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ABSTRACT  
 
Background: Investigators measuring exposure biomarkers in urine typically adjust for 

creatinine to account for dilution-dependent sample variation in urine concentrations. Similarly, 

it is standard to adjust for serum lipids when measuring lipophilic chemicals in serum. However, 

there is controversy as to the best approach, and existing methods may not effectively correct for 

measurement error.  

Objectives: We compared adjustment methods, including novel approaches, using simulated 

case-control data.  

Methods: Using a directed acyclic graph framework, we defined six causal scenarios for 

epidemiologic studies of environmental chemicals measured in urine or serum. The scenarios 

include variables known to influence creatinine (e.g. age and hydration) or serum lipid levels 

(e.g. body mass index and recent fat intake). Over a range of true effect sizes, we analyzed each 

scenario using seven adjustment approaches and estimated the corresponding bias and 

confidence interval coverage across 1000 simulated studies.  

Results: For urinary biomarker measurements, our novel method, which includes both covariate-

adjusted standardization and the inclusion of creatinine as a covariate in the regression model, 

had low bias and had 95% confidence interval coverage close to 95% for most simulated 

scenarios. For serum biomarker measurements, a similar approach involving standardization plus 

serum lipid level adjustment generally performed well.  

Conclusions: To control measurement error bias due to variations in serum lipids or urinary 

diluteness, we recommend improved methods for standardizing exposure concentrations across 

individuals.  
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INTRODUCTION  

In epidemiologic studies of environmental contaminants measured in urine, investigators 

adjust for creatinine or specific gravity to correct for variations in urine diluteness at the time of 

measurement (Barr et al. 2005; Thorne 2008). Similarly, contaminant concentrations for 

lipophilic chemicals measured in blood are adjusted for serum lipid level (SLL) (Phillips et al. 

1989; Schisterman et al. 2005).  

 Most investigators agree that adjustment is beneficial, but controversy has arisen over the 

best approach (Schisterman et al. 2005). Traditionally, investigators standardize measured 

urinary biomarker concentrations by dividing by urinary creatinine. This division converts the 

scale to weight of chemical per weight creatinine, reflecting the assumption that creatinine 

excretion is approximately constant across individuals and time. Theoretically, because 

individuals with low urinary creatinine concentrations are well hydrated, they would have 

commensurately dilute urinary concentrations of environmental contaminants. Thus, 

standardization would equalize concentrations across individuals and across time within 

individuals. The same concept applies to adjustment for SLL, as individuals with higher lipid 

concentrations tend to carry proportionally higher concentrations of lipid-soluble contaminants 

(Longnecker et al. 1996; Phillips et al. 1989).  

Schisterman et al. (2005) challenged this classical standardization approach by 

demonstrating its poor performance in simulated scenarios involving lipophilic chemicals 

measured in serum. Considering simulations based on a number of directed acyclic graphs 

(DAGs), they found that simply including serum lipid as a covariate in the regression model 

generated more accurate and precise effect estimates than traditional standardization. They also 

demonstrated good performance for a two-stage model, in which SLL is regressed on the 
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contaminant (stage I) with the resulting residual term then entered as a covariate when modeling 

the effect of the contaminant on the outcome (stage II) (Hunter et al. 1997). The paper by 

Schisterman et al. has been widely cited, reflecting substantial influence on analytic practice. 

However, we believe that some important causal scenarios remain to be explored.  

To set the stage for our alternative scenarios, consider the purpose for which urinary and 

blood measurements are made. In many applications, urine and blood are used as accessible 

proxies for inaccessible target tissues. For example, when examining effects of bisphenol A 

(BPA) on breast cancer, breast and reproductive organs are probably the most disease-relevant 

tissues. Instead, we measure urinary BPA concentration, not because the urine itself is a source 

of exposure, but as a surrogate. As the target and proxy contaminant concentrations can differ, 

the use of proxy measurements results in measurement error, which causes bias. Further, because 

the target and the proxy have different relationships with the outcome and other factors, the 

choice of confounding variables may depend on how the causal network is defined. 

A further complication is that risk factors for the disease under study might also affect 

creatinine or SLL. For example, creatinine levels can vary with gender, race, age, fat free mass, 

and body mass index (BMI) (Barr et al. 2005). Gender, age, and BMI are also associated with 

SLL (Costanza et al. 2005). Barr et al. (2005) consequently recommend adjusting for creatinine 

as a covariate in the regression model. However, according to DAG theory (Greenland et al. 

1999), creatinine (or SLL) may act as a “collider”, that is, a common descendant of two other 

variables on a causal pathway. If so, epidemiologists have demonstrated that such adjustment 

could induce non-causal associations and lead to further confounding (Cole et al. 2009). 

Additionally, adjusting for creatinine or serum lipids as covariates may not adequately control 
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for the measurement error that results from between-subject variations in urinary dilution or 

SLL. That issue will be considered here, with the aid of DAGs. 

We also consider how to control for measurement error when using proxy biomarker 

measures. We demonstrate limitations of existing approaches and propose novel methods to 

control confounding and measurement error more effectively. We construct DAGs 

corresponding to several scenarios, with distinct causal frameworks for toxicants measured in 

urine (Part I) versus serum (Part II). For each setting, we present results from simulation studies 

conducted to compare methods. In part III we demonstrate application of these approaches using 

real data in a study of urinary phthalate concentrations and early pregnancy loss.  

