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ABSTRACT 

Background: Increased pesticide concentrations in house dust in agricultural areas have been 

attributed to several exposure pathways, including agricultural drift, para-occupational, and 

residential use.  

Objective: To guide future exposure assessment efforts, we quantified relative contributions of 

these pathways using meta-regression models of published data on dust pesticide concentrations.  

Methods: From studies in North American agricultural areas published from 1995-2015, we 

abstracted dust pesticide concentrations reported as summary statistics (e.g., geometric means 

(GM)). We analyzed these data using mixed-effects meta-regression models that weighted each 

summary statistic by its inverse variance. Dependent variables were either the log-transformed 

GM (drift) or the log-transformed ratio of GMs from two groups (para-occupational, residential 

use).  

Results: For the drift pathway, predicted GMs decreased sharply and nonlinearly, with GMs 

64% lower in homes 250 m versus 23 m from fields (inter-quartile range of published data) 

based on 52 statistics from 7 studies. For the para-occupational pathway, GMs were 2.3 times 

higher (95% confidence interval [CI]: 1.5-3.3; 15 statistics, 5 studies) in homes of farmers who 

applied pesticides more versus less recently or frequently. For the residential use pathway, GMs 

were 1.3 (95%CI: 1.1-1.4) and 1.5 (95%CI: 1.2-1.9) times higher in treated versus untreated 

homes, when the probability that a pesticide was used for the pest treatment was 1-19% and 

≥20%, respectively (88 statistics, 5 studies).  
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Conclusion: Our quantification of the relative contributions of pesticide exposure pathways in 

agricultural populations could improve exposure assessments in epidemiologic studies. The 

meta-regression models can be updated when additional data become available.   
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INTRODUCTION  

Adults living in agricultural areas may be exposed to pesticides from several occupational and 

environmental sources and pathways (Arbuckle et al. 2006; Curl et al. 2002; Deziel et al. 2015b; 

Harnly et al. 2009; Ward et al. 20016). Understanding the contribution of these use and transport 

exposure pathways to overall exposure is necessary for developing exposure assessment 

approaches for epidemiologic studies, designing exposure studies in non-occupationally exposed 

populations, and for developing effective risk mitigation strategies. To provide a surrogate for 

quantitative, long-term, multi-source indoor pesticide exposure, pesticide concentrations in house 

dust have been measured in many studies (Butte and Heinzow 2002; Deziel et al. 2013; Lioy et 

al. 2002, Colt et al. 2004), in part because many pesticide biomarkers have short half-lives 

(measured in hours) reflecting recent exposure (Barr et al. 2006). Our recent qualitative review 

of exposure studies in North American agricultural environments found that increased pesticide 

concentrations in house dust were associated with take-home exposure from closer distances 

between homes and treated fields (agricultural drift pathway), farm work by one or more house 

residents (para-occupational pathway), and greater residential use of pesticides to treat various 

home, garden, and yard insects and weeds (residential use pathway) (Deziel et al. 2015b). To 

quantify the magnitude of these effects, we analyzed the house dust pesticide concentrations 

reported in published studies to obtain a summary measure of effect for each pathway across 

multiple pesticides and studies. 

 

The analysis of the published data, however, presented a statistical challenge because the 

published dust pesticide concentrations were reported as summary statistics (i.e., means) or ratios 
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(i.e., predicted relative difference obtained from regression models) rather than individual 

measurements. As a result, we needed to account for both the number of measurements and their 

variability to obtain an accurate summary effect measure. Koh et al. (2014) recently 

demonstrated the utility of mixed-effects meta-regression models to handle this challenge in an 

analysis synthesizing published lead exposure data to obtain temporal trends in occupational lead 

exposure. Our primary aim was to quantify the relative magnitude of exposure differences in 

dust pesticide concentrations in relation to surrogates representing each of the agricultural drift 

