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ABSTRACT 

Background: Three decades of rapid economic development is causing severe and widespread 

PM2.5 pollution in China. However, research on the health impacts of PM2.5 exposure has been 

hindered by limited historical PM2.5 concentration data. 

Objectives: We estimated ambient PM2.5 concentrations from 2004 to 2013 in China at 0.1 

degree resolution using the latest satellite data and evaluated model performance with available 

ground observations. 

Methods: We developed a two-stage spatial statistical model using the Moderate Resolution 

Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD), assimilated 

meteorology, land use data, and PM2.5 concentrations from China’s recently established ground 

monitoring network. An inverse variance weighting (IVW) approach was developed to combine 

MODIS Dark Target and Deep Blue AOD to optimize data coverage. We evaluated model-

predicted PM2.5 concentrations from 2004 to early 2014 using ground observations.  

Results: The overall model cross-validation R2 and relative prediction error are 0.79 and 35.6%, 

respectively. Validation beyond the model year (2013) shows that it makes accurate predictions 

of PM2.5 concentrations with little bias at the monthly (R2 = 0.73, regression slope = 0.91) and 

seasonal levels (R2 = 0.79, regression slope = 0.92). Seasonal variations show that winter is the 

most polluted season and summer is the cleanest season. Analysis of predicted PM2.5 levels 

showed a mean annual increase of 1.97 µg/m3 between 2004 and 2007, and a decrease of 0.46 

µg/m3 between 2008 and 2013.  

Conclusions: Our satellite-driven model can provide reliable historical PM2.5 estimates in China 

at a resolution comparable to those used in epidemiologic studies on the health effects of long-
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term PM2.5 exposure in North America. This data source can potentially advance PM2.5 health 

effects research in China.  
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Introduction 

Fine particulate matter (PM2.5, particles with aerodynamic diameter less than 2.5 µm) has been 

strongly associated with adverse health effects (e.g., cardiovascular and respiratory morbidity 

and mortality) by numerous epidemiologic studies conducted primarily in developed countries 

(Pope and Dockery 2006). With the rapid economic development and urbanization, severe, 

widespread PM2.5 pollution in China has attracted nationwide attention (Xu et al. 2013). 

However, research on the adverse health impacts of PM2.5 exposure has been hindered since a 

nationwide regulatory PM2.5 monitoring network did not exist until the end of 2012. 

Estimating ground-level PM2.5 from satellite-retrieved aerosol optical depth (AOD) is a 

promising, new method that has rapidly advanced recently (Hu et al. 2014b; Kloog et al. 2011; 

Lee et al. 2011; Liu et al. 2009). Satellite-driven statistical models have the potential to fill the 

spatiotemporal PM2.5 gaps left by ground monitors with high-quality predictions. Several recent 

studies of the health effects due to long-term PM2.5 exposure have adopted satellite-estimated 

PM2.5 levels as their exposure estimates (Crouse et al. 2012; Madrigano et al. 2013). Since 

sufficient ground PM2.5 measurements are needed to fit and validate statistical models, model 

development in China prior to 2013 has been difficult. van Donkelaar et al. (2010) estimated 

long-term (2001-2006) average global PM2.5 concentrations at 0.1 degree resolution using the 

PM2.5/AOD ratios derived from a global chemical transport model (CTM). Two follow-up 

studies estimated the global PM2.5 time series from 1998 to 2012 (Boys et al. 2014; van 

Donkelaar et al. 2015). Both studies only validated their seasonal average estimates with ground 

observations mostly from North America and the Pearson coefficients ranged from ~0.37 to 

~0.68 (R2=~0.14-0.46). Yao and Lu (2014) estimated PM2.5 levels in China from 2006 to 2010 

using an artificial neural network (ANN) model. However, their ANN was trained partially using 
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PM2.5 and satellite data in the U.S., which may have introduced substantial prediction error.  

Taking advantage of the newly available national PM2.5 measurements, Ma et al. (2014) 

estimated PM2.5 levels in 2013 in China using satellite AOD and a geographically weighted 

regression (GWR) model. Using an earlier version Dark Target (DT) algorithm (Remer et al. 