 

PART I:  ENVIRONMENTAL CHEMICALS MEASURED IN URINE 

Methods 

 We first consider scenarios where urine serves as a proxy for disease-relevant tissues 

(Figure 1, DAGs A-C). For instance, suppose we want to measure the association between breast 

cancer risk and BPA concentrations in breast tissue (i.e. target tissue, presumably causal), but 

can only measure urinary BPA concentrations (presumably not causal). For simplicity, we 

assume that overall exposure and the consequent target tissue biomarker concentrations are 

stable across time, and ignore the error caused by using a “snap-shot” measure rather than 

cumulative exposure. Our only focus is on the part of measurement error that adjustment for 

creatinine in the urine sample can potentially mitigate, i.e., the discrepancy between urinary and 

target tissue concentrations at the time that the proxy sample was collected. 

In scenario A (Figure 1A), target tissue concentrations (ET), which depend on overall 

environmental exposure (EO), affect disease risk. Proxy concentrations (EP), measured in urine, 



Environ Health Perspect DOI: 10.1289/ehp.1509693 
Advance Publication: Not Copyedited 
 

 6 

depend on both EO and hydration levels at the time of sample collection. Hydration 

commensurately affects creatinine levels. Scenario B (Figure 1B) additionally allows some 

covariate X (e.g. age) to affect both creatinine and disease risk. Conditioning on urinary 

creatinine by adjusting for it in the model will induce an association between EP and disease 

(Cole et al. 2009; Greenland et al. 1999), unless X is also included in the model. Scenario C 

(Figure 1C) is like scenario B except that X can also affect EO. Conditioning on creatinine will 

again open a “back-door path” between EP and disease unless one also adjusts for X.   

For the simulation study, we generated data for each of the relevant covariates by 

randomly drawing values from specified distributions. Our primary purpose here was to compare 

the effect estimates produced from an analysis of the simulated data to the true effect estimates, 

which we defined when designing the simulation. We selected five possible values of the true 

odds ratio (OR, per unit change) for the effect of ET on disease: 2.00, 1.30, 1.00, 0.77 or 0.50. 

This corresponds to true ln OR values (denoted βTRUE) of 0.69, 0.26, 0.00, -0.26, and -0.69, 

respectively. Each simulation was repeated 1000 times. The sample included 500 participants 

when the OR was 2.0 or 0.5, and 1000 otherwise. 

The variable distributions selected for the simulation study are discussed in detail in 

Supplemental Material, Part I: Description of simulation study parameters for urine biomarker 

scenarios (DAGs A-C). Briefly, we generated values for urinary biomarker concentrations with a 

log-normal distribution that approximates that seen for BPA in female participants from the 

2007-2010 National Health and Nutrition Examination Surveys (NHANES; Fourth National 

Report on Human Exposure to Environmental Chemicals, 2014). We simulated values for 

creatinine, hydration, and X based on the assumptions specified in the DAG. In sensitivity 
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analyses, we simulated assay-specific measurement errors by including a random error term in 

the equation used to generate EP or creatinine. All analyses were done in SAS (9.3, Cary, NC). 

 Presence or absence of disease was assigned by random draws from a binomial 

distribution, where the natural log (ln) odds of having disease (D) was linearly dependent on 

target tissue concentrations, ET: logit(Pr[D])= α+βTRUE*ET+δ*W. Here, W is a vector containing 

any relevant confounders. We selected intercept terms to impose case-control sampling with 

approximately 50% cases.  

 To enable scale-invariant comparisons between results based on ET versus EP, we re-

scaled the biomarker measures using standardized z-scores. Then, for each of seven statistical 

approaches described below, we estimated the association between one standard deviation (SD) 

increase in EP (with or without prior creatinine-standardization, depending on the approach) and 

the change in ln odds of disease risk. The resulting estimated coefficient for the EP z-score (EPz), 

should be very close to the corresponding β for the ET z-score. The derivations of the coefficients 

for the ET z-scores (ETz) corresponding to each DAG are defined in Supplemental Material, 

Table S1, Variable relationships, urinary biomarker scenarios (A-C), and listed in the results 

tables. To the extent that the estimated coefficient for EPz systematically differs across 

simulations from the true coefficient for ETz, there is bias. 

 Method 1: We fit a model that does not adjust for creatinine: logit(Pr[D])=α+β*EPz+δ*W. 

This naïve approach illuminates the consequences of ignoring dilution effects. When analyzing 

scenarios B and C, we adjusted for factor X as a confounder. This adjustment was made for all 

seven approaches, which are described in detail in Table 1. 

Method 2: We compute the ratio of EP to creatinine and then estimate the effect per SD: 

logit(Pr[D])=α+β*ratioz+δ*W. This is the commonly used creatinine standardization method, 
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which reflects the assumption that creatinine levels are inversely proportional to urinary 

diluteness.  

Method 3: The third approach, covariate-adjusted standardization, allows for systematic 

differences in long-term average creatinine levels across subpopulations. We first fit a model for 

ln(creatinine) as a function of the covariates thought to directly and chronically affect it (e.g. 

factor X). We then standardize by calculating Cratio= EP/(Cr/𝐶𝑟), where Cr and 𝐶𝑟 denote the 

observed and fitted creatinine, respectively. Finally, we standardize Cratio and fit: logit(Pr[D])= 

α+β*Cratioz+δ*W. This method should specifically control the covariate-independent, short-

term multiplicative effect of hydration on urinary diluteness.  

 Method 4: The fourth approach includes creatinine in the model: logit(Pr[D])= 

α+β*EPz+λ*creatinine+δ*W. As discussed previously, inclusion of creatinine serves to block 

confounding causal pathways involving both creatinine and disease (Barr et al. 2005; 

Schisterman et al. 2005).  

Method 5: The fifth approach uses the two-stage model suggested by Schisterman et al. 

(2005), first modeling creatinine as if affected by EPz: creatinine=α+β*EPz+R, and then including 

the residual (R) in the model: logit(Pr[D])=α+β*EPz+θ*R+δ*W.  

