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Abstract 

Background: Exposure to arsenic (As) concentrations in drinking water >150µg/L has been 

associated with risk of diabetes and cardiovascular disease, but less is known about effects of 

lower exposures. Few studies have examined whether moderate As exposure, or indicators of 

individual As metabolism at these levels of exposure, are associated with cardiometabolic risk.  

Methods: We analysed cross-sectional associations between arsenic exposure and multiple 

markers of cardiometabolic risk using data from 1160 adults in Chihuahua, Mexico recruited in 

2008-2013 with measures of drinking water As and urinary As species. Lipid and glucose levels 

in fasting blood, an oral glucose tolerance test, and blood pressure were used to characterize 

cardiometabolic risk. Multivariable logistic, multinomial and linear regression was used to assess 

associations between cardiometabolic outcomes and water As or the sum of inorganic and 

methylated As species in urine.   

Results: After multivariable adjustment, concentrations in the second quartile of water As (25.5-

<47.9µg/L) and the < median concentration of total speciated urinary As (<55.8µg/L) were 

significantly associated with elevated triglycerides, high total cholesterol, and diabetes. 

However, moderate water and urinary As levels were also positively associated with HDL 

cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia 

were higher among individuals with higher proportions of dimethyl-As in urine.  

Conclusions: Moderate exposure to As may increase cardiometabolic risk, particularly in 

individuals with high proportions of urinary dimethyl-As. In this cohort, As exposure was 

associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia and 

cholesterolemia), but exposure was also associated with higher rather than lower HDL 

cholesterol.   
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Introduction 

There is growing evidence that chronic exposure to inorganic As (iAs) may increase risk of 

cardiometabolic (CM) disorders, including diabetes mellitus (DM) and cardiovascular diseases 

(CVD) (Kuo et al. 2013; Maull et al. 2012; Moon et al. 2012). Experimental studies report 

adverse effects of iAs or its metabolites on mechanisms associated with CM disorders, such as 

insulin secretion and signaling, lipid metabolism, systemic inflammation, and atherosclerosis 

(Cheng et al. 2011; Douillet et al. 2013; Druwe et al. 2012; Fu et al. 2010; Lemaire et al. 2011; 

Muthumani and Prabu 2014; Paul et al. 2007). Recent reviews of the epidemiological literature 

suggest that exposure to levels of iAs in drinking water >150µg As/L may increase risk of 

diabetes (Maull et al. 2012), and possibly CVD outcomes (Abhyankar et al. 2012; Moon et al. 

2012; Navas-Acien et al. 2005). Evidence of relationships at low to moderate levels of exposure 

is more limited and equivocal.    

Few epidemiologic studies to date have examined associations between moderate iAs 

exposure and markers of CM risk. Such studies may help to provide insights into the potential 

role of iAs exposure in the development and progression of CVD and diabetes. A few studies in 

industrially contaminated areas, or in settings with mean water As concentrations >150 µg/L, 

have reported As exposure to be associated with CM markers such as elevated blood pressure, 

fasting glucose, triglycerides, and low-density lipoprotein cholesterol (LDL) (Chen et al. 2012; 

Karim et al. 2013; Wang et al. 2007). However, there is limited and inconsistent data on 

associations with CM risk markers, most notably dyslipidemias, at lower exposures (Abhyankar 

et al. 2012; Gribble et al. 2012; Jones et al. 2011). 

Evidence is also limited on the role of iAs metabolism in determining health risks 

associated with iAs exposure. In humans, iAs is enzymatically methylated to yield methyl-As 
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(MAs) and subsequently dimethyl-As (DMAs) metabolites that are, along with residual iAs, 

excreted mainly in urine (Thomas et al. 2007). Urinary As profiles characterized by low 

percentages of DMAs and high percentages of MAs in urine are thought to indicate low capacity 

to methylate iAs. These indicators have been linked to an increased risk of cancer and 

precancerous skin lesions (Ahsan et al. 2007; Chen et al. 2003a; Chen et al. 2003b; Pierce et al. 

2013; Yu et al. 2000). However, relationships between urinary profiles of iAs metabolites and 

non-cancerous outcomes remains unclear (Y. Chen et al. 2013b; Del Razo et al. 2011; Huang et 

al. 2007; Kim et al. 2013; Nizam et al. 2013).  

This cross-sectional study explores associations between CM risk and chronic exposure 

to iAs in a recently established cohort of adult residents of Chihuahua (Mexico) who drink water 

with a wide range of iAs concentrations. We examine relationships between iAs in drinking 

water and urine, as well as urinary indicators of iAs metabolism, and CM risk based on measures 

of dysglycemia, including diabetes, dyslipidemia and blood pressure levels.  

Materials and Methods 

The Chihuahua cohort. All procedures involving human subjects were approved by IRBs 

in UNC Chapel Hill and Cinvestav-IPN (Centro de Investigación y de Estudios Avanzados del 

Instituto Politécnico Nacional, Mexico City, Mexico). All participants provided signed informed 

consent. A total of 1160 adults (≥18 years old) with a minimum 5-year uninterrupted residency 

in the study area were recruited in household visits between 2008 and 2012. The participation 

rate was 67%. Other exclusions included pregnant women, persons with self-reported kidney or 

urinary tract infection (these conditions affect profiles of iAs metabolites in urine), and 

individuals with potential occupational exposure to As (e.g., those working with pesticides or in 

mines or smelters). Samples of drinking water were obtained from participants’ households. An 
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interviewer-administered study questionnaire was used to record data on residency, occupation, 

drinking water sources and use, smoking, alcohol consumption, and medical history. As 

described previously (Currier et al. 2014), spot urines and fasting venous blood were collected 

during a morning medical exam which included an oral glucose tolerance test with blood drawn 

