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ABSTRACT 

Background: Exposure science studies the interactions and outcomes between environmental 

stressors and human or ecological receptors.  To augment its role in understanding human health 

and the exposome, we aimed to centralize and integrate exposure science data into the broader 

biological framework of the Comparative Toxicogenomics Database (CTD; http://ctdbase.org/), 

a public resource that promotes understanding of environmental chemicals and their effects on 

human health. 

Objectives: We integrated exposure data within CTD to provide a centralized, freely available 

resource that facilitates identification of connections between real-world exposures, chemicals, 

genes/proteins, diseases, biological processes, and molecular pathways. 

Methods: We developed a manual curation paradigm that captures exposure data from the 

scientific literature using controlled vocabularies and free text within the context of four primary 

exposure concepts: stressor, receptor, exposure event, and exposure outcome.  Using data from 

the Agricultural Health Study, we illustrate the benefits of both centralization and integration of 

exposure information with CTD core data. 

Results: We describe our curation process, demonstrate how exposure data can be accessed and 

analyzed in CTD, and show how this integration provides a broader biological context for 

exposure data to promote mechanistic understanding of environmental influences on human 

health.  

Conclusions:  Curation and integration of exposure data within CTD provides researchers with 

new opportunities to correlate exposures with human health outcomes, identify underlying 

potential molecular mechanisms, and improve understanding about the exposome. 
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INTRODUCTION 

     Exposure science plays a critical role in the translation and assessment of experimental 

toxicity data, prioritizing research, aiding risk analysis for human health, and informing public 

health decisions (Hubal 2009).  Study of environmental exposures also facilitates 

characterization of the exposome, defined as the totality of an individual’s environmental 

exposures from the prenatal period onward (Wild 2005).  The exposome complements the human 

genome by providing a measure of environmental exposure history in the three broad domains of 

internal, specific external, and general external exposures (Wild 2012).  Further, it contributes to 

the expanded vision of exposure science proposed by the National Research Council (NRC), 

which incorporates internal and external exposure markers, and extends exposure science both 

inward and outward from the contact point between a stressor and receptor. (Lioy and Smith 

2013; NRC et al. 2012).   

     Recent advances in exposure research include: a) dedicated funding mechanisms and research 

programs, largely through the National Institute of Environmental Health Science (e.g., Exposure 

Biology Program and Children’s Health Exposure Analysis Resource), b) databases that are 

beginning to include exposure concepts (e.g., the Toxin and Toxin-Target Database (Wishart et 

al. 2015) which displays CTD’s manually curated expression data in association with toxicants), 

and c) large-scale analyses that incorporate exposome measurements in population-based studies 

(e.g., Environment-Wide Association Studies (Patel and Ioannidis 2014 ), and Human Phenotype 

Network (Darabos et al. 2014)).  Despite these advances, exposome-dedicated research has 

lagged behind genomic studies.  Our work provides a new exposome research resource by 

providing curated data from the published literature on chemical stressors and their interactions 
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with humans (i.e., “receptors”), centralizing and harmonizing the data, and integrating this 

information with CTD chemical-gene/protein-disease relationships.   

     Since 2005, we have been building and expanding CTD to improve understanding about the 

effects of environmental exposures on molecular pathways and disease outcomes (Davis, 

Grondin et al. 2015).  CTD biocurators manually curate chemical-gene, chemical-disease and 

gene-disease relationships from the literature and integrate these associations to construct 

chemical-gene-disease networks.  Currently, there are 27 million toxicogenomic relationships in 

“core” CTD that connect chemicals, genes/proteins, diseases, phenotypes, molecular networks, 

Gene Ontology (GO) annotations, and pathways (Davis et al. 2009; Davis et al. 2011; Davis et 

al. 2015 ).  These relationships can be explored with CTD’s visualization and analysis tools to 

help elucidate molecular mechanisms underlying environmental diseases. CTD is recognized as a 

vital resource to the research community, with more than 60 databases linking to CTD data.  In 

addition, CTD has been cited in more than 800 peer-reviewed articles, with CTD data being used 

in such diverse studies as identifying tumor risks in children of pesticide-exposed parents 

(Kunkle et al. 2014) and predictive toxicology modeling (Audouze and Grandjean 2011; Hu et 

al. 2015). 