 Methods 6 and 7: The final two approaches are motivated by scenario C. We use the 

standardized biomarker measure (ratioz, as in Method 2) or the covariate-adjusted standardized 

biomarker measure (Cratioz, as in Method 3) in regression models that also include creatinine as 

a covariate: logit(Pr[D])= α+β*ratioz+λ*creatinine+δ*W (Method 6) or logit(Pr[D])= 

α+β*Cratioz+λ*creatinine+δ*W (Method 7). The goal of these methods is to control for variation 

due to hydration and also reduce confounding by blocking back-door paths between creatinine 
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and risk factors related to both creatinine and disease. As with Method 3, Method 7 should allow 

separate control for the independent, multiplicative effect of hydration on diluteness. 

 For each of the seven methods and 1000 data simulations, we obtained a point estimate 

and variance estimate for the coefficient of the urinary biomarker measure of interest (either EPz, 

ratioz or Cratioz). To measure bias we subtracted the true beta coefficient for ETz (i.e. the ln(OR), 

which corresponds to the standardized concentration in the target tissue, as specified for that 

simulation) from the mean of the 1000 point estimates. We also calculated the square root of the 

mean of the 1000 estimated variances across all simulations, and the empirical SD, which is the 

SD of the 1000 point estimates. Good agreement between these values indicates good model-

based variance estimation at the simulated sample size. We also calculated the empirical 

confidence interval coverage (CIC), which is the proportion of simulations in which the 95% 

confidence interval included the true beta coefficient of ETz. The standard error of the bias was 

calculated by dividing the empirical SD by the square root of the number of simulations 

(n=1000). 

 

Results 

 Table 2 shows simulation results. The effect estimates are marked with an asterisk (*) if 

CIC was statistically consistent with 95% (0.95±0.0135).  

 For scenario A, Methods 1 (unadjusted) and 4 (covariate-adjusted) were biased relative to 

the other methods when ET had an effect (i.e., when the true OR was ≠ 1.0). The other methods 

performed very well, with little to no detectable bias (±0.01), and CIC consistent with 95%, 

except when the OR was 2.0, in which case CIC was consistently <95%. The model-based SDs 
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were, on average, close to the empirical SDs across all scenarios and statistical approaches (data 

not shown). 

 For scenario B, the covariate-adjusted standardization methods (3 and 7) performed 

consistently well. The other methods were more biased, especially the traditional standardization 

methods 2 and 6. Here, when the true OR was 2.0, the bias was 0.08, which corresponds to a 

change of 12% (0.08/ETz= 0.08/0.65). CICs were consistent with 95% for Methods 3, 4 and 7 

under all scenarios.  

 For scenario C, when the effect was large and positive (true OR=2.0), the traditional 

standardization approaches were highly biased (0.17= 26% change for Methods 2 and 6). 

Methods 3 and 7 had consistently low bias and CIC near 95%. 

 When there was no true effect (true OR = 1.0), all seven methods showed CICs consistent 

with 95% and minimal bias for all three scenarios. Thus, all seven approaches provide valid 

hypothesis tests. When there was a true effect, however, only the covariate-adjusted standardized 

approaches (3 and 7) performed well under all scenarios, with CIC consistent with 95%.   

 Results for scenarios with classical assay measurement error introduced for both EP and 

creatinine are shown in Supplementary Material, Table S2, Results from simulations with 

measurement error: urinary biomarker scenarios (A-C). As expected, estimates were generally 

more biased than when EP and creatinine were measured without error. Although the seven 

methods varied in their relative performance, the covariate-adjusted standardization plus 

creatinine adjustment method (7) again performed well, showing minimal bias and good 

coverage for all but one of the six tested methods. 

 In general, we found that both covariate-adjusted standardization approaches (Methods 3 

and 7) performed well in all simulation scenarios and effect size specifications, with minimal 
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bias and close to nominal CIC rates. This good performance persisted even when there was a 

complicated confounding structure and simulated laboratory measurement error. Because real-

life scenarios will likely involve more complicated causal structures than those modeled here, 

method 7 (covariate-adjusted standardization plus creatinine adjustment) may have better general 

utility. 

 

PART II: ENVIRONMENTAL CHEMICALS MEASURED IN SERUM 

Methods 

 We next consider scenarios where lipophilic chemicals are measured in serum (Figure 2, 

DAGs D-F). To parallel the previous example, suppose we want to measure the association 

between a biomarker in a target tissue (e.g. polychlorinated biphenyl [PCB] in breast tissue) and 

an outcome, such as breast cancer, but only measure PCB concentrations in serum. For 

simplicity, we again assume that exposure concentrations are stable across time and focus on the 

measurement error that we can potentially adjust for by accounting for SLL at the time of sample 

collection. Further details for the serum biomarker simulation study are discussed in 

Supplemental Material, Part II: Description of simulation study parameters for serum biomarker 

scenarios (DAGs D-F). 

 In these scenarios, total SLL is the sum of two components: adiposity-related SLL and 

variable SLL. Adiposity SLL is positively associated with obesity and is temporally stable. In 

contrast, variable SLL changes after recent fat intake (Longnecker et al. 1996; Phillips et al. 

1989).  

 In all three scenarios, total SLL affects the serum concentration of lipid soluble 

contaminants (EP) and adiposity SLL is associated with disease risk, as is the target tissue 
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biomarker concentration (ET). In scenarios E and F, we also assume factor X (e.g. BMI) affects 

both adiposity SLL and disease risk. In scenario F, X also affects overall exposure (EO; 

Supplementary Material, Table S3, Variable relationships, serum biomarker scenarios (D-F)). 

