arm. The study started with 3,963 newborns. Ethics approval to perform the study was 

obtained from the local authorized institutional review boards, and written informed consent was 

obtained from the parents or legal guardians of all participants. More information about the study 

design and population has been reported elsewhere (Brunekreef et al. 2002; Wijga et al. 2013). 
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The present analysis included participants from this cohort with successful lung function 

measurements at eight years of age; complete information on sex, age, height, and weight at the 

time of lung function measurement; and information on exposure to air pollution at the time of 

lung function measurement. 

Lung function measurements  

At age eight years, all children of allergic mothers and a random sample of children of 

non-allergic mothers (N=1552) were invited for a medical examination including pulmonary 

function testing, of which 1058 children responded with a visit to one of the study hospitals. 

Children in the intervention and natural history groups were similar at age 8, and the intervention 

was shown not to have an effect on clinical outcomes (Gehring et al. 2012). In earlier work, we 

showed that combining these two groups did not affect associations between air pollution and 

lung function parameters (Gehring et al. 2013). A Jaeger pneumotachograph (Viasys Healthcare, 

USA) was used for pulmonary function testing. We investigated the following lung function 

parameters: force expiratory volume in 1 second(FEV1), forced vital capacity (FVC), and peak 

expiratory flow (PEF). Body weight and height were measured during the medical examination 

by trained research staff using calibrated equipment (Gehring et al. 2013). 

Air pollution exposure assessment 

We used a local dispersion and an LUR model to estimate annual average air pollution 

concentrations of NO2, PM2.5, PM2.5 soot and PM10 at the participants’ home addresses at birth 

and at the time of the lung function tests. 
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• LUR models were developed using measurement data from the ESCAPE (European Study of 

Cohorts for Air Pollution Effects) study collected during 2008-2011. In brief, three 

two-week measurements within one year were conducted in at 40 (PM) and 80 (NO2) 

locations respectively, throughout the Netherlands. The measurements were temporally 

adjusted using data from a continuous regional reference sites to generate annual average 

concentrations for LUR modeling. Model structures and performances have been shown in 

Table S1 (see Supplemental Materials). Details of the measurements and modeling efforts 

have been published elsewhere (Beelen et al. 2013; Cyrys et al. 2012; Eeftens et al. 2012a; 

Eeftens et al. 2012b). Detailed evaluations of model performances have been presented in a 

separate publication. (Wang et al. 2013).  

• The Dutch dispersion model is a combination of a Gaussian plume model for the local scale 

and a Lagrangian trajectory model for long-distance transport (Van Jaarsveld 2004) which 

produces estimates of background concentrations of NO2, PM2.5, PM2.5 soot and PM10 with a 

spatial resolution of 1×1 km. Annual average air pollution levels at the current address were 

based upon updated emission inventory data, actual meteorological parameters and 

dispersion modeling (Velders and Diederen 2009). Background concentrations of PM2.5 soot 

were derived from fractions of primary PM2.5 in combustion emissions depending on the 

type of fuel (biomass, coal, oil, diesel and petrol) as developed in the EUCAARI European 

research project (http://www.atm.helsinki.fi/eucaari/). Road traffic emissions were estimated 

by two standard Dutch models: “SRM1” a street canyon model for inner urban roads and 
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“SRM2”a line-source model for motorways. In SRM1, a source-receptor relationship has 

been specified as a function of the distance to the street axis for five different road types. 

SRM2 is based on a Gaussian plume model which takes into account vehicle-induced 

turbulence, the upwind roughness of the terrain, the presence of noise screens near the 

motorway and atmospheric stability. Emission factors for road traffic of regulatory 

components (NOx/NO2, PM2.5 and PM10) are updated annually in the Netherlands, while for 

PM2.5 soot emission factors fractions of primary PM2.5 exhaust emissions have been used for 

diesel- and petrol-fuelled vehicles. More details about the applied dispersion models can be 

found elsewhere (Keuken et al. 2013; Wesseling 2003).  

Statistical analysis  

Pearson correlation coefficients were calculated to assess the agreement in estimated air 

pollution levels between different exposure modeling approaches and the agreement between the 

measured and dispersion modeled predicted concentrations at the ESCAPE sites. Paired t-test 

was applied to investigate the differences between the means of the distributions estimated by the 

two different models. 