     To support the need of the scientific community for centralization and integration of exposure 

data into a broader biological framework, we expanded core CTD content to include exposure 

data, specifically within the context of chemical stressors and human receptors.  To capture these 

data, we used the Exposure Ontology (ExO), a framework that structures key exposure concepts: 

“exposure stressor” (an agent, stimulus, activity or event that causes stress on an organism), 

“exposure receptor” (an entity that interacts with an exposure stressor), “exposure event” (an 

interaction between an exposure stressor and receptor), and “exposure outcome” (an entity that 
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results from an exposure event) (Mattingly et al. 2012).  Here we describe the initial phase of 

exposure curation and provide examples that illustrate the impact of these data on exposure-

based analyses using CTD, including a meta-analysis of chemical-disease interactions from the 

Agricultural Health Study (AHS).  

     The AHS is a prospective study investigating the role of agricultural exposures in the 

development of cancer and other chronic illnesses in a cohort of approximately 90,000 pesticide 

applicators and their spouses in Iowa and North Carolina (Alavanja et al. 1996).  In our initial 

phase of exposure data curation we prioritized coverage of the AHS to use as a case study 

because it: a) has generated numerous publications, but has not yet undergone a meta-analysis; b) 

covers a broad range of chemicals and diseases with significant overlap in CTD; and c) provided 

opportunities for informed and immediate feedback from a former AHS Principal Investigator, 

Dr. Jane Hoppin, who collaborated with us on early development of ExO and our curation 

process. 

     Development of an exposure module in CTD complements other public toxicology resources 

and initiatives such as the United States Environmental Protection Agency’s Aggregated 

Computational Toxicology Resource (Judson et al. 2008), which is a warehouse of chemical 

toxicity data, and the European Chemicals Agency Registration, Evaluation, Authorization and 

Restriction of Chemicals, which addresses the production and use of chemicals.  While these 

organizations play substantial roles in exposure research, CTD provides a unique knowledgebase 

of exposure data that incorporates chemical-gene-pathway-outcome information.  Inclusion of 

exposure data in CTD also responds directly to the need for informatics technologies to advance 

exposure science research as expressed by the NRC (NRC et al. 2012). 
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METHODS 

Literature triage for exposure study curation. Following established curation practices at CTD 

(Davis et al. 2009; Davis et al. 2011), peer-reviewed journal articles were prioritized for 

exposure curation by querying MEDLINE from PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/) (Vastag 2000) using a generic exposure-themed query: 

“environmental exposure" AND human NOT review AND hasabstract AND English (lang).  

Articles were filtered for publication within the last ten years and free full-text availability to 

ensure user access to the source information.   We acknowledge that this query is not all-

inclusive, but it provided an initial corpus for evaluation; we anticipate an expanded and iterative 

querying and triaging process as we go forward.  As with our core data, exposure curation is an 

ongoing process, with new information being loaded into CTD on a monthly basis 

(http://ctdbase.org/about/dataStatus.go). 

ExO development and implementation. To standardize exposure curation and facilitate 

integration and search capabilities in CTD, the ExO framework was expanded to include terms 

describing a subset of the exposome specifically involved in chemical exposures and human 

health outcomes.  ExO depth was expanded by using existing third-party vocabularies where 

applicable: MeSH (Coletti and Bleich 2001) for chemical and anatomical terms; MEDIC (Davis 

et al. 2012) for disease terms; Gene Ontology (GO) (Ashburner et al. 2000) for biological 

processes (“phenotypes”); and NCBI Gene (Maglott et al. 2011) for official gene symbols.  For 

geographic location, country codes published by the International Organization for 

Standardization (ISO 3166; http://www.iso.org/iso/country_codes) and U.S. state abbreviations 

were used.  To annotate ethnicity and race, terms from the PhenX toolkit were customized 

(Hamilton et al. 2011).  Structured terms were also developed in coordination with curation to 
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describe stressor sources, receptors, smoking status, influencing health factors, and correlations 

between stressors and diseases or phenotypes.   As this project proceeds, “orphan” terms will be 

standardized and others mapped to existing ontologies, so that ExO evolves, is non-redundant, 

and ensures consistent use among the research community.   