 We used the same EO distribution as in the previous example, and again simulated 1000 

case-control studies with five possible true effect parameters (2.00, 1.30, 1.00, 0.77 and 0.50), 

setting the sample size to 500 when the OR was 2.0 or 0.5 and 1000 otherwise. For sensitivity 

analyses of assay-specific measurement error we added a random error term to the equation used 

to generate EP or total SLL (see Supplementary Material, Part II). Further details of the seven 

statistical approaches as applied to serum biomarkers are shown in Table 3.  

 

Results 

 For scenario D (Figure 2D), both standardization methods (2 and 6) and both covariate-

adjusted standardization methods (3 and 7) performed well (Table 4). The remaining three 

methods were biased (absolute bias >0.05) and showed sub-nominal CIC, except when there was 

no true association (True OR=1.0). 

 When X influenced SLL and disease risk, as in scenario E (Figure 2E), standardization 

(Method 2) and standardization plus covariate adjustment (Method 6) demonstrated little to no 

bias (±0.01). The other methods were biased, especially the covariate adjustment model (Method 

4, bias=0.19 when true OR=2.0 and -0.17 when true OR=0.5). The two covariate-adjusted 

standardization methods (3 and 7) were moderately biased when the effect was small (true 

OR=1.3 or 0.77), and performed more poorly when the effect size was large. For scenario F 

(Figure 2F), the standardization methods (2 or 6) again showed the least bias and best CIC when 

X also affected EO.  
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 In contrast to the results for the urinary biomarker scenarios, methods 1 and 5 were 

biased when there was no true effect. CICs were consistent with 95% for all methods and all 

scenarios. When classical assay measurement error was present (Supplementary Material, Table 

S4, Results from simulations with measurement error: serum biomarker scenarios (D-F)), all 

methods suffered but methods 2 and 6 still had the best overall performance.  

 In general, when assessing the relationship between a health outcome and a lipid-soluble 

chemical measured in serum, we found that methods 2 and 6 performed best. These methods 

involved standardizing the biomarker measure by dividing it by the measured SLL. Method 6, in 

in which SLL was also included as a covariate, may be more appropriate for epidemiologic 

studies involving many inter-related covariates.  

 

PART III: APPLIED EXAMPLE OF PHTHALATES AND EARLY PREGNANCY LOSS 

Methods 

 We examined the association between mono-(3-carboxypropyl) phthalate (MCPP) and 

early pregnancy loss using data from the North Carolina Early Pregnancy Study (1982-1986). 

Details of the study have been described (Jukic et al. in press; Wilcox et al. 1988). MCPP, 

human chorionic gonadotropin (hCG), and creatinine were measured in first-morning urine 

samples from 221 healthy women trying to conceive. MCPP and creatinine were assessed in 

specimens made up of three pooled, equal-volume aliquots collected during participants’ 

conception cycles (n=198).  

Conception was inferred if hCG concentrations exceeded 0.025 ng/ml on three 

consecutive days. A decline in hCG before 6 completed weeks (starting at the time of her last 

menstrual period) was considered an early pregnancy loss (n=48). We considered the following 
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variables as potential confounders, based on their possible relationship with early pregnancy loss 

and MCPP: age at conception, BMI, current smoking status, alcohol intake, caffeine intake, and 

education. Of these, only age was associated with creatinine in our study sample. Therefore, the 

DAG for this example would most resemble the previously described DAG C, with age 

equivalent to factor X and BMI, smoking, alcohol, caffeine, and education acting as confounders 

that are associated with MCPP (EO) and early loss, but not predictive of creatinine.   

We assessed the relationship between MCPP and early pregnancy loss using the seven 

statistical methods considered above. Because exposure units differ across methods, we used z-

scores to allow comparison, although this scaling would not be used in applied settings where the 

investigator would want a unit-based effect measure.  

 

Results 

 Median creatinine and MCPP concentrations were 1.4 g/L and 13.5 µg/L, respectively, 

with interquartile ranges of 1.1-1.7 and 9.5-21.1 and SDs of 0.5 and 13.5. Unadjusted, log-

transformed MCPP and log-transformed creatinine were positively correlated (Pearson’s r2=0.28, 

p<0.001). After creatinine standardization, log-MCPP had a median of 2.32 µg/g creatinine (or 

10.2 µg/g when exponentiated) and reduced variability (coefficient of variation [CV]=0.26 

versus 0.27 when unstandardized, with CVs based on log-transformed values). Variability was 

further reduced when we applied covariate-adjusted standardization prior to log-transformation 

(CV=0.23).  

 Although none of the resulting ORs and 95% confidence intervals indicate a statistically 

significant association between MCPP and early pregnancy loss, the estimates for methods 1, 4 

and 5 point towards a possible positive association, while the estimates for methods 2, 3, 6, and 7 
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are all less than one (Table 5). If these same point estimates were reported for a study with a 

larger sample size, the choice of creatinine-adjustment approach could influence the conclusion.  

 In this example, our use of pooled urine specimens had been employed to decrease the 

influence of short-term variation in hydration and provide a more stable assessment of phthalate 

concentrations over time. While this was an important strength of the design and pooling of 

multiple samples should be considered when feasible, it made the relative benefits of our novel 

standardization methods less apparent. Another limitation is that the women included in the 

Early Pregnancy Study were fairly homogenous for factors associated with creatinine, including 

race (95% white), age (range 21-42) and BMI (89% were <25 kg/m2). 