2h after a 75g glucose dose. Plasma from both fasting and two-hour blood samples was stored at 

-80°C until analysis. Urine samples were aliquoted and immediately frozen. Trained staff 

obtained measures of weight without shoes and in light clothing to the nearest 0.1 kg, and height 

to the nearest 0.1 cm, used to calculate body mass index (BMI). BMI cutoffs of ≥25.0, ≥30, and 

<18.5 kg/m2 were used to define overweight, obesity, and underweight individuals, respectively 

(WHO Expert Committee on Physical Status 1995).  Waist circumference was measured at the 

midpoint between the lowest rib and the iliac crest. Blood pressure assessment used a manual 

sphygmomanometer. Three measures were taken at least one minute apart, with a 5 minute rest 

before the first reading; the mean of the last two measures was used. Participants were seated 

with their backs supported, feet on the floor, and the arm supported in the horizontal position, 

with the cuff at the level of the heart.  

 Arsenic analyses. Hydride generation-atomic absorption spectrometry coupled with a 

cryotrap (HG-CT-AAS) (Hernandez-Zavala et al. 2008) was used to determine the concentration 

of As in drinking water and concentrations of inorganic and methylated As species in urine. 

Arsenobetaine, arsenocholine and arsenosugars cannot not be measured by this method. A 

certified standard reference material, Arsenic Species in Frozen Human Urine (SRM 2669; 

National Institute of Standards and Technology 

http://www.nist.gov/mml/csd/inorganic/arsenicurine.cfm) was used to assure accuracy. 

Concentrations of As species measured by HG-CT-AAS in SRM 2669 ranged from 86.7 to 
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106.4% of the certified values.  The limit of detection (LOD) for As in water as well as As 

species in urine was 0.01µgAs/L.  Creatinine concentration in urine was determined by a 

colorimetric assay (Cayman Chemical Company, Ann Arbor, MI). Concentrations of water As 

and urinary As species which were below LOD (1.9% for water As, 1.6% for urinary iAs) were 

imputed at LOD/2. Total speciated As in urine (tAs) was calculated as sum of iAs, MAs and 

DMAs. The pattern of iAs metabolism was characterized using the percentage of tAs as DMAs, 

MAs and iAs, and the ratios of MAs/iAs and DMAs/MAs. 

CM risk markers: A Prestige 24i Chemistry Analyzer was used to determine fasting 

plasma glucose (FPG) and 2h plasma glucose (2HPG) concentrations, and concentrations of 

triglycerides (TG), total cholesterol (TC) and high-density lipoprotein cholesterol (HDL) in 

fasting plasma. Reference human sera (Serodos and Serodos PLUS, Human Diagnostics 

Worldwide) were used for quality control. LDL was calculated using the Friedewald equation, 

excluding 28 individuals with measured lipids outside accepted ranges for this approach  

(Oliveira et al. 2013).  Diabetes was classified by FPG ≥126mg/dL, 2HPG ≥200mg/dL, or self-

reported diabetes diagnosis or medication use (World Health Organization/International Diabetes 

Federation 2006). Pre-diabetes was defined as the absence of diabetes, with FPG ≥110mg/dL or 

2HPG ≥140mg/dL. Individuals with diabetes or pre-diabetes were classified as having 

dysglycemia. Elevated fasting levels of each lipid were defined as plasma TG ≥150mg/dL, TC 

≥200mg/dL, and LDL ≥130mg/dL (Miller et al. 2011; NCEP 2002). Fasting HDL <40mg/dL in 

men and <50mg/dL in women were treated as low. Hypertension was defined by systolic blood 

pressure (SBP) >140mm Hg, diastolic blood pressure (DBP) >90mm Hg, or self-reported use of 

hypertensive medication (Chobanian et al. 2003).  
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Statistical analysis. Associations between iAs exposure and each CM risk marker were 

analyzed using both categorical and continuous exposure measures. Arsenic concentrations in 

water and urine, as well as urinary DMAs/MAs and MAs/iAs ratios, were either categorized in 

quartiles or natural log-transformed when used as continuous measures to improve their 

distributions. Associations with the percentage of urinary tAs comprised by DMAs, MAs and 

iAs are presented for quartiles or dichotomized at the median. Chi-square, ANOVA, and 

Kruskall-Wallis tests were used as appropriate to describe the significance of differences in 

subject characteristics by level of iAs exposure.  

Multinomial (diabetes and pre-diabetes vs. neither) or simple logistic regression models 

(other variables) were used to analyze associations between iAs exposure and each CM risk 

outcome. To evaluate associations at various exposure doses, categorical as well as log-

transformed continuous exposure variables were used. Models adjusted for age, gender, 

education, ethnicity, smoking, alcohol consumption, waist circumference, BMI, primary source 

of household drinking water (wells, treatment plants, and other), and self-reported seafood intake 

in the past week (a potential source of arsenobetaine or arsenosugars). Supplementary models 

examined the effect of adjusting for log-transformed urinary creatinine concentrations as 

recommended (Maull et al. 2012), or normalizing As concentrations by dividing by urinary 

creatinine. P<0.05 was used to define statistical significance of main effects. Product terms 

(continuous outcomes) or relative excess risk for interaction (categorical outcomes) were 

calculated to assess interactions (P<0.10) when exploring combined effects of iAs exposure and 

metabolism (Vanderweele and Knol 2014). Thus all interactions were evaluated on the additive 

scale. The primary analysis sample (n=1090, 94%) excluded individuals with missing data (n=70 

for urinary tAs, blood pressure, dysglycemia, or covariates); 37 additional individuals were 
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missing lipid measures (n=1053). Water As measures were unavailable for an additional 52 

participants in the analysis sample (N=1038; 1004 for lipids). Multiple imputations fit using 10 

replicates of chained equations indicated that results of complete case analysis did not differ 

meaningfully when missing data were imputed (data not shown). All analyses used STATA 

version 13.1.  