 Exposure curation. In accordance with CTD’s specific objectives, exposure articles must report 

chemical stressors affecting human receptors.  If an article described a non-chemical stressor or a 

non-human receptor, the article was not further reviewed.    For articles meeting these criteria, 

CTD biocurators read the article and then composed “exposure statements”, which capture 

relevant data in specified fields within a single row of an Excel spreadsheet. Each exposure 

statement records information of a stressor-receptor-event-outcome from an exposure study, 

defined by a unique PubMed Identifier.  Numerous exposure statements are typically composed 

for each article, in order to capture a high level of granularity and accurately reflect the 

complexity of information. For example, a study may report measurements of an exposure 

biomarker level for a multiple chemicals, or measurements may be different for different subsets 

of a cohort. Curated data are validated through a multipoint, rule-based computational process 

that integrates third-party and CTD-specific vocabularies.  This process confirmed compliance 

with our curation policies (see Supplementary Material, Table S1), ensured integration with data 

in core CTD, and provided the foundation for implementing more complex search capabilities 

planned for future releases.  Exposure data are loaded into CTD’s PostgreSQL database 

management system and made available through the public web interface.  Validation and load 

processes are primarily Java-based and run in a Linux environment.     

Database engineering and architecture.    CTD’s database architecture is well documented 

(Davis et al. 2011).  Briefly, CTD is comprised of three major databases, including: a Third Party 
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Database, which contains transient data extracted from external sources (e.g., MeSH); the 

Curation Database, which contains persistent data manually curated by CTD scientists; and the 

Public Web Application (PWA) Database, which integrates data from the Curation and the Third 

Party Databases.  The PWA Database is the sole data source for CTD’s public web application, 

and is designed as a high-speed reporting database.  Exposure data is initially loaded to CTD’s 

Curation Database, then consolidated and integrated with data from the Third Party Database, 

and loaded to the PWA database. A total of 49 new tables, comprising 239 columns, were added 

to the Curation and PWA databases for this data-intensive exposure module.  These tables are 

grouped into five, high-level categories: published article, stressor, receptor, event, and outcome. 

Agricultural Health Study (AHS) data analysis.  At the time of analysis (July 2015), 99 of the 

111 articles related to the AHS contained interactions between 62 chemical stressors and 46 

disease outcomes, with the remaining 12 articles reporting biomarker measurements or 

phenotypic outcomes for 30 chemical stressors.  Positive and negative associations reported as 

statistically significant in peer-reviewed articles were curated (definitions of significance varied 

in data sets, see Supplemental Material, Part 1).  In addition, we captured the central “take-

home” points emphasized by the authors; for example, results that were highlighted by authors 

but did not reach author-defined statistical significance were still curated, but were coded as a 

predictive or hypothetical relationship. Curated chemical-disease interactions were assigned 

numerical values based on the number of positive, negative, or null interactions, as reported by 

the author, and represented as a matrix, see Supplemental Material, Part 1.  The 

R/ComplexHeatmap package (version 1.0.0; https://github.com/jokergoo/ComplexHeatmap) was 

used to perform single linkage clustering of diseases, with chemicals sorted in decreasing order 

of overall interaction score. 
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     CTD tools Set Analyzer (http://ctdbase.org/tools/analyzer.go) and MyVenn 

(http://ctdbase.org/tools/myVenn.go) were used to demonstrate how integration of exposure data 

with CTD can add biological context to exposure information, see Supplemental Material, Part 2.  

To gain perspective on how exposure and core CTD data complement each other, the number 

and type of disease outcomes for 18 AHS pesticides were compared based upon their curated 

content from our exposure vs. core data sets, see Supplemental Material, Part 3.   Overlapping 

and unique diseases between the exposure and core datasets were detected.  Novel diseases 

provided from core CTD were classified using MEDIC Slim disease categories (Davis et al. 

2012). 

Data version.  Analyses were based on data from our August 2015 monthly release (CTD 

revision 14263). 