 

Discussion 

When urinary concentrations of an environmental contaminant are used as surrogates for 

concentrations in risk-relevant target tissues, day-to-day and person-to-person variation in urine 

dilution can cause bias-inducing, power-eroding measurement error. Measurement error is also 

problematic in studies of lipophilic chemicals measured in serum, especially if fasting serum 

samples are unavailable and it becomes impossible to tease out the relative influences of general 

adiposity versus recent fat intake on the measurements. Additional complexities arise for both 

biologic matrices if there are factors that influence both creatinine excretion and the outcome, or 

both SLL and the outcome. 

Although the methods are controversial, convenient approaches to reduce measurement 

error bias for exposure biomarkers measured in urine and serum involve dividing by specific 

gravity or creatinine levels for urinary concentrations, or by a serum lipid summary measure for 

serum concentrations (Method 2) (Barr et al. 2005; Schisterman et al. 2005; Thorne 2008). With 
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these standardization methods we implicitly assume a causal model like those shown in scenarios 

A and D, and results from our simulations support the belief that standardization by division 

works well under these scenarios.  

Based on concerns that traditional standardization is not appropriate in settings where 

disease risk factors can also affect creatinine (scenarios B and C), we devised a modified 

method. First, we model creatinine in relation to other known risk factors and obtain a predicted 

value for the creatinine. The remaining proportional variation around the fitted mean is 

approximately attributable to hydration levels, which also affect the concentration of the 

biomarker of interest. We accordingly adjust the concentration in the urine by dividing by the 

ratio of the measured value to the fitted mean value of creatinine (Method 3). We also considered 

augmenting method 3 by including adjustment for creatinine in the regression model for risk 

(Method 7). As hoped, these analytic approaches performed well under scenarios B and C, where 

a confounder of the exposure-disease association also influenced creatinine levels. Based on 

these results, we recommend that Method 7 be used for studies of urinary biomarkers that 

resemble the scenarios described in DAGs A, B or C, and we provide code to implement this 

method in SAS (Supplementary Material, Part III: SAS coding example for implementation of 

covariate-adjusted standardization method; 

http://www.niehs.nih.gov/research/resources/software/biostatistics/covariate/index.cfm). 

The usefulness of this proposed method depends on the availability of relevant predictors, 

as more informative prediction models for creatinine will improve measures of the residual 

proportion of creatinine attributable to hydration. Many predictors of creatinine, including age, 

race, gender, and BMI, are routinely collected, but the field could benefit from improved 

understanding of physiologic factors that influence creatinine.  
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The issues around serum biomarker measures are more complex than those for urinary 

biomarker measures. While creatinine and urinary EP share a common causal ancestor (i.e. 

hydration), total SLL influences a lipophilic EP directly. Additionally, total SLL is causally 

downstream from long-term adiposity, which is a risk factor for many chronic diseases. By 

contrast, a causal link between hydration/creatinine and disease (excepting kidney disease) seems 

unlikely, given that creatinine is a byproduct of muscle catabolism. Because of these 

discrepancies, we cannot use covariate-adjusted standardization to isolate the effect of SLL in the 

same way that we can approximately isolate the effect of hydration in the urinary biomarker 

examples.  

In our simulations for the serum biomarker setting, the effect estimates were typically 

more biased than for the urinary biomarker measurement scenarios. We found that the traditional 

standardization approach (Method 2) outperformed the covariate-adjusted standardization 

approach (Method 3), but believe that in scenarios that are more complex than the ones simulated 

here, additionally including SLL as a covariate in the regression model (Method 6) will help 

ensure that any backdoor paths are sufficiently blocked and confounding controlled. Because 

such adjustment may be useful even when SLL (or creatinine) is not acting as a confounder, it 

may be useful to think of SLL (or creatinine) as a “concomitant variable”, or non-confounding 

covariate that can improve estimation precision if included in the data analysis (Li et al. 2013).  

A key feature of the causal diagrams presented here is that we allow for the possibility 

that concentrations differ across tissues. For both the hypothetical and applied examples 

presented here, we assume that urinary excretion concentrations are correlated with chemical 

concentrations in the target tissues, but are not perfect surrogates for them. This 

conceptualization of the problem differs from Schisterman et al. (2005), which sometimes 
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assumed that urinary or serum biomarker concentrations are directly causally related to the 

outcome. Moreover, we consider situations where SLL directly affects the amount of analyte 

present in the serum. 

 To enable meaningful comparisons of estimated beta coefficients across all 7 models, we 

calculated z-scores and estimated the effects per SD increase in biomarker concentration. Unlike 

crude exposure measures, these z-scores are scale-invariant and thus allowed us to make direct 

comparisons of estimates derived using different methods. However, we do not recommend use 

of z-scores in practice, as SDs may vary considerably across studies or population subgroups. 

We also considered situations where a covariate can affect both serum lipid (or urinary 

creatinine) levels and the outcome (scenarios B and E), or where a covariate affects exposure, 

serum lipid/creatinine levels and the outcome (scenarios C and F). We believe that the DAGs 

included here capture the key features of pertinent scenarios, but there may be other relevant 

situations not addressed by our simulations. For example, we do not consider scenarios in which 

the target tissue is exposed directly (e.g. airborne contaminants and lung disease) or where the 

exposure of interest is internally produced (e.g. hCG). We also acknowledge that our assumption 

that the relationship between hydration and creatinine and between hydration and EP is 

multiplicative is an approximation, however plausible. 

Typically, DAGs are used to select the minimal set of adjustment covariates needed to 

control confounding and permit valid causal inference. We instead have used DAGs to guide our 

understanding of measure surrogacy and sources of measurement error in settings where urine 

and blood enable convenient proxy measurement of environmental agents or biomarkers of 

exposure. Our treatment of measurement error using DAGs is incomplete in the sense that the 

scenarios considered involve only a “snapshot” measure of an exposure that may have long-
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lasting effects. However, the most realistic goal of any standardization approach is to control bias 

due to the short-term and risk-irrelevant influences on the measurement. 