2005), this study adopted a relatively coarse spatial resolution of 50 km, but did not attempt to 

estimate historical PM2.5 levels. The coarse resolution is a result of the limited coverage of AOD 

values retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS, 

http://modis.gsfc.nasa.gov) instrument aboard the Terra and Aqua satellites launched by the 

National Aeronautics and Space Administration (NASA). In early 2014, more accurate Aqua 

MODIS Collection 6 (C6) AOD products retrieved by the enhanced DT (Levy et al. 2013) and 

Deep Blue (DB) algorithms (Hsu et al. 2013) were released. Despite better coverage over deserts 

and urban centers than DT AOD, DB AOD has rarely been used in PM2.5 studies due to poorly 

characterized retrieval errors in earlier versions. As we demonstrate in the following sections, 

including the MODIS C6 DB AOD data substantially increases the spatiotemporal coverage of 

model predictions in China. 

In this study, we developed a high-resolution (0.1 degree, which is approximately 10 km) 

statistical model to estimate historical ambient PM2.5 concentrations from 2004 to 2013 in China 

using MODIS C6 AOD data. We first present our approach to generate a custom “combined” 

AOD parameter using the operational DT and DB AOD values and describe our two-stage 

spatial statistical model to estimate daily ambient PM2.5 levels. We then evaluate predicted PM2.5 

concentrations at seasonal, monthly, and daily level using ground PM2.5 measurements in China 

not included in model development. Finally, we analyze the 10-year spatiotemporal trend of 

PM2.5 levels.  
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Data and Methods 

Ground PM2.5 measurements.  

The daily average PM2.5 concentrations of China (01/2013-06/2014) were primarily collected 

from the website of China Environmental Monitoring Center (CEMC). We collected additional 

data that are not included in the CEMC from the websites of local environmental monitoring 

centers of several provinces (e.g., Shandong, Shanxi, Zhejiang, and Guangdong) and 

municipalities (e.g., Beijing and Tianjin). Daily PM2.5 data of Macao (2013), Hong Kong (2005-

06/2014), and Taiwan (2004-06/2014) were also collected from websites of local environmental 

protection agencies. Data from the U.S. consulate sites in Beijing (2008-2013), Shanghai (2011-

2013), Guangzhou (2011-2013), Shenyang (2013), and Chengdu (2012-2013) were also included. 

The website links of the above PM2.5 data sources are shown in Table S1 (Supplemental 

Material). Data of Changzhou City in Jiangsu province were provided by Changzhou 

Environmental Monitoring Center. Monthly and seasonal mean PM2.5 measurements of Beijing 

from 2005 to 2007 were obtained from Zhao et al. (2009). All ground PM2.5 measurements were 

made with Tapered Element Oscillating Microbalances (TEOM) or beta-attenuation method, 

both of which are subject to measurement errors due to loss of semivolatile components (Duncan 

et al. 2014). However, since PM2.5 compliance in China is based on these monitors, we used their 

PM2.5 measurements to develop and evaluate our model. Our study includes a total of 1,185 

monitoring sites in 205 cities or regions (Figure 1). The 2013 data were used for model fitting 

and cross-validation (CV), while data from other years were used to evaluate the predicted 

historical PM2.5 concentrations.  
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Satellite data.  

We extracted DT and DB AOD data for the period 01/2004 to 06/2014 at 550 nm from the Aqua 

MODIS Level 2 aerosol data product, which were downloaded from the Level 1 and 

Atmospheric Archive and Distribution System (http://ladsweb.nascom.nasa.gov/). Aqua MODIS 

C6 includes an operational combined AOD product calculated from DB and DT AOD in three 

normalized difference vegetation index (NDVI) categories (Levy et al. 2013). This combined 

AOD equals DT AOD if NDVI > 0.3, and DB AOD if NDVI < 0.2. When 0.2 ≤ NDVI ≤ 0.3, the 

combined AOD equals the mean of DT and DB AOD if both values have high quality assurance 