RESULTS 

      CTD exposure curation paradigm.  The CTD exposure data curation paradigm (Figure 1) 

was designed through an iterative process with input from exposure scientists, several of whom 

helped develop ExO (Mattingly et al. 2012).  To maximize information extracted from exposure 

articles and to ensure alignment with emerging interests in the research community, key concepts 

of the exposome were incorporated into the ExO structure. These concepts were further 

expanded in a data-driven manner in coordination with curation (Figure 2).  The “Exposure 

Receptor” concept was expanded to include six new data categories to capture details of 

race/ethnicity, gender, cohort size, age, smoking status, and other factors influencing health 

status.  “Exposure Event” was expanded to capture geographic location, including country, US 

states, and region (e.g., city). These concepts are not the only ones being curated for CTD; they 

are concepts that were added to the original ExO framework to accommodate the exposure 
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curation goals for CTD.  We anticipate that ExO will continue to evolve as new data emerge, 

CTD curation continues, and the community articulates the need for additional expansion into 

different areas of the exposome (e.g., ecosphere).   

     Based on this expanded ExO framework and ongoing iterations of test curation, an Excel-

based curation spreadsheet was created consisting of 54 data columns that capture 35 types of 

information pertaining to the five exposure categories: publication article, stressor, receptor, 

event, and outcome.    To date, 1,712 triaged articles were reviewed, of which 1,067 (62%) were 

curated and 645 were rejected for lack of prioritized content for CTD (e.g., our policy requires 

that the exposure stressor be a chemical). Approximately 53,000 curated exposure statements 

comprise information for 609 chemical stressors, 245 diseases, and 146 non-disease phenotypes, 

studied in 98 different countries (Supplemental Material, Table S1).  

Data access.  CTD provides several options for accessing curated exposure data.  A new 

Exposure Studies tab was added to our chemical, gene, disease, and GO pages.  This tab provides 

a summary view of all curated exposure studies associated with the entity-of-interest (e.g., 

chemical), including receptor description, study location, assay medium, event markers, 

outcome, and a link to the primary reference (Figure 3A).  Columns can be sorted by clicking 

headers, and results can be downloaded in various formats for further analysis.  The Author’s 

Summary column highlights the article’s primary findings and provides context for the 

results.  Exposure marker levels, receptor descriptions, and stressor-outcome interactions are 

found via the “Details” link under the Measurements column or on the reference page Exposure 

Details tab (Figure 3B).  All chemical, gene, disease, and GO terms are hyperlinked to their 

respective CTD pages, providing seamless integration of exposure data with core CTD content. 
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 AHS data. To demonstrate how centralization and integration of exposure data in CTD can 

increase understanding of human exposures and related health outcomes, we prioritized the AHS 

articles as a case study.  Curation of 111 AHS articles yielded 1,552 exposure statements 

describing relationships between 89 chemicals and 56 diseases.  After excluding data related to 

general terms such as non-specific pesticides, particulate matter, and tobacco smoke pollution 

and their related outcomes, there remained 99 AHS articles describing correlations between 62 

specific chemicals and 46 diseases.  We present a global view of the chemical-disease interaction 

landscape from AHS articles in Figure 4, highlighting significant positive and predictive 

correlations, significant negative correlations, areas of congruous and conflicting results, and 

perspective on gaps in conclusive information.  Cancer was the most frequently reported disease 

category, with the highest number of correlations for Prostatic Neoplasms. Other broad disease 

categories frequently correlated with exposures included Respiratory Tract Diseases and Nervous 

System Diseases. 

     Integration of exposure data with core chemical-gene-disease information in CTD provides 

new opportunities to explore potential mechanisms underlying exposures and health outcomes, 

and to compare disease outcomes between exposure model systems and population-based 

studies. Core CTD data consists of a triad of chemical–gene, chemical–disease, and gene–disease 

relationships across diverse species.  These data are integrated to construct chemical–gene–

disease networks based on a common interacting set of genes, or Inference Network, which 

provide users with a possible underlying mechanism for the relationship (Figure 5A).    