We note that our results apply specifically to etiologic studies that measure how 

environmental exposures are associated with a health outcome. Other scientific applications, 

such as studies of hormone secretion patterns across menstrual cycles (Baird et al. 1997), might 

rely on within-person changes over time. For such studies, factors that influence long-term 

concentrations may not be relevant. 

That being said, we believe the general framework we have developed has broader 

applicability. For example, one could consider dietary biomarkers (e.g. urinary sodium), or 

analyte concentrations measured in other body fluids, such as saliva, semen, or breast milk. Each 

case would require careful consideration of the relationships between the proxy tissue, the target 

tissue, and any factors that could influence relative concentrations or confound the exposure-

disease relationship.  

 We have here proposed a new covariate-adjusted standardization method to adjust for 

creatinine when estimating the association between a health outcome and environmental 

chemicals or biomarkers measured in urine. For studies of lipophilic contaminants measured in 

serum, our results suggest that a different, more traditional standardization approach is more 

appropriate. In both cases, also adjusting for creatinine or SLL as a covariate seems to provide 

further benefit. Other recently proposed approaches, such as including creatinine or serum lipids 

as adjustment variables in statistical models, or accounting for residuals from a stage one 

predictive model, did not work well in our causal scenarios that regarded urine or blood as 

surrogates for target tissues. Using the proposed methods, our simulations illustrated that one can 

control for variations in creatinine or SLL due to risk-irrelevant temporal perturbations. 
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Improved methods for standardizing biomarker measures should enable improved estimation of 

the effects of environmental exposures on human health.
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Table 1. Statistical models for each analytic method, as applied to biomarkers measured in urine 
 

Method logit(Pr[D])= 
1.Unadjusted α+β*EPz+δ*W 
2. Standardized α+β*ratioz+δ*W 
3. Covariate-adjusted standardization  α+β*Cratioz+δ*W  
4. Covariate adjustment  α+β*EPz+λ*creatinine+δ*W 
5. 2-level model α+β*EPz +θ*R+δ*W; creatinine =α+β*EPz+R 
6. Standardization plus covariate adjustment α+β*ratioz+λ*creatinine+δ*W 
7. Covariate-adjusted standardization plus 
covariate adjustment 

α+β*Cratioz+λ*creatinine+δ*W 

Abbreviations: 𝐶𝑟= predicted creatinine, Cratio = EP/(Cr/𝐶𝑟); EP = Proxy exposure level, EPz = Proxy 
exposure z-score, ratioz= z-score for EP-to-creatinine ratio 
Creatinine predicted based on X1 in all scenarios. Under scenario A, W not included. Under scenarios B 
and C, W = X1. 



Environ Health Perspect DOI: 10.1289/ehp.1509693 
Advance Publication: Not Copyedited 
 

 23 

Table 2. Results from simulation studies comparing seven methods for creatinine adjustment when assessing 
the relationship between a urinary biomarker and disease risk under different causal scenarios (Figures 1A, 
1B, and 1C, respectively) and true effect sizes (True ORs= 2.0, 1.3, 1.0, 0.77 or 0.5). 

 Scenario A Scenario B Scenario C 
Analysis Method Bias (SE)a CIC Bias (SE)a CIC Bias (SE)a CIC 

True OR=2.0, True β for ETz= 
0.650 (A and B) or 0.690 (C)    

1. Unadjusted -0.02 (0.003) 0.92 -0.02 (0.003) 0.93 -0.03 (0.004) 0.93 
2. Standardizedb 0.01 (0.003) 0.93 0.08 (0.004) 0.90 0.17 (0.005) 0.82 
3. Covariate-adjusted  

standardization (CAS)b,c 0.01 (0.003) 0.93 0.01 (0.003) 0.94* 0.00 (0.004) 0.94 

4. Covariate adjustment (CA)b 0.03 (0.003) 0.92 0.03 (0.004) 0.94* 0.02 (0.004) 0.93 
5. 2-stage modelb -0.01 (0.003) 0.91 -0.01 (0.003) 0.93 0.07 (0.004) 0.92 
6. Standardization plus CAb 0.01 (0.003) 0.93 0.08 (0.004) 0.90 0.17 (0.005) 0.81 
7. CAS plus CAb,c 0.01 (0.003) 0.93 0.01 (0.003) 0.94* 0.01 (0.004) 0.94* 
True OR=1.3, True β for ETz= 
0.245 (A and B) or 0.260 (C)    

1. Unadjusted -0.01 (0.002) 0.95* -0.01 (0.002) 0.94* -0.01 (0.002) 0.94* 
2. Standardizedb 0.00 (0.002) 0.95* 0.03 (0.002) 0.93 0.06 (0.003) 0.90 
3. CASb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 
4. CAb 0.01 (0.002) 0.95* 0.01 (0.002) 0.94* 0.01 (0.002) 0.95* 
5. 2-stage modelb -0.01 (0.002) 0.95* -0.01 (0.002) 0.94* 0.03 (0.003) 0.95* 
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.03 (0.002) 0.93 0.06 (0.003) 0.90 
7. CAS plus CAb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.94* 0.00 (0.002) 0.95* 

True OR=1.0, True β for ETz=0.0     
1. Unadjusted 0.00 (0.002) 0.96* 0.00 (0.002) 0.96* 0.00 (0.002) 0.96* 
2. Standardizedb 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 0.00 (0.003) 0.96* 
3. CASb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 
4. CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 
5. 2-stage modelb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 0.00 (0.003) 0.96* 
7. CAS plus CAb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 
True OR=0.77, True β for ETz=  
-0.245 (A and B) or -0.260 (C)    