Results 

As exposure: Sociodemographic and anthropometric characteristics of the Chihuahua 

cohort, as well as data characterizing CM risk prevalence, iAs exposure and urinary iAs 

metabolites are provided in Table 1. Concentrations of As in drinking water ranged from below 

detection to 419.8µg/L, with a median of 47.9µg/L. 83.3% of the analysis sample exceeded the 

US EPA and WHO recommended limit of 10µg As/L, and 75.3% exceeded the limit in Mexico 

of 25µg As/L (NOM-127-SSA 1994; US Environmental Protection Agency 2014). 

Concentration of total speciated urinary As (tAs) ranged from 0.52 to 491.5µg/L, with a median 

of 55.8µg/L. DMAs was the major metabolite (median 76.8% of tAs), followed by MAs (14.0%) 

and iAs (8.9%). Urinary tAs (Table 1) and concentrations of each As species  increased with 

increasing concentrations of water As. However, the percentage of MAs and iAs increased with 

increasing amounts of urinary tAs (Supplemental Material, Table S1). Water As and urinary tAs 

were correlated (Spearman's rho=0.47).   

Water As and CM risk. Overall, 18% of study participants had diabetes (115 of 183 

reporting previous diagnosis), and 15% had pre-diabetes (Table 1). 41% had elevated TG, 23% 

high TC, 16% high LDL, and 42% had hypertension.  

In multivariable-adjusted models (Table 2), drinking water As was associated with 

several markers of CM risk, including elevated TC and TG, as well as with diabetes (P<0.05 for 
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log water As), with increased risk in the second quartile (≥25.5µg As/L), and no evidence of 

further increases in risk at higher exposures. However, greater exposure to water As was 

associated with reduced odds of low HDL, with patterns suggesting a monotonic dose-response 

(P<0.05). Excluding individuals with diabetes (N=183) did not meaningfully affect relationships 

with other outcomes associated with water As [adjusted ORs (95% CI) for log-transformed water 

As were: 1.07 (95%CI: 1.01, 1.14) for TG, 1.07 (95%CI: 1.00, 1.15) for TC, and 0.87 (95%CI: 

0.82, 0.93) for HDL].  

Associations with continuous CM measures are shown in Supplemental Material, Table 

2S. Although water As was not associated with pre-diabetes (Table 2), increasing exposure was 

associated with higher mean FPG and 2HPG among individuals not using diabetes medications, 

as well as and among individuals without diabetes (Supplemental Material Table S2). After 

multivariable adjustment, water As was also associated with significant increases in mean FPG 

and 2HPG among fully normoglycemic participants (i.e., individuals without either diabetes or 

prediabetes; Figure 1). Consistent with categorical outcomes, after adjustment, water As was 

associated with increases in mean TG and TC and decreases in mean HDL, but not with mean 

LDL. Water As was not associated with mean DBP; an association with SBP was attenuated 

when individuals with diabetes were excluded (Supplemental Material Table S2).   

Urinary tAs and CM risk. Urinary tAs concentrations were also associated with multiple 

markers of CM risk. As for water As, urinary tAs was associated with increased odds of diabetes 

and elevated TG, with evidence of increased risk at moderate concentrations (≥27.1-<55.8µg/L) 

(Table 3). The highest quartile of tAs (≥105µg/L) was associated with elevated TC (P<0.05). 

There was, however, a reduced odds of low HDL associated with log tAs (P<0.05). Additionally 

adjusting for urinary creatinine and urinary tAs metabolite composition (Table 3) tended to 
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strengthen the magnitude of associations. As with water As, urinary tAs was not associated with 

pre-diabetes, but was associated with significant increases in mean FPG among normoglycemic 

individuals in multivariable adjusted models (Figure 1); the highest quartile of tAs was also 

associated with mean increases in 2HPG. Excluding individuals with diagnosed diabetes did not 

meaningfully influence relationships between urinary tAs and other outcomes [adjusted ORs for 

the highest vs. lowest quartiles 1.71 (95% CI: 1.08, 2.71) for high TG; 2.14 (95% CI: 1.26, 3.62) 

for high TC; 0.71 (95% CI: 0.44, 1.12) for low HDL].  

Relationships with continuous CM markers after multivariable adjustment (Supplemental 

Material Table S2) were similar to categorical outcomes, with urinary tAs positively associated 

with TG, TC, HDL, and FPG, as well as with 2HPG in subjects not using medications to control 

levels of those markers.  Among individuals without diabetes, associations with 2HPG were 

attenuated. Urinary tAs was not associated with SBP or DBP even when normalized for 

creatinine [coefficients in individuals not using hypertensive medication 1.19 (95% CI: -0.29, 

2.66) P=0.12 for SBP; 0.02 (95% CI: 0.88, 0.93) P=0.95 for DBP].  

iAs metabolism and CM risk markers. Higher %DMAs and DMAs/MAs in urine were 

associated with increased odds of diabetes, elevated TG, and hypertension (Figure 2). 