(QA) flags. If one of the algorithms reports a higher QA than the other, then that AOD value is 

used. A detailed description of MODIS operational combined AOD algorithm as well as the QA 

flags can be found elsewhere (Levy et al. 2013). We did not use the operational combined AOD 

dataset of MODIS C6 aerosol product because it discards all DB AOD data with NDVI values > 

0.3 (Supplemental Material, Validation of Aqua MODIS C6 AOD products). We developed a 

three-step customized approach to combine DT and DB AOD. First, we performed a regression 

analysis between daily collocated DT and DB AOD. The resulting regression coefficients were 

then used to predict the missing DB AOD in those pixels with only DT AOD and vice versa 

(Puttaswamy et al. 2014). Second, level 2 validated AOD observations from 33 Aerosol Robotic 

Network (AERONET) sites (Supplemental Material, Figure S1) in China were matched with the 

gap-filled MODIS DT and DB AOD retrievals. The variance of the differences between gap-

filled DT (or DB) AOD and AERONET AOD values for each season was calculated. Finally, we 

combined the gap-filled DT and DB AOD data using the inverse variance weighting (IVW) 

approach as follows:  

AODc =
AODDT/VarDT!!AODDB/VarDB!

!/VarDT!!!/VarDB!
                                                  [1] 
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where AODc is IVW combined AOD; AODDT and AODDB are gap-filled DT and DB AOD, 

respectively; and VARDTm and VARDBm are the variances of the differences between gap-filled 

DT and DB AOD and AERONET AOD of season m, respectively. When compared with the 

AERONET observations, our combined AOD performs similarly (R2 = 0.80, mean bias = 0.07) 

to MODIS’s operational combined AOD (R2 = 0.81, mean bias = 0.07), but has 90% greater 

coverage. Spatially, the improvement in temporal coverage varies by land use type (Figure 2). 

Coverage for densely populated southern and eastern China improve by 50-100%. The Tibetan 

plateau has the most improvement (~200%), while the Gobi and Taklamakan Deserts have the 

least (20-30%).  

To account for the impact of fire smoke on PM2.5 levels (Hu et al. 2014c), we downloaded Aqua 

and Terra MODIS active fire spots from 2004 to 2014 from the NASA Fire Information for 

Resource Management System (https://earthdata.nasa.gov/data/near-real-time-data/firms).  

Meteorological and land use data. 

The Goddard Earth Observing System Data Assimilation System GEOS-5 Forward Processing 

(GEOS 5-FP) (Lucchesi 2013) and GEOS-5.2.0 meteorological data were used in this study. 

GEOS-5 FP is the latest version of GEOS-5 meteorological data with a spatial resolution of 0.25° 

latitude × 0.3125° longitude in a nested grid covering China and has been available since 

04/2012. GEOS-5.2.0 is the previous version of GEOS-5 FP and has a resolution of 0.50° × 

0.666°. GEOS-5.2.0 data are available from 01/2004 to 05/2013. We averaged GEOS-5 FP data 

to GEOS-5.2.0 grid to maintain a consistent spatial resolution across all model years. We used 

GEOS-5 FP data in 2013 for model development, and GEOS-5.2.0 data from 2004 to 2012 for 

estimating historical PM2.5 levels. The overlaid period (04/2012-05/2013) of GEOS-5 FP and 

GEOS-5.2.0 data were used to evaluate the influence of the change in meteorological data source 
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(Supplemental Material, Comparison of model performance using GEOS-5 FP and GEOS-5.2.0 

meteorological data). We extracted planetary boundary layer height (PBLH, 100m), wind speed 

(WS, m/s) at 10 m above ground, mean relative humidity in PBL (RH_PBLH, %), and surface 

pressure (PS, hPa) between 1 pm and 2 pm local time (Aqua satellite overpass time corresponds 

to 1:30pm local time), as well as cumulative precipitation of the previous day (Precip_Lag1, 

mm). Land use variables at 300 m resolution were obtained from the European Space Agency 

(ESA) Global Land Cover Product (GlobCover, http://due.esrin.esa.int/page_globcover.php) 

(Bontemps et al. 2011). We extracted urban and forest cover data from GlobCover 2005-2006 to 

represent study years 2004 to 2008 and GlobCover 2009 to represent the years of 2009 for 2014.  