     Among curated AHS data, 18 pesticides were associated with Prostatic Neoplasms; 

correlations were significant for 12 (aldrin, butylate, carbofuran, coumaphos, dichlorvos, 

fonofos, malathion, methyl bromide, parathion, permethrin, phorate, and terbufos) and 
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hypothetical/predictive for six (atrazine, chlorpyrifos, diazinon, EPTC, glyphosate, and 

metribuzin). To augment the sparse mechanistic information in these studies, we leveraged the 

Inference Network genes that connected these pesticides to Prostatic Neoplasms in core CTD.  In 

total, 240 unique genes were associated with 16 pesticides (butylate and metribuzin did not have 

an Inference Network connecting them to the disease).  To determine whether there was a 

common underlying molecular network, we restricted our analysis to genes that interacted with 

three or more of the pesticides. The resulting subset of 21 genes formed a common gene-gene 

interaction network (Figure 5C).  Interestingly, 14 of these genes (Figure 5B) were also 

associated with neurological disorders (based on a disease enrichment query using CTD’s Set 

Analyzer tool), supporting the positive correlations for several pesticides (e.g., butylate, phorate, 

and methyl bromide) with both Prostatic Neoplasms and Parkinson Disease in the AHS data.   

       We compared disease outcomes for the 18 pesticides associated with Prostatic Neoplasms in 

AHS studies to core CTD data, which included model system studies.   Ten of the 18 pesticides 

were associated with 130 additional diseases in core CTD; 27% (35 of 130) were categorized as 

nervous system diseases or mental disorders, including conditions such as movement disorders, 

memory disorders, neurotoxicity syndromes, tremors, and learning disorders (Figure 6).  These 

analyses could provide novel insights into co-occurring disease outcomes and their underlying 

mechanisms through integration of population-based and experimental data sets.  Further, 

analysis of stressor-disease relationships in model systems could inform study design in humans.   

DISCUSSION 

     Our new paradigm to manually curate and incorporate exposure science data into CTD has 

many advantages including: (1) responding to the need of the scientific community for 

centralization and harmonization of this critical information; (2) providing new data perspectives 
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that are not possible without integration (establishing novel connections between environmental 

chemicals, genes, diseases, biological processes, genetic networks, and pathways); (3) 

facilitating meta-analyses of exposure data and provides opportunities to inform study design by 

allowing comparisons among experimental parameters such as detection methods, receptor 

attributes, and analytical approaches; (4) enabling exposure data to leverage CTD’s visual and 

analytical tools to explore relationships and elucidate potential connections between disparate 

data; (5) adding real-world context to existing CTD information, providing instances of human 

exposures and disease outcomes to complement laboratory-based studies already curated in core 

CTD; and (6) most importantly, providing a free, user-friendly portal to explore exposure data 

within the recognized and well-established CTD framework.  Cumulatively, this work supports 

the roadmap developed by the NRC to complement toxicology and risk assessment by 

“improving understanding of the link between environmental stressors and disease” (NRC et al. 

2012).   

     In this initial release, we provide access to key components of our curated exposure data 

(stressor, receptor, country, medium assayed, marker assayed, assay measurements, outcome, 

and study summary). Access to the full spectrum of curated exposure data (see Supplemental 

Material, Table S1)  will be available in an upcoming release and will enable more complex 

searching and comparison of exposure data across metrics such as geographical location or life 

stages.  Centralization of these data will provide a more complete picture of environmental 

exposures, help to identify gaps in our knowledge, and help refine or prioritize future 

studies.  Together, these factors will help contribute to a robust, literature-based exposome 

knowledgebase that will continue to expand with our ongoing curation efforts.   
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      Here, we demonstrated two ways that CTD can be used to analyze integrated exposure data.  

First, AHS pesticides that are positively correlated with Prostatic Neoplasms were analyzed for 

gene networks previously curated for core CTD.  We discovered a sub-molecular interaction 

network that could potentially connect pesticide exposure to the disease, highlighting 21 genes 

that could be further investigated for a) differential expression in susceptible cohorts, b) 

polymorphisms that may predispose individuals to disease outcomes, or c) exposure-related 

epigenetic modifications that may influence exposure outcomes.  Researchers could also explore 

enriched pathways or GO functional annotations among these genes using CTD tools.  Second, 

we showed how core CTD provided insights into additional diseases that may be associated with 

pesticides evaluated in the AHS.  Susceptibility genes for these pesticides can be obtained using 

CTD search queries and hypothetical mechanisms can be investigated in gene knockouts or other 

model systems.  As curation expands, the potential for corroboration and bidirectional feedback 

between experimental and exposure studies will only increase. 