Relationships between these indicators and other CM outcomes were non-linear and weak. 

Conversely, a higher %MAs was associated with reduced odds of diabetes, elevated TG, and 

hypertension. Like %MAs, a high MAs/iAs ratio was negatively associated with diabetes. 

Associations of this ratio with other outcomes did not reach significance (P<0.05), but in contrast 

to diabetes, generally suggested weak inreases in risk.  A high %iAs was associated with reduced 

odds of elevated TG [adjusted OR for the highest vs. lowest quartiles 0.58 (95% CI: 0.39, 1.86)]; 

other associations were weaker and non-significant.  
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iAs metabolism, iAs exposure and CM risk markers. We also examined joint effects of 

iAs metabolism and iAs exposure to assess whether associations between CM risk markers and 

As in drinking water varied depending on profiles of iAs metabolites in urine. For subjects with a 

high exposure to water As, odds of diabetes (Figure 3) as well as elevated TG (Supplemental 

Material, Table S3), were significantly increased when individuals had not only higher exposure, 

but also elevated %DMAs in urine (interaction P<0.10). For example, the adjusted OR for 

diabetes associated with being in the highest vs. lowest quartile of water As was 2.61 (95% CI: 

1.22, 5.57) for those with elevated %DMAs, but 0.87 (95% CI: 0.37, 2.04) for those with low 

DMAs.  Similarly, an elevated %DMAs increased the odds of elevated TG associated with 

higher concentrations of urinary tAs (interaction P<0.10; Table S3). The adjusted OR for the 

association between the highest vs. lowest quartiles of water As and high TG was 3.31 (95 %CI: 

1.89, 5.78) vs. 1.18 (95% CI: 0.66, 2.08). Using continuous CM outcomes, among subjects 

without diabetes, the multivariable-adjusted mean increases in 2HPG and triglycerides associated 

with water As was significantly larger when %DMAs was elevated (interaction P<0.10) (Table 

S2). Increases in mean FPG, 2HPG and triglycerides associated with higher urinary tAs were 

also stronger among individuals with elevated %DMAs (interaction P<0.10 for all) 

(Supplemental Material Table S2).   

Discussion 

In this study, moderate exposure to As in drinking water, as well as modest 

concentrations of speciated urinary As, were associated with several CM risk markers. Water As 

concentrations ≥25.5µg/L were associated with increased odds of diabetes, elevated plasma TG 

and TC. Similar concentrations of urinary tAs (≥27.1µg/L) were also associated with diabetes 

and elevated TG, with higher levels (≥105.0µg/L) associated with high TC. Though neither 
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water As nor urinary tAs were associated odds of with pre-diabetes (Tables 2 and 3), both were 

positively associated with increases in mean FPG and 2HPG among normoglycemic individuals 

(Figure 1). Unexpectedly, we found iAs exposure to be associated with decreased odds of low 

HDL. At the range of exposure in this study, associations with hypertension and blood pressure 

measures, or with LDL, were weak or null.  

Using urinary As profiles to characterize capacity to metabolize iAs, we found that a 

higher %DMAs—or lower %MAs—was associated with increased odds of diabetes, elevated TG 

and hypertension. Moreover, the increased odds of diabetes and elevated TG associated with 

water As was stronger among individuals with an elevated %DMAs. This suggests that 

individuals with patterns of metabolism characterized by this marker may be more susceptible to 

adverse health outcomes associated with As exposure. Similarly, for urinary tAs, individuals 

with an elevated %DMAs had significantly higher mean increases in fasting and 2-hour glucose, 

and  fasting TG and TC.  

A higher %DMAs and lower %MAs, as well as higher DMAs/MAs and MAs/iAs ratios, 

have been proposed as indicators of more efficient enzymatic methylation of iAs (Del Razo 

1997; Tseng 2007). Several studies in settings with high iAs exposure have reported a higher 

%MAs to be associated with markers of increased CM risk (Y. Chen et al. 2013a; Y. Chen et al. 

2013b; Li et al. 2013a). Results from our independent population-based study in the Zimapan 

and Lagunera regions of Mexico suggest that the positive association with urinary DMAs species 

may be at least partly attributable to higher urinary concentrations of the toxic trivalent form of 

DMAs, DMAsIII (Del Razo et al. 2011). Notably, consistent with our findings, several recent 

studies also found a high DMAs/MAs ratio, a high %DMAs, or a lower %MAs in urine to be 

associated with increased risk of diabetes, metabolic syndrome, or individual CM risk markers 
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(Chen et al. 2012; Del Razo et al. 2011; Kim et al. 2013; Moon et al. 2013; Nizam et al. 2013). 

Research is needed to assess the extent to which the toxic trivalent metabolites DMAsIII and 

MAsIII may influence CM risk associated with iAs exposure (Calatayud et al. 2014; Navas-Acien 

et al. 2006; Styblo et al. 2002).  

In keeping with our findings, several recent prospective studies have found varying levels 

of iAs exposure–including median urinary As concentrations ≤20 µg/L as well as >200µg/L–to 

be associated with increased morbidity and mortality from CVD outcomes including ischemic 

heart disease, stroke and diabetes (Chen et al. 2011; Y. Chen et al. 2013b; James et al. 2013; Kim 

et al. 2013; Moon et al. 2012; Moon et al. 2013; Navas-Acien et al. 2008, 2009). Earlier cross-

sectional studies in settings with high levels of As exposure reported water or hair arsenic to be 

associated not only with elevated TC, TG and fasting glucose, but also with higher LDL, lower 

HDL, elevations in both SBP and DBP, and systemic inflammation (Chen et al. 2012; Karim et 

al. 2013; Wang et al. 2007). These studies suggest the possibility of additional or more severe 

CM effects at higher levels of exposure.  