Data integration.  

We created a 0.1 degree grid (100,699 grid cells in total) for data integration and model 

development. Ground PM2.5 data from multiple monitors in each grid cell were averaged. Since 

the sizes and geographical locations of MODIS AOD pixels vary in space and time, a 0.1 degree 

grid cell may have multiple AOD pixels (e.g., near the center of each satellite swath) or an AOD 

pixel may cover multiple 0.1 degree grid cells (e.g., near the edge of each swath). Therefore, 

Thiessen polygons representing individual MODIS AOD pixels were created and then mapped to 

the 0.1 degree grid to spatially assign combined AOD values to the grid cells. We interpolated 

the GEOS-5 FP and GEOS-5.2.0 data to 0.1 degree grid using the inverse distance weighting 

(IDW) method. We calculated the percentage forest cover and urban area in each grid cell and 

daily total counts of MODIS fire spots for each grid cell using a 75-km radius buffer. Finally, all 

the variables in 2013 were matched by grid cell and Day-of-Year (DOY) for model fitting. The 

model prediction dataset is composed of all spatiotemporally matched variables, except PM2.5 

concentrations from 01/2004 to 06/2014. Before model development, the independent variables 
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in the fitting and prediction datasets were centered by subtracting their respective mean value 

computed from the fitting dataset. 

Model development and validation. 

We developed a two-stage statistical model to calibrate the spatiotemporal relationships between 

PM2.5 and AOD. The first-stage linear mixed effect (LME) model includes day-specific random 

intercepts and slopes for AOD and season-specific random slopes for meteorological variables: 

PM2.5,st = (µ + µ’) + (β1 + β1’)AODst + (β2 + β2’)WSst + (β3 + β3’)PBLHst + (β4 + β4’)PSst + 

(β5 + β5’)RH_PBLHst + β6Precip_Lag1st +β7Fire_spotsst + ε1,st(µ’, β1’) ~ N[(0,0), 

Ψ1] + ε2,sj(β2’, β3’, β4’, β5’) ~ N[(0,0,0,0), Ψ2]                                                        [2] 

where PM2.5,st is the average observed PM2.5 concentration at grid cell s on DOY t; AODst is IVW 

combined AOD; WSst, PBLHst, PSst, RH_PBLHst, Precip_Lag1st are meteorological variables; 

Fire_spotsst is the fire count; µ  and µ’ are the fixed and day-specific random intercepts, 

respectively; β1-β7 are fixed slopes for independent valuables; β1’ is the day-specific random 

slope for AOD; β2’-β5’ are the season-specific random slopes for meteorological variables; ε1,st is 

the error term at grid cell s on day t; ε2,sj is the error term at grid cell s in season j; and Ψ1 and Ψ2 

are the variance-covariance matrices for the day- and season-specific random effects, 

respectively. In addition to modeling season-specific meteorological random effects, we tested 

alternative models with day- and month-specific random effects for meteorological variables and 

found that this may cause over-fitting (data not shown). 

We fitted the first-stage model for each province separately. Because the provinces in western 

China (e.g., Tibet, Xinjiang, and Qinghai) do not have enough PM2.5 monitoring sites (Figure 1) 

to produce a robust model-fitting dataset, we created a buffer zone for each province to include 
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at least 3,000 data records and at least 300 days in 2013. We averaged overlapped predictions 

from neighboring provinces to generate a smooth national PM2.5 concentration surface.  

The second-stage generalized additive model (GAM) is expressed as follows: 

PM2.5_residst = µ0 + s(X, Y)s + s(ForestCover)s + s(UrbanCover)s + εst                    [3] 

where PM2.5_residst is the residual from the first-stage model at grid cell s on day t; µ0 is the 

intercept term; s(X, Y)s is the smooth term of the coordinates of the centroid of grid cell s; 

s(ForestCover)s and s(UrbanCover)s are the smooth functions of percent forest cover and urban 

area for grid cell s; and εst is the error term. 