1. Unadjusted 0.01 (0.002) 0.95* 0.01 (0.002) 0.95* 0.01 (0.002) 0.96* 
2. Standardizedb 0.00 (0.002) 0.96* -0.02 (0.002) 0.94* -0.04 (0.003) 0.94 
3. CASb,c 0.00 (0.002) 0.96* 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 
4. CAb -0.01 (0.002) 0.95* -0.01 (0.002) 0.95* -0.01 (0.002) 0.96* 
5. 2-stage modelb 0.01 (0.002) 0.95* 0.01 (0.002) 0.95* -0.02 (0.002) 0.95* 
6. Standardization plus CAb 0.00 (0.002) 0.96* -0.02 (0.002) 0.94* -0.04 (0.003) 0.94* 
7. CAS plus CAb,c 0.00 (0.002) 0.96* 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 
True OR=0.5, True β for ETz=  
-0.650 (A and B) or -0.690 (C)    

1. Unadjusted 0.02 (0.003) 0.94* 0.02 (0.003) 0.92 0.00 (0.004) 0.94* 
2. Standardizedb -0.01 (0.003) 0.95* -0.06 (0.004) 0.92 -0.02 (0.004) 0.87 
3. CASb,c -0.01 (0.003) 0.95* 0.00 (0.003) 0.94* -0.01 (0.004) 0.95* 
4. CAb -0.03 (0.003) 0.94* -0.02 (0.004) 0.95* -0.02 (0.004) 0.95* 
5. 2-stage modelb 0.01 (0.003) 0.94* 0.02 (0.003) 0.92 0.01 (0.004) 0.91 
6. Standardization plus CAb -0.01 (0.003) 0.95* -0.06 (0.004) 0.92 -0.01 (0.004) 0.87 
7. CAS plus CAb,c -0.01 (0.003) 0.95* 0.00 (0.003) 0.94* -0.02 (0.004) 0.95* 

Abbreviations: ETz= Target tissue exposure z-score, EPz= Proxy exposure z-score, SE= Standard Error, CIC=Confidence 
Interval Coverage  
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Each simulation was repeated 1,000 times. Samples included 500 observations when the true OR = 2.0 or 0.5, and 1,000 
observations otherwise. 
aBias is equal to the mean observed beta coefficient for βPz, which is either the urine exposure z-score (Methods 1, 4, 5) or the z-
score for the urine exposure to creatinine ratio (Methods 2, 3, 6), minus the true beta coefficient for ETz. The standard error of the 
bias estimate is the square root of the average variance of βPz divided by the square root of the number of simulations. 
bB and C are adjusted for X 
cCreatinine is predicted using X 
*CIC is consistent with 0.95 (0.95±0.0135)  
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Table 3. Statistical models for each analytic method, as applied to biomarkers measured in serum 
 

Method logit(Pr[BC])= 
1.Unadjusted α+β*EPz+δ*W 
2. Standardized α+β*ratioz+δ*W 
3. Covariate-adjusted standardization  α+β*Cratioz+δ*W  
4. Covariate adjustment  α+β*EPz+λ*SLL+δ*W 
5. 2-level model α+β*EPz +θ*R+δ*W; SLL =α+β*EPz+R 
6. Standardization plus covariate adjustment α+β*ratioz+λ*SLL+δ*W 
7.  Covariate-adjusted standardization plus 
covariate adjustment 

α+β*Cratioz+λ*SLL+δ*W 

Abbreviations: Cratio = EP/(SLL/𝑆𝐿𝐿); EP = Proxy exposure level, EPz = Proxy exposure z-score, ratioz= 
z-score for EP-to-SLL ratio, SLL = Serum lipid level, 𝑆𝐿𝐿= predicted SLL 
SLL predicted based on X2 in all scenarios. Under scenario D, W not included. Under scenarios E and F, 
W = X2.
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Table 4. Results from simulation studies comparing seven methods for serum lipid level adjustment when 
assessing the relationship between a serum biomarker and disease risk under different causal scenarios 
(Figures 2D, 2E, and 2F, respectively) and true effect sizes (True ORs= 2.0, 1.3, 1.0, 0.77 or 0.5). 

 Scenario D Scenario E Scenario F 
Analysis Method Bias (SE)a CIC Bias (SE)a CIC Bias (SE)a CIC 

True OR=2.0, True β for ETz= 
0.650 (D and E) or 0.838 (F)    

1. Unadjusted -0.15 (0.003) 0.63 -0.04 (0.004) 0.92 0.03 (0.006) 0.94 
2. Standardizedb 0.01 (0.003) 0.95* 0.01 (0.003) 0.94* 0.01 (0.005) 0.94* 
3. Covariate-adjusted 

standardization (CAS)b,c 0.01 (0.003) 0.94* 0.11 (0.004) 0.86 0.29 (0.006) 0.72 

4. Covariate adjustment (CA)b 0.17 (0.004) 0.78 0.19 (0.004) 0.73 0.33 (0.007) 0.68 
5. 2-stage modelb -0.12 (0.003) 0.73 -0.13 (0.004) 0.77 -0.02 (0.006) 0.92* 
6. Standardization plus CAb 0.01 (0.003) 0.94* 0.01 (0.003) 0.94* 0.01 (0.005) 0.94* 
7. CAS plus CAb,c 0.01 (0.003) 0.94* 0.11 (0.004) 0.86 0.29 (0.006) 0.72 
True OR=1.3, True β for ETz= 
0.245 (D and E) or 0.316 (F)    