This study found a high proportion of DMAs to be associated with hypertension. 

However, associations between iAs exposure and hypertension were weak and non-significant, 

perhaps in part due to the moderate exposure levels. Notably, associations with hypertension 

have been heterogeneous in areas with water As below 400µg/L, albeit consistent at higher 

exposures (Abhyankar et al. 2012; Islam et al. 2012; Jones et al. 2011). Normalizing vs. 

adjusting for creatinine slightly strengthened associations with urinary As; however studies 

reporting associations with hypertension using this metric (Li et al. 2013b) have also had 

considerably higher exposures than in this population: median 136µg vs. 47.4µg As/g creatinine. 

Future research should assess whether moderate exposure may be more closely linked to 
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alternative indicators of vascular function (Kunrath et al. 2013; Li et al. 2013b; Wu et al. 2012), 

or may vary in genetically or nutritionally vulnerable subgroups with varying iAs metabolism 

(Chen et al. 2007).  

Despite increases in mean 2HPG and FPG associated with iAs exposure among 

normoglycemic individuals (Figure 1), iAs exposure was not associated with pre-diabetes. It may 

be that the cutoffs used to characterize pre-diabetes are not sufficiently sensitive in our 

population, that iAs exposure may promote rapid progression to more severe disease, or that 

association with glucose measures are not causal.  

Though further prospective studies are needed to evaluate these relationships, laboratory 

studies suggest that iAs or its metabolites may inhibit insulin secretion or signaling (Douillet et 

al. 2013; Fu et al. 2010; Paul et al. 2007), alter lipid metabolism (Cheng et al. 2011; Hossain et 

al. 2013; Muthumani and Prabu 2014), and generate pro-inflammatory responses (Calatayud et 

al. 2014; Druwe et al. 2012). Increases in TC, LDL and TG—along with decreases in HDL—

have been observed in rodents treated with iAs (Muthumani and Prabu 2014), along with 

increases in hypertension, cardiac hypertrophy and atherosclerosis (Cheng et al. 2011; Lemaire et 

al. 2011; Sanchez-Soria et al. 2012). The unexpected association with HDL requires further 

study in diverse populations and in laboratory settings. It is important to note that large 

disparities in the prevalence, predictors and health consequences of low HDL have been 

described in Mexican and other Hispanic populations compared to those of European descent 

(Aguilar-Salinas et al. 2001; Morales et al. 2014; Paramsothy et al. 2010; Salas et al. 2014).  

Despite the limitation of a cross-sectional design, findings from this study are largely 

consistent with experimental research and several smaller epidemiological studies in high 

exposure settings. Moreover, although personal exposure was characterized based on a single 
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urine sample, findings for water As and urinary tAs were largely consistent. Few previous 

studies provide comparisons of urinary and water As measures, or use urinary indicators to 

assess how metabolism may modify health effects of environmental exposure through water (Y. 

Chen et al. 2013a; Y. Chen et al. 2013b). The consistency of unadjusted and multivariable-

adjusted results, along with those of sensitivity analyses excluding individuals previously 

diagnosed with hypertension or diabetes who may have adjusted behaviors such as water 

consumption, also supports the possibility of a causal relationship. Moreover, the high 

prevalence of obesity and cardiometabolic risk closely resembles those in the general population 

reported for Mexico (Barquera et al. 2009; Salas et al. 2014; Villalpando et al. 2010) does not 

suggest selectivity in our cohort with respect to these outcomes. Studies in such settings may 

help to provide a more complete understanding of how iAs exposure may influence 

cardiometabolic risk, as many previous studies on these relationships have been conducted in 

settings such as Bangladesh, where the prevalence of obesity and CM disorders is relatively low 

(Yu Chen et al. 2013; Pan et al. 2013).  

In summary, results of this study suggests potential CM risks associated with chronic 

exposure to As at levels below 100µg/L in drinking water, filling a current gap in knowledge 

(Maull et al. 2012; Moon et al. 2013). Associations with measures of dyslipidemia, which have 

been less studied to date, warrant further study, given that the implications of our results for 

health risks were inconsistent for HDL, LDL and triglycerides. Studies that incorporate measures 

of specific lipid fractions and particles may be better able to evaluate the health risks of any 

association with iAs exposure (Genest 2008; Vickers and Remaley 2014).  Findings also suggest 

that iAs metabolism may influence the extent to which environmental exposure to iAs adversely 

affects risk of CM impairment. Studies which measure trivalent as well as pentavalent urinary As 
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species are needed to better understand the impact of metabolism on health risks associated with 

iAs exposure. 
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Table 1. Characteristics of the sample by concentration of arsenic in household water. Data are N (%), mean 

± SD, or median (25th–75th percentile) unless otherwise indicated. 