Statistical indicators, such as the coefficient of determination (R2), mean prediction error (MPE), 

root mean squared prediction error (RMSE), and relative prediction error (RPE, defined as 

RMSE divided by the mean ground PM2.5), were calculated and compared between model fitting 

and cross-validation to assess model performance and test the potential model over-fitting.  

Prediction, evaluation, and time series analysis of historical PM2.5. 

The historical daily PM2.5 concentrations (2004-2012) were estimated using the model developed 

in the current study based on 2013 data, assuming that the daily relationship between PM2.5 and 

AOD is constant for the same DOY in each year. Since there were few ground PM2.5 

measurements for Mainland China before 2013, we estimated daily PM2.5 concentrations in the 

first half of 2014 using the model established in 2013 and compared them with the ground 

measurements to validate the accuracy of the historical PM2.5 estimations. We evaluated 

historical PM2.5 predictions (including 2014) at the daily, monthly, and seasonal scales. Since 

AOD-derived PM2.5 estimates are always missing due to the cloud and snow surface, we 

conducted a sensitivity analysis to test how many AOD-derived PM2.5 estimations can represent 
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the true monthly and seasonal mean PM2.5 concentrations. We required each evaluation grid cell 

to have at least 25 PM2.5 ground measurements in a given month to calculate the monthly mean 

PM2.5 concentrations and at least 25 measurements in each month of a season to calculate the 

seasonal mean PM2.5 concentrations. 

We calculated the monthly mean PM2.5 anomaly time series by subtracting the 10-year average 

PM2.5 concentration of the corresponding month for each grid cell and analyzed the PM2.5 trend 

for each grid cell using least squares regression (Weatherhead et al. 1998), which has been 

applied to global analyses of monthly mean AOD anomaly time-series data (Hsu et al. 2012). For 

each grid cell, we required at least six daily PM2.5 predictions in each month to calculate the 

monthly mean PM2.5 and at least six months of anomaly data per year in order to be included in 

the time-series analysis. 

The work flow of estimating the spatiotemporal PM2.5 concentrations in this study is shown in 

Figure 3. 

Results 

Descriptive statistics of the model fitting dataset. 

There are 63,031 data records included in the final 2013 model-fitting dataset. The overall mean 

PM2.5 concentration is 77.05 µg/m3, and the mean value of our combined AOD is 0.69 

(Supplemental Material, Table S3). These results are approximately five times higher than those 

found in the eastern and southeastern U.S. (Hu et al. 2013; Liu et al. 2005).  

Results of model fitting and cross-validation. 

We summarized the fixed effect estimates, model fitting, and CV results of the first-stage LME 

model for each province in Table S4 (Supplemental Material). AOD is the only variable that is 
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statistically significant in all provincial models (p<0.05). Wind speed, relative humidity, and 

precipitation are significant in most provincial models. Fire spots are not significant in some 

provinces, probably because these regions have infrequent fire activity. The CV R2 values of the 

first-stage LME model range from 0.64 in Ningxia to 0.82 in Zhejiang. The spatial distribution of 

first-stage LME CV R2 (not shown here) indicates that our LME model generally performs better 

in South, East, North, and Northeast China than in West and Northwest China, which have fewer 

PM2.5 monitoring networks (Figure 1).  

Figure 4 shows the model-fitting and CV results for the first-stage and full models. The full 

model fitting and CV R2 values are 0.82 (Figure 4B) and 0.79 (Figure 4D), respectively, 

indicating that this model is not substantially over-fitted. Comparing the first-stage (Figure 4A 

and C) with the full model (Figure 4B and D), it is clear that the second-stage GAM model 

marginally increases R2 values. However, the GAM model does increase the slope (from 0.77, 

Figure 4C to 0.79, Figure 4D) and reduce the intercept (from 18.38, Figure 4C to 16.57 µg/m3, 

Figure 4D) of the linear regression between model-estimated and observed PM2.5 concentrations 

in 2013. More importantly, PM2.5 levels in the Hebei Province predicted by the full model are 

approximately 20 µg/m3 higher than those predicted by the first-stage model; the predicted PM2.5 

levels in Tibet are about 15 µg/m3 lower in the full model (Supplemental Material, Figure S4), 

showing that the spatial pattern of the predicted PM2.5 levels by the full model is more consistent 

with that of the ground observations. 