     An often-overlooked requirement of data integration projects is the need for semantic 

standards that enable consistent data representation.  A recent NIEHS workshop (“Development 

of a Framework for Environmental Health Science Language”, 

http://www.niehs.nih.gov/about/visiting/events/pastmtg/2014/language/index.cfm) highlighted 

the lack of standards for environmental health science data and consequences for data integration 

and analysis (Mattingly 2015).  Major gaps exist, available standards can be redundant or are 

used inconsistently, and significant variability in study design and reporting methods challenge 

cross-study comparisons.  We encountered each of these issues during our curation test phase, 

and attempts were made to identify semantic standards to capture exposure data in a consistent 

manner.  Just a few examples of the challenging data types encountered include, but are not 



Environ Health Perspect DOI: 10.1289/EHP174 
Advance Publication: Not Copyedited 

 

15 
 

limited to, extreme diversity in overall study objectives (ranging from epidemiological to 

measurements of compounds in house dust, etc.); dose measurements (described in distance from 

an exposure source, time exposed, estimated consumption of contaminated food source, particles 

per hand-wipe, etc.); biomarker measurements (reported as sums, averages, estimates, time-

weighted, log-transformed, etc.); statistics (including geometric means, arithmetic means, 

medians, percentiles, tertiles, etc.); tests for statistical significance (including p-values, p-trends, 

odds ratios, incidence rate ratios, confidence intervals, etc.); smoking status (documented as 

cigarettes per day, pack years, estimated time exposed to cigarette smoke, years since last 

cigarette, etc.); and even cohort age (described as mean, ranges, and often in less precise terms 

such as “children”, “students”,  “middle-aged”, “elderly”, etc.).   Our policy is to report data as 

presented by the authors.  Consequently, many data types might not be directly comparable in 

the absence of reanalysis by users.  While the process of standardizing study attributes whenever 

possible is underway, we include a free-text field in our curation to capture additional important 

details.  Exposure data is an area that would benefit from community- and data-driven 

standardization efforts to ensure more widespread integration into exposome, toxicology, and 

risk assessment research initiatives. 

     Though integration and centralization of exposure studies in CTD provides an important first 

step in addressing existing gaps in epidemiological studies, limitations still remain.  For many of 

the curated studies, route of exposure was not addressed, or in some cases, multiple routes of 

exposure were suggested but not conclusively determined.  Given the variability of these data, it 

was not included in our curation paradigm, but it remains a very interesting and high priority 

attribute for future consideration.  Other important data types including emission, transport or 

fate of the stressor, as well as human activities that define the timing, magnitude and duration of 
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contact with environmental media are beyond the scope of this project at this time, but remain 

important issues for future consideration.  Likewise, biological, biomechanical, physical and 

psychosocial agents should be investigated as exposure stressors and how they modify 

susceptibility to other stressors.  Currently, the influence of genetic variants on an organism’s 

susceptibility to a stressor or exposure route is noted, but in many cases, the causality remains to 

be determined.   In addition, we acknowledge that sample collection, measurement methods, 

limits of detection, accuracy, and quality of exposure data vary among studies.  While all of the 

studies are curated from peer-reviewed literature, we do not rank the quality of the data, but 

provide links to the primary sources so that the users can assess relative strength of the data 

directly.   

    Future directions for CTD’s exposure module will include increased querying capabilities for 

exposure studies and user-directed displays of exposure-specific data by filtering content 

according to users’ preferences.   CTD biocurators collect additional information such as 

receptor attributes (age, race, gender, and smoking status) that are not yet displayed on the 

Exposure Studies summary pages due to space constraints, but will be included in future 

releases.  These attributes will allow comparisons among study populations and promote new 

ways of combining the data.  Currently, geographic locations (i.e., country) are displayed on the 