(e.g., distance of house to fields), para-occupational (e.g., how frequently a household member 

applies pesticides agriculturally), and residential pesticide use (e.g., treatment of insects or weeds 

in the home, yard, or garden) exposure pathways in North American agricultural homes. We 

focused on relative, rather than absolute, differences in dust pesticide concentrations within a 

pathway so that we could model the relationships across multiple active ingredients, for which 

absolute concentrations varied by orders of magnitude. Our secondary aim, undertaken to 

address the statistical challenges encountered, was to extend a mixed-effects meta-regression 

modeling approach used previously for epidemiologic analyses and occupational exposure data 

to environmental exposure data. To our knowledge, this represents one of the first uses of meta-

regression models to synthesize published environmental measurements across multiple studies 

(Bain et al. 2014; Shields et al. 2015).  
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METHODS 

Data Abstraction 

We included publications reporting pesticide concentrations in house dust in relation to 

agricultural drift, para-occupational activities, or residential use of pesticides in North American 

agricultural homes from our prior literature review (Deziel et al. 2015b) and one study that was 

published subsequent to our review (Deziel et al. 2015a). The prior systematic search identified 

studies published through September 2013 mainly from a PubMed search with the following 

terms: “environmental exposure [MeSH] AND pesticides [MeSH] AND (home OR household 

OR indoor).” We also searched Scopus, Web of Science, and Google Scholar, and examined 

reference lists of relevant publications. For the current analysis, we selected studies that 

measured pesticide concentrations in house dust because dust measurements are used as proxies 

for long-term environmental exposure (Butte and Heinzow 2002; Deziel et al. 2013). Based on 

findings from our prior review, we excluded studies with only air, food, or water samples due to 

low pesticide detection rates for those measures, and we excluded biological measurements 

because the measured pesticide biomarkers tended to have low percent detection and limited 

variability, and generally reflected only recent exposure. We repeated the PubMed search in 

March 2015 and identified one additional publication meeting the above criteria. Overall, 10 

studies with published house dust pesticide concentrations were included.  

 

From each study related to the agricultural drift pathway, we abstracted summary statistics of the 

house dust pesticide concentrations and the distances between the homes and the nearest fields. 

For distances reported categorically, we assigned the midpoint of the category. We used units of 
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feet, because it was the most commonly reported unit and coincides with the response categories 

in many U.S. studies, including the Agricultural Health Study.  

 

From each study related to the para-occupational pathway, we abstracted summary statistics of 

the dust pesticide concentrations for independent groups with different exposure potential 

(“comparison groups”). We extracted data for farmers with high pesticide use (high use group) 

versus low (reference group), based on the frequency and recentness of pesticide application. In 

three studies, the high use group was farmers who applied pesticides generally and the reference 

group was those who did not apply pesticides (Fenske et al. 2002, Lu et al. 2000, Simcox et al. 

1995). For two studies, both the high use and reference groups included pesticide applicators; 

therefore the comparison groups were those who applied the pesticide of interest either within 7 

or 30 days of sampling (recentness of application varied by the pesticide active ingredient) 

versus those who did not apply the pesticide of interest within 7 or 30 days of sampling (Curwin 

et al. 2005), or those who applied atrazine ≥ 2 days/season versus <2 days/season (Golla et al. 

2012).  

 

From studies of the residential use pathway, we extracted data from agricultural households 

reporting specific pest treatments (high use groups) and households reporting no treatment for 

that pest (reference group). In these studies, homeowners reported the type of pest treatment but 

did not provide the active ingredients of those treatments. Therefore, we extracted the type of 

pest treatment (e.g., fleas/ticks, weeds) and then derived a probability assessment of whether the 

treatment type was associated with the measured active ingredient using the National Cancer 
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Institute (NCI) Pesticide Exposure Matrix (http://dceg.cancer.gov/tools/design/pesticide) (Colt et 

al. 2006). This publicly available tool uses product sales and label information to predict the 

probability that an active ingredient was used in 96 different scenarios (12 pest treatment types, 

whether the applicator was a general consumer or professional commercial applicator, and 4 time 

frames [1976, 1980, 1990, 2000]). We assigned the probabilities from the time frame closest to 

that of the individual study and, if multiple scenarios were relevant, averaged their probabilities. 