Evaluation of historical PM2.5 predictions 

Although our model predictions for daily level observations were poor compared to the historical 

observations (R2=0.41, N=79,989) (Figure 5A), it performed much better at the monthly and 

seasonal levels (Figure 5B and C, respectively). The sensitivity analysis showed that more daily 
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predictions yield more accurate monthly or seasonal estimations (Supplemental Material, Figure 

S5). Figure 5B shows that the monthly mean satellite PM2.5 calculated from more than five 

predicted daily PM2.5 concentrations can be a fairly accurate (R2 = 0.73) representation of 

monthly PM2.5 level measured from ground observations with only a slight bias (regression slope 

= 0.91). This threshold of six days per month is consistent with the method of a previous global 

AOD trend study (Hsu et al. 2012). At the seasonal level (Figure 5C), satellite PM2.5 calculated 

from more than 10 predicted daily PM2.5 concentrations can be a more accurate (R2 = 0.79) 

representation of seasonal PM2.5 levels with little bias (regression slope = 0.92).  

Spatial and temporal PM2.5 concentration trends. 

Figure 6 shows the spatial patterns of 10-year mean PM2.5 estimations (2004-2013) of China and 

four sub-regions (including the Beijing-Tianjin Metropolitan Region, Yangtze River Delta, Pearl 

River Delta, and Sichuan Basin). The highest PM2.5 estimations appear in the Beijing-Tianjin 

Metropolitan Region (including Beijing, Tianjin, and Hebei), followed by the Sichuan Basin, 

Yangtze River Delta (including Jiangsu, Shanghai, and Anhui), and Pearl River Delta. The 10-

year mean PM2.5 estimations in the Beijing-Tianjin Metropolitan Region are generally higher 

than 100 µg/m3, with the highest concentrations greater than 120 µg/m3. Similarly, the 10-year 

mean PM2.5 concentrations are generally higher than 85 µg/m3 in the Sichuan Basin, Yangtze 

River Delta. The mean PM2.5 concentrations are generally higher than 55 µg/m3 in the Pearl 

River Delta. High PM2.5 levels also occur Taklamakan Desert in Xinjiang, an area that is a major 

dust source (Figure 6A). Figure S6 (Supplemental Material) illustrates the seasonal patterns of 

the 10-year mean PM2.5 concentrations in China. Winter is the most polluted season (mean PM2.5: 

72.24 µg/m3), while summer is the cleanest season (32.90 µg/m3).  

Figure 7 shows that while China has an overall positive 10-year average PM2.5 trend of 0.22 
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µg/m3 per year (Figure 7A), there is significant regional variability. For example, the Beijing-

Tianjin Metropolitan Region has had more rapid increases (0.75 µg/m3 per year) than the rest of 

the nation (Figure 7B), whereas the Pearl River Delta has experienced a rapid decrease (0.96 

µg/m3 per year) (Figure 7D). The PM2.5 level in the Yangtze River Delta region has remained 

steady (Figure 7C). In addition, PM2.5 levels in most of China has been increasing by 1.97 µg/m3 

per year before 2008, but decreasing by 0.46 µg/m3 per year afterwards (Figures 7A, 7E and 7F). 

Similar trends were observed in the Beijing-Tianjin Metropolitan Region (Figure 7B). The PM2.5 

level has remained relatively constant in the Pearl River Delta for 2004-2007, followed by a 

negative trend of 1.53 µg/m3 per year after 2008 (Figure 7D).  

Discussion 

Compared with our previous GWR model (CV R2 = 0.64) (Ma et al. 2014), the current two-stage 

model demonstrated superior performance (CV R2 = 0.79). The CV RPE decreased from 51.3% 

(Ma et al. 2014) to 35.6% (this study), approaching results seen in regional-scale studies 

conducted in the U.S. (Hu et al. 2014a; Lee et al. 2011). This improvement is particularly 

encouraging for our national model because, unlike regional-scale models, the PM2.5-AOD 

relationship will inevitably vary in space (e.g., variable PM2.5 composition and vertical 

distribution caused by different emission sources; synoptic weather patterns vary by province). 