  Household water arsenic (µg/L) quartiles 
Characteristic All participants <25.5 ≥25.5-<47.9 ≥47.9-<79.0 ≥79.0 
Total N 1038 260 260 259 259 
Sociodemographic, lifestyle      
Age, y* 45.6 ± 15.9 47.4 ± 16.8 43.4 ± 16.4 44.6 ± 14.5 47.0 ± 15.4 
Female  712 (68.6) 180 (69.2) 174 (66.9) 185 (71.4) 173 (66.8) 
Higher than primary education* 320 (30.8) 93 (35.8) 106 (40.8) 71 (27.4) 50 (19.3) 
Smokes 291 (28.0) 65 (25.0) 71 (27.6) 70 (27.0) 85 (32.8) 
Drinks alcohol** 423 (40.8) 90 (34.6) 114 (43.9) 115 (44.4) 104 (40.2) 
Recent seafood** 260 (25.1) 79 (30.4) 64 (24.6) 64 (24.7) 53 (20.5) 
Anthropometrica, 
cardiometabolic 

     

Weight statusa**      
Overweight 368 (35.5) 91 (35.0) 88 (33.9) 87 (33.6) 102 (39.4) 
Obese   411 (39.6) 92 (35.4) 112 (43.1) 118 (45.6) 89 (34.4) 
Waist circumference, cm      
Females** 98.8 (13.0) 96.2 (12.0) 100.7 (12.9) 100.1 (14.5) 98.2 (12.1) 
Males 96.7 (12.1) 97.7 (11.8) 96.5 (12.0) 97.0 (12.3) 95.6 (12.2) 
Dysglycemiab      
Diabetes  183 (17.6) 33 (12.7) 53 (20.4) 47 (18.2) 50 (19.3) 
Pre-diabetes  156 (15.0) 41 (15.8) 37 (14.2) 38 (14.7) 40 (15.4) 
Triglycerides ≥ 150 mg/dL*  412 (41.0) 85 (33.5) 104 (41.4) 110 (43.8) 113 (45.6) 
Total cholesterol ≥ 200 mg/dL**  234 (23.3) 44 (17.3) 61 (24.3) 67 (26.7) 62 (25.0) 
LDL cholesterol ≥ 130 mg/dL c  160 (16.3) 33 (13.2) 43 (17.4) 45 (18.5) 39 (16.3) 
HDL < 40/50 mg/dL**  589 (58.7) 161 (63.4) 151 (60.1) 144 (57.4) 133 (53.6 
Hypertensiond 439 (42.3) 106 (40.8) 106 (40.8) 109 (42.1) 118 (45.6) 
Urinary As and dilution markers        
Total Ase (µg/L)* 55.8 (27.1-105) 22.9 (6.5-48.3) 59.0 (35.4-94.3) 62.6 (33.4-101) 96.6 (52.0-150) 
DMAs (µg/L)* 42.4 (20.5-77.6) 16.2 (5.1-35.0) 44.0 (26.3-71.7) 62.6 (33.4-101) 96.6 (52.0-150) 
MAs (µg/L)* 7.7 (3.2-14.9) 2.7 (0.8-7.3) 8.3 (4.5-13.5) 47.5 (25.9-77.5) 69.5 (38.5-115) 
iAs (µg/L)* 5.0 (1.9-10.0) 1.5 (0.5-4.8) 5.7 (2.7-9.3) 8.7 (4.4-14.4) 13.5 (6.0-24.0) 
DMAs/MAs  5.5 (4.0-7.4) 5.6 (4.1-7.5) 5.7 (4.2-7.6) 5.4 (4.1-7.4) 5.3 (3.8-7.1) 
MAs/iAs 1.6 (1.2-2.1) 1.6 (1.1-2.3) 1.5 (1.1-2.0) 1.6 (1.2-2.1) 1.6 (1.2-2.0) 
% DMAs  76.8 (70.6-81.5) 76.7 (70.3-81.0) 76.6 (71.3-81.3) 77.2 (71.6-82.8) 76.6 (69.6-81.2) 
% MAs  14.0 (10.9-17.7) 13.9 (10.8-17.3) 13.5 (10.5-1.37) 14.2 (11.1-17.7) 14.4 (11.2-18.4) 
% iAs 8.9 (6.4-12.3) 8.8 (6.0-12.9) 9.4 (6.4-12.8) 8.5 (6.4-11.6) 8.9 (6.7-12.1) 
Creatinine, mg/dL* 135 (74.7-173) 115 (60-162) 131 (78-190) 140 (80-183) 144 (82-167) 
One-way anova, Pearson’s chi-square or Kruskall-Wallis test for differences across increasing quartiles of water As * 

P<0.05 ** P<0.10. Distributions among individuals with household water As, N=1038 for all variables except LDL 

(N=980) and other lipids (N=1004).   
aWeight status: BMI≥25-<30 overweight, BMI≥30 obese.  bDiabetes: fasting plasma glucose (FPG) ≥126 mg/dL, 2h 

plasma glucose (2HPG) ≥200 mg/dL, or self-reported diabetes diagnosis or medication use. Pre-diabetes: FPG ≥110 -

<126 mg/dL or 2HPG ≥140 mg/dL.  cLDL-cholesterol: estimated using the Friedewald equation if triglycerides <400 

mg/dL (Oliveira et al. 2013).  dHypertension: SBP>140mm Hg, DBP>90mm Hg or hypertensive medication use 

[medication use reported by n=126 (28.7%) of the hypertensive individuals]. eTotal speciated urinary arsenic: 

Σ[dimethylated (DMAs), mono-methylated (Mas) and inorganic (iAs) arsenic species].  
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Table 2. Household drinking water arsenic concentrations and prevalent cardiometabolic risk outcome: Odds ratios (95% CI). 