Exposure Studies page for each curated article; these data will be expanded to include states and 

cities, and become a searchable field in a future release.  In addition, future plans include color-

coded geographic mapping of exposure data, promoting region-specific analysis of stressors and 

outcomes. 
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CONCLUSIONS 

     CTD now includes curated exposure data integrated with chemicals, genes/proteins, diseases, 

biological processes, and molecular pathways to increase understanding of correlations between 

environmental exposures and human health, potential underlying mechanisms, and the 

exposome.  The public release of a free, searchable, centralized database of exposure studies is 

an enormous first step in addressing gaps in exposure science access and analysis.  We invite 

feedback from the public to maximize the functionality of our exposure module so that it can 

expand and further evolve as an invaluable resource to the scientific community, providing 

critical insight to exposure stressor-receptor interactions, assessment of human health risks, and 

prioritization of toxicological research.  
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Figure Legends 

Figure 1: CTD exposure curation paradigm. Articles are retrieved and triaged from PubMed 

using a specialized query designed for environmental exposure science. The corpus is then 

manually curated by professional biocurators, anchoring the information to the four Exposure 

Ontology (ExO) concepts.  Data is captured on spreadsheets and uploaded to public CTD.  

Terms curated from exposure articles are directly integrated with public CTD, including stressors 

to CTD chemicals, markers to CTD chemicals or genes, and outcomes to CTD diseases and GO 

biological processes (“phenotypes”).  

 

 Figure 2. Schematic diagram of relationships among core CTD, ExO concepts, and content 

being curated for CTD.  The central ExO terms Exposure Stressor and Exposure Outcome align 

directly with chemical and disease categories that are part of core CTD (terms in blue).  Terms in 

orange (ExO.1) have been previously described as part of the ontology.  Terms in green (ExO.2) 

represent new components that have been expanded in coordination with curation of CTD’s 

exposure module. 

 

 Figure 3.  Exposure data is displayed in summary form on chemical, gene, disease, and GO 

pages in CTD.   (A) ExO concepts are represented by blue column headers (circled in red), 

including Stressor Agent, Receptor Description, Exposure Event Study Location, Assay Medium 

and Assayed Markers, and Outcome Disease-Phenotype.  The stressor (CTD chemical term) is 

highlighted in yellow, with related terms in the chemical hierarchy.  All mentioned chemical, 

gene, disease, and GO (“phenotype”) terms hyperlink to their individual CTD pages with 

additional details such as inference networks, and gene and pathway enrichment analyses for 
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disease terms.  The Author’s Summary statement highlights the paper’s findings and provides 

context for the results. References link to exposure study details (B), including description and 

number of receptors, assay medium, specific levels of assayed markers and the outcome 

relationship. 

 

Figure 4. High-level view of reported chemical-disease interactions from AHS articles.  A heat 

map showing the relationships between 62 chemical stressors and 46 disease outcomes curated 

from 99 AHS articles.  Chemical-disease correlations are coded as black (more than two 

significant or highlighted positive associations), red (1-2 positive associations), purple 

(significant negative associations), orange (conflicts between positive and negative), gray (null), 

and white (inconclusive, unreported, or unstudied).  On the right-hand side, outcomes are 

clustered to their disease category: gray field (neurological diseases), yellow (cancer), tan 

(reproductive tract), green (respiratory tract), blue (endocrine system), and orange (metabolic 

diseases). 

 

Figure 5. Core CTD informs exposure science by generating pesticide-prostate cancer interaction 

networks.  (A) In core CTD, the pesticide diazinon (blue oval) interacts with 74 genes (green 

circle) that also independently have an association with prostatic neoplasms (pink box), creating 

an Inference Network of 74 genes (green dotted box). (B) The number and gene set of each 

Inference Network for each individual pesticide linking it to prostatic neoplasms were collected 

(top row beneath pesticide name).  In total, 21 genes (distributed over 13 pesticides) both 

interacted with three or more pesticides (colored boxes) and formed a non-self interacting gene-

gene network (C), providing a putative molecular subsystem for linking pesticide exposure to 
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prostate cancer.  Genes shown in red italics (B) and circled in (C) are also enriched in 

neurological disorders. 

 

Figure 6.  Core CTD potentially informs additional exposure science outcomes.  Venn analyses 

comparing the number of diseases curated from exposure articles (yellow circle) to the number 

of diseases already curated in core CTD (blue circle) for 10 AHS pesticides.  Eight diseases from 

core CTD (pink box) are shown connected to their associated pesticides.  The additional diseases 

found in core (red numbers) could putatively inform future exposure studies and help prioritize 

future research. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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