The first-stage CV R2 drops to 0.63 if a single LME model is fitted for the whole domain, further 

illustrating that a constant daily PM2.5-AOD relationship is a valid assumption only for relatively 

small geographic regions. Using both MODIS C6 DT and DB AOD products to obtain a custom 

combined AOD yielded a 25-fold increase in spatial resolution (from 50 km to 10 km) and 

greatly improved the AOD data coverage. There are 120% more matched DB AOD values than 

DT AOD values when comparing to AERONET observations (Supplemental Material, Figure 
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S2). Furthermore, our analysis indicated that DB AOD has a smaller mean bias overall than DT 

AOD in China (0.01~0.05 vs. 0.13~0.18) (Supplemental Material, Figure S2), enabling us to 

estimate lower PM2.5 levels.  

To our best knowledge, this is the first national-scale study in China to estimate and evaluate 

historical PM2.5 levels in the years beyond the modeling year using advanced statistical models. 

The poor agreement between daily historical PM2.5 predictions and ground measurements is 

caused by the strong model assumption that the daily PM2.5-AOD relationship derived from 2013 

data remained constant for the same DOY in each year. This limitation of our model cannot be 

resolved without sufficient historical PM2.5 data which would allow annual model adjustments 

before 2013. Nonetheless, our monthly (R2 = 0.73, slope = 0.91) and seasonal (R2 = 0.79, slope = 

0.92)  mean PM2.5 predictions are accurate representations of the ground measurements with 

relatively low biases and can serve as exposure estimates to study the health impacts of long-

term PM2.5 exposure in China. The seasonal patterns show that the most polluted season is winter 

and the cleanest one is summer, which is consistent with the results of our previous study (Ma et 

al. 2014). Looking forward, this model can be fitted every year after 2013 to provide accurate 

daily PM2.5 concentrations and fill the spatial gaps left by the monitoring network.  

Two approaches (including statistical and scaling models) can be applied to retrieve ground 

PM2.5 levels from satellite remotely sensed AOD data (Liu 2014). For statistical models to 

function properly, substantial ground data support is necessary. With the recently established 

ground monitoring network, we are able to develop this high-performance spatial model in China. 

The same model cannot be applied in regions with sparse or no ground observations. In this case 

the scaling approach described in Brauer et al. (2012) is the only applicable method. 

We compared the 9-year (2005-2013) AOD-derived and ground-measured PM2.5 trends in Hong 
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Kong (no PM2.5 monitoring sites in 2004) and Taiwan (few sites in 2004). The results show that 

the AOD-derived PM2.5 trend in Hong Kong (-1.28 µg/m3 per year) is similar to ground 

measurements (-1.35 µg/m3 per year). However, the trend of AOD-derived PM2.5 in Taiwan is -

0.17 µg/m3 per year, which is much higher than that of ground measurements (-0.72 µg/m3 per 

year). This inconsistency is probably due to missing satellite AOD retrievals. For example, only 

34.5% of the grid cells in Taiwan have more than 50% of months which have AOD-derived 

PM2.5 data. Missing AOD values are a major limitation and challenge in PM2.5-AOD modeling 

(Liu 2014) and the methods to account for the missing AOD data in China will be a focus of our 

future research. 

Nonetheless, the overall regional trends are consistent with the environmental policy and 

regulation change in China. We found an inflection point around 2008 for the monthly mean 

PM2.5 time series. The PM2.5 level steadily increased between 2004 and 2007, but the trend 

reversed or became non-significant after 2008, especially in the Beijing-Tianjin Metropolitan 

Region. A recent study (Boys et al. 2014) also found that PM2.5 levels steadily rose until 2007 

and then became stable in East Asia. China experienced a rapid growth of energy consumption 

before 2005 (Yuan et al. 2011), resulting in missed environmental quality targets between 2001-

2005 (Xue et al. 2014). The growth in energy demand led to a stricter energy conservation and 

emissions reduction (ECER) policy, which required 20% reduction in energy usage intensity by 

the end of 2010, compared with the level in 2005 (Lo and Wang 2013). The ECER policy was 

implemented in late 2006, and the overall achievement obtained by 2010 was 19.06% (Lo and 