 Water arsenic exposure quartile (µg/L)  
Cardiometabolic outcome ≥25.5-<47.9 µg/L ≥47.9-<79.0 µg/L ≥79.0 µg/L Ln-Water As (µg/L) 
Dysglycemiaa     
   Diabetes 2.46 (1.44, 4.21)* 1.74 (1.01, 2.99)* 1.65 (0.97, 2.81)** 1.14 (1.05, 1.25)* 
   Prediabetes 1.14  (0.68, 1.91) 1.04  (0.62, 1.73) 1.13 (0.68, 1.88) 1.00  (0.94, 1.09) 
Triglycerides≥150 mg/dL 1.45 (0.99, 2.14)** 1.53 (1.04, 2.24)* 1.69 (1.15, 2.49)* 1.09 (1.03, 1.15)* 
Total Cholesterol ≥200 mg/dL 1.75 (1.11, 2.74)* 1.89 (1.21, 2.95)* 1.65 (1.05, 2.59)* 1.08 (1.01, 1.16)* 
LDL ≥130 mg/dLb  1.54 (0.92, 2.56)** 1.59 (0.96, 2.65)** 1.35 (0.80, 2.27) 1.04 (0.96, 1.12) 
HDL <40/50 mg/dL  0.78 (0.52, 1.17) 0.63 (0.42, 0.93)* 0.59 (0.40, 0.88)* 0.87 (0.82, 0.93)* 
Hypertensionc 1.30 (0.84, 2.00) 1.27 (0.82, 1.94) 1.41 (0.91, 2.17) 1.03 (0.97, 1.10) 
*P<0.05 **P<0.10 for odds ratios for elevated vs. low cardiometabolic risk associated with increasing water As exposure vs. the lowest quartile 

(<25.5µg/L). Results come from multinomial or logistic models adjusted for age, gender, education, smoking status, alcohol consumer, recent 

seafood intake, weight status, elevated waist circumference and main water source (well, treatment plant, or other); multinomial models used for 

diabetes and pre-diabetes vs. neither; logistic models used for other outcomes.   
aDiabetes: fasting plasma glucose (FPG) ≥126 mg/dL, 2h plasma glucose (2HPG) ≥200 mg/dL, or self-reported diabetes diagnosis or medication 

use. Pre-diabetes: FPG ≥110 -<126 mg/dL or 2HPG ≥140 mg/dL. Normoglycemic individuals (i.e. individuals with no diabetes or pre-diabetes) 

are the referent. bLDL-cholesterol: estimated using the Friedewald equation if triglycerides<400 mg/dL (Oliveira et al. 2013).  cHypertension: 

SBP>140, DBP>90 or use of hypertensive medication [medication use reported by 27.9% of hypertensive individuals]. Normotensive individuals 

(no stage 1 or 2 hypertension) are the referent.  
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Table 3. Total speciated urinary As and prevalent cardiometabolic risk: Odds ratios (95% CI). 

 Total urinary speciated arsenic quartiles, µg/L  
Cardiometabolic outcome ≥27.1-<55.8 ≥55.8-105.0 ≥105.0 Ln-Total Urinary  

As (µg/L) 
N 272 273 272 -- 
Multivariable adjusted     
Dysglycemiaa     
  Diabetes 1.57 (0.94-2.63)** 1.56 (0.92-2.65)** 1.99 (1.19-3.33)* 1.29 (1.09-1.53)* 
  Prediabetes 0.92 (0.56-1.53) 1.21 (0.74-1.98) 1.15 (0.69-1.92) 1.04 (0.89-1.23) 
Triglyc. ≥150mg/dL 1.39 (0.95 - 2.02)** 1.47 (1.01 - 2.13)* 1.80 (1.23 - 2.64)* 1.23 (1.08-1.39)* 
Choles. ≥200 mg/dL 1.15 (0.74-1.78) 1.35 (0.88-2.07) 1.54 (1.00-2.38)* 1.15 (1.00-1.33)* 
LDL ≥130 mg/dL2b 0.99 (0.60-1.62) 1.22 (0.75-1.99) 1.25 (0.76-2.05) 1.09 (0.93-1.28) 
HDL <40/50 mg/dL  0.94 (0.64-1.27) 1.09 (0.74-1.60) 0.82 (0.56-1.21) 0.82 (0.72-0.93)* 
Hypertension3 0.67 (0.44-1.01)* 0.60 (0.40-0.92)* 0.77 (0.50-1.17) 0.93 (0.72-1.07) 
Additionally adjusted for creatinine  
and elevated % DMAs, MAs, iAs in urine 

    

Dysglycemia     
  Diabetes 1.76 (1.03-3.02)* 1.98 (1.12-3.50)* 2.78 (1.55-5.00)* 1.45 (1.19-1.77)* 
  Prediabetes 0.89 (0.53-1.51) 1.22 (0.72-2.08) 1.16 (0.65-2.04) 1.04 (0.86-1.25) 
Triglyc. ≥150mg/dL 1.41 (0.95 - 2.08)** 1.55 (1.04-2.32)* 1.96 (1.28 - 3.00)* 1.25 (1.08-1.44)* 
Choles. ≥200 mg/dL 1.25 (0.80-1.96) 1.56 (0.98-2.47)** 1.89 (1.16-3.06)* 1.22 (1.04-1.44)* 
LDL ≥130 mg/dL 1.08 (0.65-1.81) 1.42 (0.84-2.40) 1.54 (0.88-2.69) 1.16 (0.96-1.40) 
HDL <40/50 mg/dL  0.92 (0.62-1.36) 1.09 (0.73-1.64) 0.81 (0.52-1.25) 0.87 (0.77-0.99)* 
Hypertensionc 0.74 (0.48-1.14) 0.73 (0.47-1.14) 1.02 (0.64-1.61) 1.03 (0.89-1.20) 
*P<0.05 **P<0.10 for odds ratios for elevated vs. low cardiometabolic risk associated with increasing water As exposure vs. referent of <27.5µg/L 