For example, from studies of weed treatment of lawns, we averaged the probabilities from the 

“professional weeds” and “consumer weeds” scenarios. We categorized the probabilities as 0% 

(active ingredient not listed), 1-19%, and ≥20%.  

 

From the ten studies for the above-mentioned comparison groups, we abstracted the available 

information on dust pesticide concentrations. These data were predominantly reported as 

summary results (i.e., arithmetic means (AMs), geometric means (GMs), standard deviations 

(SDs), geometric standard deviations (GSDs), number of measurements (N)). We also abstracted 

data on the ratios between two comparison groups predicted from multivariable regression 

models, rather than GMs. These data were usually reported in tables; however, we also extracted 

data from boxplots and other figures when necessary. For each set of summary statistics, we 

obtained reported ancillary data, including study years, pesticide active ingredient, pesticide type 

(e.g., herbicide, insecticide, fungicide), and crop type (e.g., corn, orchard fruit). If the same 

measurements were reported both in descriptive analyses and in multivariable regression models 

within the same paper, we abstracted the data only once. To best capture the independent 

contribution of a single pathway, we abstracted data that accounted for the other potential 
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pathways through adjustment in multivariable regression models or stratification wherever 

possible.  

 

Data Treatment 

We obtained a GM and GSD for each set of published dust pesticide concentrations. When these 

summary statistics were not directly reported, we estimated them using available formulae 

presented in Equations 1 through 6, where AM is the arithmetic mean, SD is the standard 

deviation, max is the maximum value, min is the minimum value, p25 is the value at the 25th 

percentile, and p10 is the value at the 10th percentile (Hein et al. 2008; Hewett 2005; Koh et al. 

2014; Lavoue et al. 2007; Aitchison and Brown 1963). 

 

ܯܩ ൌ ݁୪୬ ሺ஺ெሻି଴.ହൈ୪୬ ሺଵାቀ
ೄವ
ಲಾ

ቁ
మ
ሻ     [1] 

ܯܩ ൌ ݉݁݀݅ܽ݊       [2] 

ܯܩ ൌ ݁ሺ୪୬ሺ୫ୟ୶ሻା୪୬ሺ୫୧୬ሻሻ/ଶ      [3] 

ܦܵܩ ൌ ݁
ට୪୬ ሺଵାቀೄವ

ಲಾ
ቁ
మ
ሻ       [4] 

ܦܵܩ ൌ ሺ݁ሺ୪୬ሺ௣ଶହሻି୪୬ሺீெሻሻ/ି଴.଺଼ ൅ ݁ሺ୪୬ሺ௣ଵ଴ሻି୪୬ሺீெሻሻ/ିଵ.ଶ଼ଶሻ/2 [5]   

ܦܵܩ ൌ ݁ሺ୪୬ሺ୫ୟ୶ ሻି୪୬ሺ௠௜௡ሻሻ/ସ      [6] 

     

Two studies collected more than one sample per home (Curwin et al. 2005; Golla et al. 2012). 

We accounted for the repeated within-home measurements in these studies by adjusting the 

number of samples collected using a ‘design effect’ (Equation 7) to calculate the ‘effective 
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sample size’ (Equation 8) (Kish 1965). We divided the between-home variance by the sum of the 

between- and within-home variances to obtain the intra-class correlation coefficient (ICC) for 

each active ingredient (Curwin et al. 2005). In these two studies, the calculated effective sample 

size replaced the total number of measurements (Nsamples) for each summary statistic, where 

Nhomes is number of homes corresponding to each summary statistic.  