Wang 2013). A recent study also showed that the production related PM2.5 emissions of China 

peaked at around 2007 and quickly dropped afterwards (Guan et al. 2014). A sharp reduction of 

PM2.5 levels induced by this ECER policy may explain the inflection point. 
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Conclusions 

The two-stage satellite AOD model developed in this study can generate reliable historical 

monthly and seasonal PM2.5 predictions at 10 km resolution in China with little bias, including 

data from the past decade, when the regulatory PM2.5 monitoring network did not exist. Since 

several long-term PM2.5 health effects studies in North America and the Global Burden of 

Disease project are driven by satellite exposure estimates at this resolution (Brauer et al. 2012; 

Crouse et al. 2012; Madrigano et al. 2013), our model predictions can greatly enhance the 

research of long-term PM2.5 health effects in China. With the release of Terra MODIS C6 

product in early 2015, the predicted historical PM2.5 time series can now be extended to early 

2000, if consistent meteorological and land use parameters are found to cover 2000 to 2003. 

From 2013 onward, our model can provide daily PM2.5 exposure estimates to fill the gaps left by 

the PM2.5 monitoring network in China. Finally, given the wider dynamic range of PM2.5 

concentrations in China compared to North America, likely due to intensive local sources, it is 

possible to further improve the performance of our model with detailed land use (e.g., road 

network) and emissions information (e.g., major point sources), which were not available during 

this study (Kloog et al. 2014).  
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Figure Legends 

 

Figure 1. Spatial distribution of ground PM2.5 monitoring sites. Hollow circles denote the sites 
with data only available from 01/2014 to 06/2014. Solid circles denote the sites with data 
available not only in 2014 but also 2013 or earlier years. Note that many clustered sites are 
overlapped due to their proximity. The spatial resolution of the background gridded population is 
0.1° × 0.1°. 

 

Figure 2. Spatial distribution of annual mean available days for MODIS’s operational combined 
AOD (A), our IVW combined AOD (B), and percentage improvement of data coverage (C). 

 

Figure 3. The work flow of estimating the spatiotemporal PM2.5 concentrations in this study. 

 

Figure 4. Density scatter plots of model-fitting and cross-validation at daily level (N=63,031). (A) 
and (B) are model fitting results for first-stage LME model and full LME+GAM model, 
respectively. (C) and (D) are model CV results for first-stage LME model and full LME+GAM 
model, respectively. MPE: mean prediction error (µg/m3). RMSE: root mean squared prediction 
error (µg/m3). RPE: relative prediction error (%). The dashed line is the 1:1 line.  

 

Figure 5. Evaluation of historical PM2.5 estimations (2004-2012 and 01/2014-06/2014) at daily 
(A), monthly (B), and seasonal (C) levels. Since there were few ground PM2.5 data for Mainland 
China before 2013, we also estimated PM2.5 in the first half of 2014 using the 2013 model and 
compared them with the ground measurements to validate the accuracy of the historical 
estimations. 

 

Figure 6. Spatial distributions of 10-year (2004-2013) mean  PM2.5 estimations for entire China 
(A), Beijing-Tianjin Metropolitan Region (B), Yangtze River Delta (C), Pearl River Delta (D), 
and Sichuan Basin (E). 

 

Figure 7. Time series of monthly, satellite-derived PM2.5 anomaly (µg/m3) for entire China (A), 
Beijing-Tianjin Metropolitan region (B), Yangtze Delta (C), and Pearl River Delta (D); and 
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spatial distribution of PM2.5 trends for 2004-2007 (E) and 2008-2013 (F). White areas in (E) and 
(F) indicate missing data. The black lines in (A)-(D) denote the PM2.5 trends for 2004-2013, 
while red lines represent the trends of 2004-2007 and blue lines represent the trends of 2008-
2013. The PM2.5 trends (µg/m3 per year), 95% confidence interval (CI) in brackets (µg/m3 per 
year), and significance levels (*: p<0.05; **: p<0.01; ***: p<0.005) are also shown in (A)-(D). 
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