(n=273). Results come from multinomial or logistic models adjusted for age, gender, education, smoking status, alcohol consumer, recent seafood 

intake, weight status, elevated waist circumference and main water source (well, treatment plant, or other); multinomial model usd for diabetes and 

pre-diabetes vs. neither; logistic models used for other outcomes. Ln-transformed urinary creatinine and > median % DMAs, Mas, and iAs in urine 

additionally included in models as indicated.  
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aDiabetes: fasting plasma glucose (FPG) ≥126 mg/dL, 2h plasma glucose (2HPG) ≥200 mg/dL, or self-reported diabetes diagnosis or medication 

use. Pre-diabetes: FPG ≥110 -<126 mg/dL or 2HPG ≥140 mg/dL.  Normoglycemic individuals (i.e. individuals with no diabetes or pre-diabetes) 

are the referent. bLDL-cholesterol: estimated using the Friedewald equation if triglycerides<400 mg/dL (Oliveira et al. 2013).  cHypertension: 

SBP>140, DBP>90 or use of hypertensive medication [medication use reported by 27.9% of hypertensive individuals]. Normotensive individuals 

(no stage 1 or 2 hypertension) are the referent. 
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Figure Legends 

Figure 1. Adjusted mean (95% CI) difference in fasting or 2h plasma glucose associated 

with As exposure among normoglycemic subjects. Adjusted mean (95% CI) difference in 

glucose measure for increasing quartiles of water As or total speciated urinary As, relative to 

individuals in the lowest quartile (<25.5µg/L for water and <27.1µg/L for urine). Estimated from 

linear regression models including age, gender, education, ethnicity, weight status, waist 

circumference, smoking status, alcohol consumption, recent seafood intake, and water source 

(well, treatment plant, or other). Urinary As models additionally adjust for urinary creatinine and 

≥ median %DMAs, MAs and iAs. Models excluded individuals with 2h plasma glucose 

>140mg/dL, fasting plasma glucose >110 mg/dL, or diagnosed diabetes. Among normoglycemic 

subjects: N in each quartile of water As 1=186, 2=170, 3=174, 4=169; of urinary As: 1=195, 

2=181, 3=186, 4=170.   

Figure 2. Associations between urinary As metabolism indicators and cardiometabolic risk. 

* P<0.05. Odds ratios (95% CIs) for elevated cardiometabolic risk associated with increasing 

quartiles of urinary iAs metabolism indicators from multinomial or logistic models adjusted for 

total speciated urinary arsenic, as well as age, gender, education, ethnicity, weight status, waist 

circumference, smoking status, alcohol consumption, recent seafood intake, and water source 

(well, treatment plant, or other). N=1090 adults.  

-Cardiometabolic markers: DM=diabetes mellitus, TG=triglycerides, TC=total cholesterol, 

LDL=low density lipoprotein cholesterol, HDL=high density lipoprotein cholesterol, HTN= 

hypertension.  

-Urinary As indicators: DMAs=dimethyl-As; MAs=methyl-As; iAs=inorganic As.  

-Cardiometabolic outcomes defined as: DM=fasting plasma glucose ≥126 mg/dL, 2h plasma 

glucose ≥200 mg/dL, or self-reported diabetes diagnosis or medication use; elevated TC ≥200 

mg/dL; elevated TG ≥200 mg/dL; elevated LDL ≥130 mg/dL; low HDL=<40 mg/dL;  

hypertension SBP >140 mm Hg, DBP>90 or hypertensive medication use.  

-Quartile markers (1st=referent): 2nd=black diamond, 3rd textured square, 4th gray circle.  

-Quartile cutoffs for urinary As metabolism indicators defined as: %DMAs = <70.65, 70.65-

<76.78, 76.78-<81.52, ≥81.52; %MAs = <10.90, 10.90-<14.0, 14.0-<17.66, ≥17.66;  
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DMAs/MAs = <4.05, 4.05-<5.47, 5.49-<7.38, ≥7.38; MAs/iAs = <1.185, 1.185-<1.576, 1.576-

<2.11, ≥2.11.       

Figure 3. Water As and odds of prevalent diabetes in subjects with vs. without elevated % 

urinary DMAs. * P<0.10 for additive interaction (relative excess risk for interaction) for the 

joint effect of water As and high %DMAs. ORs (95% CI) for prevalent diabetes associated with 

household water As categories (<25, 25-50, 50-100 and ≥100µg/L), in subjects with proportions 

of DMAs defined as low vs high based on the median of 76.6%. The referent group for all ORs 

is subjects with %DMAs below the median in the lowest quartile of water As. Results are from 

multinomial models adjusted for age, gender, smoking status, alcohol consumer, BMI, elevated 

waist circumference and main water source (well, treatment plant, or other 
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Figure 1. Adjusted mean (95% CI) difference in fasting or 2h plasma glucose associated with As 
exposure among normoglycemic subjects 
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Figure 2. Associations between urinary As metabolism indicators and cardiometabolic risk 
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Figure 2 continued: panel E 
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E: OR (95% CI): %iAs quartiles 
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Figure 3. Water As and odds of prevalent diabetes in subjects  
with vs. without elevated % urinary DMAs 
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