We used linear regression analyses with natural log (ln)-transformed lung function parameters as 

the dependent variables to estimate associations between continuous lung function parameters 

and air pollution levels at the birth address and at the home address at the time of the lung 

function measurement, as described elsewhere (Gehring et al. 2013). For each pollutant we 

specified models adjusted for sex, ln(age), ln(weight), and ln(height) only; and fully-adjusted 
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models that also included the following individual-level variables: ethnicity; parental allergies; 

parental education; breastfeeding; maternal smoking during pregnancy; smoking, 

mold/dampness, and furry pets in the child’s home; recent respiratory infections. We used 

fully-adjusted models to compare associations with exposures estimated using the two different 

approaches. We also estimated associations using two-pollutant models that included both NO2 

and PM2.5 estimated using either the dispersion model or the LUR model, to determine whether 

mutually-adjusted effect estimates differed between the two exposure assessment methods. We 

estimated associations between air pollutants and lung function using fixed increments as used 

before in the ESCAPE study (Gehring et al. 2013). These increments were 10 µg/m3 for NO2 and 

PM10, 1 10–5/m for PM2.5 soot, 5 µg/m3 for PM2.5. . Statistical significance was defined by a 

two-sided α-level ≤5%. 

Results 

Characteristics of the study population 

The studied population included 1058 participants with average age of 8 years and with 50.4% 

female (Table 1). Mean (±SD) FEV1, FVC and PEF were 1.80±0.25 L, 2.01±0.30 L and 

3.79±0.63 L/sec, respectively. 

Air pollution exposure 

Table 2 presents the distributions of estimated annual average concentrations of air pollutants by 

different exposure models for the area of the PIAMA cohort. Although t-tests indicated 

significant differences between mean estimates based on dispersion and LUR models for all of 
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the pollutants (p<0.01), mean values were similar. However, standard deviations (SD) were 

larger for dispersion model estimates than estimates from the LUR models. PM2.5 soot 

concentrations were not directly comparable between LUR and dispersion models due to the use 

of different measurement techniques, with LUR estimates based on optical analysis reported as 

10–5/m, and dispersion model estimates based on thermal analysis of elemental carbon reported 

as µg/m3.  

Performance evaluations of dispersion models with the measurements at the ESCAPE sites 

showed that the Pearson correlation coefficient was highest for NO2 (R=0.85) and lowest for 

PM2.5 (R=0.54) (Figure 1).  

Figure 2 shows the scatter plots of the estimates between the dispersion and LUR models at the 

cohort addresses. Overall, the LUR model predictions correlated well with the estimates of the 

dispersion models for all the pollutants with an exception for PM10 (R=0.57).  

Table 3 shows strongest correlations of concentrations between any pair of pollutants by the 

dispersion model (R: 0.90-0.99), followed by the measurements (R: 0.75–0.93), and the LUR 

model R: 0.63-0.91). The values in the correlation matrix of air pollution predicted by the LUR 

model (LUR panel in table 3) were closest to the values in the correlation matrix between 

measured air pollutants (measured panel in table 3).  
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Associations between lung function and exposure estimated by different approaches 

Overall, we found consistent negative associations between the lung function parameters FEV1 

and FVC and long-term exposure to air pollution estimated by both dispersion and LUR models 

at the current home addresses (Figure 3). The magnitudes of the effect estimates were similar for 

NO2, PM2.5 soot and PM10, but negative associations with PM2.5 were stronger for exposure 

estimates based on LUR compared with estimates based on dispersion modeling. 95% 

confidence intervals’ (CI) ranges were similar for NO2 and PM2.5 soot but larger for PM2.5 and 

PM10 estimates by LUR models than for PM2.5 and PM10 estimates by dispersion models. No 

significant associations were found between air pollution estimated by any of the exposure 

approaches and PEF. Effect estimates for concentrations estimated at the birth addresses were 

somewhat weaker than for the current addresses (results not shown). Associations with FVC 

were remained significant based on two-pollutant models for NO2 and PM2.5 when exposures 

were estimated using the localized LUR models (–2.4% difference; 95% CI: –4.1, –0.8 and –9.5% 

difference; 95% CI: –18.2, –0.9 for NO2 and PM2.5, respectively) but were no longer significant 

when exposures were estimated using the dispersion models (–2.0 % difference; 95% CI: –4.2, 

0.3 and –3.0 % difference; 95% CI: –7.8, 2.0, respectively). 

Discussion 

Model predictions of LUR and dispersion for PM2.5, NO2 and PM2.5 soot correlated very well. 