 

ݐ݂݂ܿ݁݁ ݊݃݅ݏ݁݀ ൌ 1 ൅ ሺሺ
ேೞೌ೘೛೗೐ೞ

ே೓೚೘೐ೞ
ሻ െ 1 ൈ  [7]    ܥܥܫ

݁ݖ݅ݏ ݈݁݌݉ܽݏ ݁ݒ݅ݐ݂݂ܿ݁݁ ൌ ௦ܰ௔௠௣௟௘௦ /݀݁[8]  ݐ݂݂ܿ݁݁ ݊݃݅ݏ 

      

The GMs of the data on the effect of agricultural drift were approximately log-normally 

distributed based on visual inspection and therefore were natural log-transformed prior to 

additional analyses. For these data we calculated the variance of each log-transformed GM using 

Equation 9, which we derived for these analyses using the delta method. 

 

ሻሻܯܩሺlnሺݎܽݒ ൌ ሺ ଵ

ேೞೌ೘೛೗೐ೞ
ሻ ൈ ሺlnሺܦܵܩሻሻଶ    [9] 

 

For the para-occupational and residential use pathways, the data were often abstracted from 

multivariable regression models that examined the association between log-transformed 

exposure and various determinants of exposure. We interpreted the anti-log of a model 

parameter, exp(β), as the ratio between the GMs of the high use group and the reference group. 

Hence, to include these data we assumed that β equaled ln(ratio) and the β’s standard error 

squared (SE2) equaled the variance of the ln(ratio). When the standard error was not reported, we 
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extracted it from the exp(β)’s lower and upper confidence limits (LCL and UCL) using Equation 

10. Note that Equation 10 assumes that the LCL and UCL were reported as exponentiated terms, 

as was the case in these studies, and thus required transformation back to the log-scale.  

 

ܧܵ ൌ ሺ௟௡௅஼௅ି௟௡௎஼௅
ଶ

ሻ/1.96  [10] 

 

 

To combine these regression parameter statistics with the data that were abstracted as GMs 

required converting the GMs to ratios. For these two pathways, we calculated the ratio of the 

GMs of the high use group compared to the reference group (Equation 11).. The ratios were 

assumed log-normally distributed based on visual inspection and log-transformed prior to 

additional analyses. For these data we calculated the variance of the ratio of the log-transformed 

GMs using Equation 12, which we derived using the delta method. 

݋݅ݐܽݎ ൌ
ீெ೓೔೒೓

ீெೝ೐೑೐ೝ೐೙೎೐
       [11] 

ݎܽݒ ൬
୪୬൫ீெ೓೔೒೓൯

୪୬൫ீெೝ೐೑೐ೝ೐೙೎೐൯
൰ ൌ ሺ ଵ

ே೓೔೒೓
ሻ ൈ ሺln൫ܦܵܩ௛௜௚௛൯ሻଶ ൅ ሺ ଵ

ேೝ೐೑೐ೝ೐೙೎೐
ሻ ൈ ሺln൫ܦܵܩ௥௘௙௘௥௘௡௖௘൯ሻଶ [12] 

 

Meta-regression models 

We developed separate mixed-effects meta-regression models for each of the agricultural drift, 

para-occupational, and residential use pathways using SAS 9.3 (SAS Institute Inc., Cary, NC). In 

these models, each summary statistic was weighted by the inverse of its study-specific variance. 

Regression parameters and between-study variances were obtained using maximum likelihood 
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estimation. Estimation of the between-study variance required a starting value for computation, 

which we set to one-half of the mean within-study variance (Konstantopoulos 2004). Pathway-

specific analyses are described below, with the SAS code for each pathway’s primary model 

provided in Supplemental Material, Appendix 1. For each pathway, we examined how the 

relative magnitude of dust pesticide concentrations varied based on surrogate measures, such as 

the relative change in dust pesticide concentrations at varying distances of the house to fields for 

the agricultural drift pathway. Exposure comparisons were made within, but not across 

pathways. 