1. Unadjusted -0.05 (0.002) 0.90 -0.01 (0.002) 0.95* 0.01 (0.003) 0.96* 
2. Standardizedb 0.00 (0.002) 0.94* 0.00 (0.002) 0.94* 0.00 (0.003) 0.96* 
3. CASb,c 0.00 (0.002) 0.95* 0.04 (0.002) 0.93 0.09 (0.004) 0.89 
4. CAb 0.06 (0.003) 0.91 0.06 (0.003) 0.88 0.10 (0.004) 0.88 
5. 2-stage modelb -0.05 (0.002) 0.90 -0.05 (0.002) 0.91 -0.02 (0.003) 0.94* 
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.94* 0.00 (0.003) 0.96* 
7. CAS plus CAb,c 0.00 (0.002) 0.95* 0.04 (0.002) 0.93 0.09 (0.004) 0.89 
True OR=1.0, True β for ETz= 0.0    
1. Unadjusted 0.01 (0.002) 0.96* 0.01 (0.002) 0.96* 0.00 (0.003) 0.96* 
2. Standardizedb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.96* 
3. CASb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 0.00 (0.003) 0.97 
4. CAb 0.00 (0.003) 0.95* 0.00 (0.003) 0.95* 0.00 (0.003) 0.97 
5. 2-stage modelb 0.01 (0.002) 0.96* 0.01 (0.002) 0.96 0.01 (0.003) 0.96* 
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.96* 
7. CAS plus CAb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.97 
True OR=0.77, True β for ETz=  
-0.245 (D and E) or -0.316 (F)    

1. Unadjusted 0.06 (0.002) 0.85 0.02 (0.002) 0.95* 0.00 (0.003) 0.96* 
2. Standardizedb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.95* 
3. CASb,c 0.00 (0.002) 0.95* -0.03 (0.002) 0.93 -0.07 (0.003) 0.91 
4. CAb -0.06 (0.003) 0.90 -0.06 (0.003) 0.89 -0.08 (0.003) 0.90 
5. 2-stage modelb 0.06 (0.002) 0.86 0.07 (0.002) 0.87 0.05 (0.003) 0.92 
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.95* 
7. CAS plus CAb,c 0.00 (0.002) 0.95* -0.03 (0.002) 0.93 -0.08 (0.003) 0.91 

True OR=0.5, True β for ETz=  
-0.650 (D and E) or -0.838 (F)    

1. Unadjusted 0.17 (0.003) 0.55 0.06 (0.004) 0.90 0.01 (0.005) 0.94* 
2. Standardizedb 0.00 (0.003) 0.94* -0.01 (0.003) 0.93 0.00 (0.004) 0.95* 
3. CASb,c 0.00 (0.003) 0.95* -0.09 (0.004) 0.89 -0.22 (0.006) 0.78 
4. CAb -0.16 (0.004) 0.79 -0.17 (0.004) 0.77 -0.26 (0.006) 0.74 
5. 2-stage modelb 0.14 (0.003) 0.69 0.15 (0.004) 0.72 0.09 (0.005) 0.89 
6. Standardization plus CAb 0.00 (0.003) 0.94* -0.01 (0.003) 0.93 -0.01 (0.004) 0.95* 
7. CAS plus CAb,c 0.00 (0.003) 0.94* -0.09 (0.004) 0.89 -0.23 (0.006) 0.77 

Abbreviations: ETz= Target tissue exposure z-score, EPz= Proxy exposure z-score, SE= Standard Error, CIC=Confidence 
Interval Coverage 
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Each simulation was repeated 1,000 times. Samples included 500 observations when the true OR = 2.0 or 0.5, and 1,000 
observations otherwise. 
aBias is equal to the mean observed beta coefficient for βPz, which is either the serum exposure z-score (Methods 1, 4, 5) or the z-
score for the serum exposure to lipid level ratio (Methods 2, 3, 6), minus the true beta coefficient for ETz. The standard deviation 
of the bias estimate is the square root of the average variance of βPz divided by the square root of the number of simulations.  
bE and F are adjusted for X 
cSerum lipid levels are predicted using X 
*CIC is consistent with 0.95 (0.95±0.0135)
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Table 5. Odds ratios and 95% confidence intervals for the effect of mono-(3-carboxypropyl) 
phthalate (MCPP, as a z-score) on early loss.  

Analysis Method 
Odds Ratio  

(95% confidence interval) 

1. Unadjusted 1.16 (0.82, 1.62) 

2. Standardized 0.95 (0.65, 1.39) 

3. Covariate-adjusted standardization (CAS) 0.95 (0.65, 1.39) 

4. Covariate adjustment (CA) 1.07 (0.72, 1.59) 

5. 2-stage model 1.16 (0.82, 1.63) 

6. Standardization plus CA 0.95 (0.65, 1.40) 

7. CAS plus CA 0.95 (0.65, 1.40) 

All models are adjusted for age, BMI, current smoking, alcohol intake, caffeine intake 

and education. Creatinine is predicted using age only.   



Environ Health Perspect DOI: 10.1289/ehp.1509693 
Advance Publication: Not Copyedited 
 

 29 

Figure Legends 

Figure 1. Directed acyclic graphs illustrating three possible relationships between overall 

exposure concentrations (EO), target tissue exposure concentrations (ET), urinary (proxy) 

exposure concentrations (Ep), hydration, creatinine concentration, covariate X, and disease (D). 

Variables with solid outlines are observed, those with dashed outlines are unobserved. 

Figure 2. Directed acyclic graphs illustrating three possible relationships between overall 

exposure concentrations (EO), target tissue exposure concentrations (ET), serum (proxy) exposure 

concentrations (Ep), recent fat intake, adiposity serum lipid levels (SLL), variable SLL, total 

SLL, covariate X, disease (D). Variables with solid outlines are observed, those with dashed 

outlines are unobserved. 
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Figure 1. 
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Figure 2. 

 