For PM10 correlations between LUR and dispersion models were more moderate. For PM2.5 the 

variability in concentrations predicted by the LUR model was smaller than for the dispersion 
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model, whereas for NO2 and PM2.5 soot variability was similar between the two models. LUR 

and dispersion predictions for PM2.5 soot are expressed in different units (PM2.5 absorbance in 

10-5 m-1 and µg/m3 for EC). If the average conversion factor in a recent review (Janssen et al. 

2011) is applied (1 unit absorbance = 1.1 µg/m3 EC), the dispersion and LUR models predict 

slightly different absolute levels. The better agreement for NO2 compared to PM mass agrees 

with a recent comparison between dispersion and LUR models (de Hoogh et al. 2014). The 

explanation offered by the authors was that both methods perform better for traffic-related 

pollutants than other pollutants, when appropriate input data are available. This interpretation is 

supported by our results for PM2.5 soot, which was not evaluated in the previous paper and is 

strongly affected by traffic emission in the Netherlands.  

Previous studies have looked at correlations between LUR and dispersion modeled 

concentrations of NO2 (Beelen et al. 2010; Cyrys et al. 2005; Marshall et al. 2008). Only the 

Cyrys et al. (2005) study documented a reasonably high Pearson correlation coefficient of 0.83 

between the two models. The Pearson correlation coefficient of 0.90 we found compares 

favorably with the study as well as with recent multicenter study published by de Hoogh et al. 

(2014) which found a median Pearson correlation coefficient of 0.75 in 13 different European 

study areas. The Pearson correlation coefficient of 0.86 we found for PM2.5 was higher than the 

median Pearson correlation coefficient of 0.28 in de Hoogh et al. (2014) and our correlation (R) 

for PM10 of 0.57 was also higher than the correlation (R) of 0.39 in that paper. 
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Comparison of the effect estimates of the association between long-term exposure to air 
pollution and lung function in children using LUR and dispersion models 

This study shows that different exposure approaches revealed generally similar estimates of the 

association between long-term exposure to NO2, and PM2.5 soot and lung function in a Dutch 

birth cohort. Effect estimates for PM2.5 and PM10 were larger for the LUR estimates than for the 

dispersion estimates, but with wider confidence intervals. One explanation could be that the 

PM2.5 and PM10 dispersion models did not predict the measured spatial variation of PM2.5 and 

PM10 well (Figure 1). However, effect estimates were expressed over fixed concentration ranges. 

The dispersion models predicted wider concentration ranges for PM2.5 and PM10 than the LUR 

models and as a consequence the 95% confidence intervals of the LUR modeled effect estimates 

were larger than those of the dispersion modeled effect estimates.  

A strength of our study relates to the comparisons for. PM2.5 and PM2.5 soot in addition to NO2 

and PM10. Previous studies based on dispersion models were primarily focusing on NO2 and 

PM10 health effects (Downs et al. 2007; Jacquemin et al. 2013; Schultz et al. 2012; Sellier et al. 

2014) with only one exception for PM2.5 in Oslo (Oftedal et al. 2008). Moreover, our study 

employed well validated Dutch dispersion and LUR models with fine spatial resolution and 

reliable predictions of air pollution levels. 

We estimated effects of a similar magnitude on lung function for all the strongly correlated air 

pollutants assessed by the dispersion models (Pearson correlation coefficients: 0.92-0.99, Table 

3), probably because the sources are assumed largely the same: the dispersion model used 
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presumed fractions of PM emission factors derived from exhaust emissions and applied a scaling 

approach to estimate the PM metrics. In contrast, correlations between the air pollutants were 

weaker when estimated using the localized LUR models, and very similar to corresponding 

correlations between measured air pollutant concentrations. This was due to the fact that the 

LUR input data was from real measurements. Predictor variables in the LUR models frequently 

included population (or residence) density, a surrogate for sum of household activities (e.g. 

cooking and heating emissions) which were absent in the emission inventory for the dispersion 

modeling. Two-pollutant models with NO2 and PM2.5 indicated more robust and independent 

effects of individual pollutants on FVC using the exposure estimates from the LUR models than 

from the dispersion models.  

A limitation of this study is that we do not know how generalizable the findings of our analysis 

are to other cities and areas. We acknowledge that both dispersion and LUR models might 

produce exposure misclassifications and the degree of the impact depends on a variety of factors 

differentiating across geographical locations. For dispersion models, potential measurement 

errors may be affected by local emission inventory, the method of air pollution simulation, and 

the spatial resolution of grid cells. For LUR models, validity depends on the number of sampling 

sites, the quality of GIS variables, and the modeling procedures (Basagana et al. 2013).  

In summary, LUR and dispersion model predictions for PM2.5, NO2 and PM2.5 soot were very 

well correlated (Pearson correlations 0.86–0.90). For PM10 correlations between LUR and 
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dispersion models were more moderate. Health effect estimates did not depend on the type of 

model used to estimate exposure in the study population of Dutch children. 
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 Table 1. Description of the study population and lung function measurements. 

Variable N Percent or 
Mean±SD 

Female sex 1058 50.4 
Respiratory infections 1054 24.2 
Allergic mother 1058 66.1 
Allergic father 1055 33.3 
Dutch ethnicitya 1044 95.7 
High maternal SES 1055 38.6 
High paternal SES 1043 42.9 
Breastfeeding 1058 52.6 
Mother smoked during pregnancy 1044 15.4 
Smoking at child’s homeb 990 15.7 
Mold/dampness in child’s homeb 985 28.8 
Furry pets in homeb 970 49.9 
Height (cm) 1058 132.90±5.60 
Weight (kg) 1058 28.90±4.80 
Age (years) 1058 8.10±0.30 
FEV1 (L) 1058 1.80±0.25 
FVC (L) 1058 2.01±0.30 
PEF (L/sec) 1058 3.79±0.63 
aEthnicity: Dutch; bAt the age of the lung function measurement. 
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Table 2. Descriptive of estimated annual average air pollution levels (N=1058). 

Models Mean±SD Min P25 Median P75 Max 
NO2 (µg/m3)       
Dispersion 23.0±8.2 9.8 14.9 23.7 28.1 44.8 
LUR 22.1±6.3 9.4 17.5 22.4 26.2 52.1 
PM2.5 (µg/m3)       
Dispersion 15.9±1.9 12.6 13.6 16.8 17.3 20.0 
LUR 16.3±0.6 14.9 15.6 16.5 16.7 19.3 
PM2.5 soota       
Dispersion 0.7±0.2 0.3 0.4 0.7 0.8 1.6 
LUR 1.2±0.2 0.9 1.0 1.2 1.3 2.1 
PM10 (µg/m3)       
Dispersion 23.8±2.3 19.7 21.1 24.9 25.5 28.6 
LUR 24.8±1.0 23.7 24.0 24.5 25.1 29.8 
aPM2.5 soot estimated by dispersion model using thermal detection method (µg/m3) and by LUR models 

using optical method (10-5/m). 
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Table 3. Pearson Correlation Coefficients (R) between measured air pollution concentrations at 

the ESCAPE monitoring sites (NO2: N=40 and PM: N=80) or modeled pollutants at PIAMA 

addresses (n=1058), respectively. 

Models Pollutants NO2 PM2.5 PM2.5soot PM10 
Measureda NO2 1 

PM2.5 0.75 1 
PM2.5sootb 0.93 0.84 1 

 
 

PM10 0.86 0.85 0.86 1 
Dispersion NO2 1 

PM2.5 0.92 1 
PM2.5sootb 0.95 0.93 1 

 
 

PM10 0.90 0.99 0.92 1 
LUR NO2 1 

PM2.5 0.75 1 
PM2.5sootb 0.91 0.86 1 

 PM10 0.78 0.63 0.88 1 
aMeasured: Measured concentrations at the ESCAPE sites for LUR model development in The 

Netherlands. bPM2.5 soot estimated by dispersion model using thermal detection method (µg/m3) and by 

LUR models using optical method (10-5/m). 
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Figure Legends  

Figure 1 Pearson correlation coefficients of dispersion modeled NO2 (N=80), PM2.5, PM2.5 soot, 

PM10 (N=40) with the same pollutants measured at the ESCAPE sites. 

Figure 2 Pearson correlation coefficients of air pollution estimates between localized dispersion 

and LUR models at the PIAMA addresses (N=1058). 

Figure 3 Adjusted associations (model b) of annual levels of air pollutants estimated by 

dispersion and LUR modeling approaches with FEV1, FVC, and PEF level (N=1058) at the 

PIAMA current addresses. The increment of each pollutant is calculated by 10 µg/m3 for 

NO2 and PM10, 1 10–5/m for PM2.5 soot, 5 µg/m3 for PM2.5. 
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Figure 1. 
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Figure 2. 
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Figure 3. 

 

 