 

For agricultural drift, the dependent variable was the log-transformed GM. Most studies included 

GMs at various distances from treated fields and the reference distance varied between studies. 

As a result, the agricultural drift model incorporated two random effects: one identified each 

unique combination of publication, active ingredient, and distance from field to weight each 

statistic by the inverse of its study-specific variance and a second identified each unique 

combination of publication and active ingredient to account for active ingredient- and study-

specific differences in baseline pesticide concentrations. We identified the best parametric 

characterization between the log-transformed GM and distance by evaluating various forms, 

including linear distance, natural log-transformed distance, inverse distance, and inverse distance 

squared. The natural log-transformed distance provided the best model fit based on the Akaike 

information criterion that was also consistent with graphical evaluations (not shown). In 

preliminary models, we tested a random slope for the relationship between ln(GM) and 

ln(distance) to allow for study- and pesticide-specific differences in the slope; and found no 
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differences in slopes, although data were sparse. The overall drift model included only 

ln(distance) and provided an estimate of the GM dust pesticide concentration at varying 

distances in ft (d) of the house from the fields using the regression coefficients for the intercept 

 ௦௟௢௣௘ሻ (Equation 13). The percent change in GMs between twoߚ௜௡௧௘௥௖௘௣௧ሻ and ln(distance) ሺߚ)

specific distances (݀ଵ and ݀ଶ) is calculated using Equation 14. In sensitivity analyses, we also 

developed separate models for herbicides, insecticides, and chlorpyrifos (the most commonly 

measured insecticide).  

ܯܩ ݀݁ݐܿ݅݀݁ݎܲ ൌ exp൫ߚ௜௡௧௘௥௖௘௣௧ ൅ ௦௟௢௣௘ߚ ൈ lnሺ݀ሻ൯ ൌ ݀ఉೞ೗೚೛೐  ݁൫ఉ೔೙೟೐ೝ೎೐೛೟൯  [13]   

ଵ ܽ݊݀ ݀ଶ݀ ݊݁݁ݓݐܾ݁ ܯܩ ݊݅ ݄݁݃݊ܽܿ % ൌ ሺሺܯܩௗభ െ ௗభሻܯܩ/ௗమሻܯܩ ൈ 100 ൌ

ൣ1 െ ሺ݀ଶ ݀ଵ⁄ ሻఉೞ೗೚೛೐൧ ൈ 100        [14] 

 

For para-occupational and residential use, the data were often abstracted as ratios from 

multivariable regression models, and these models used the log-transformed ratios of GMs from 

the high use and reference groups as the dependent variable. Using the ratio had the added 

benefit of removing the active-ingredient-specific differences in baseline; thus these models 

incorporated a single random intercept, which identified each unique combination of publication 

and pesticide active ingredient to weight each observation by the inverse of its study-specific 

variance.  

 

For para-occupational exposure, we calculated an overall summary of the effect of the take-home 

pathway. In sensitivity analyses, we also developed separate models for the two types of 

comparison groups (farmers who ever vs. never applied pesticides and farmers who applied the 
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pesticides in specific time windows or with specific frequencies). Studies comparing farmers 

who ever vs. never applied pesticides were mainly of insecticide applications to fruit orchards, 

whereas the studies comparing groups with more specific timing or frequency of applications 

addressed herbicide applications to row crops like corn and soybeans. Thus, we could not 

disentangle the separate effects of comparison group, pesticide type, and crop type. In additional 

sensitivity analyses, we also developed separate models for atrazine and chlorpyrifos.  

 

For residential use, we calculated an overall summary of the ratio in dust pesticide 

concentrations in homes reporting various home, garden, and yard pest treatments (high use 

group) versus those not reporting a given treatment (reference group). We also developed 

separate models for each active ingredient-pest treatment probability category, which were 

evaluated overall, using only the largest study (Deziel et al. 2015a), and using all studies but the 

largest. In addition, we evaluated the effect of the active ingredient probability category 

separately for herbicides and insecticides. The data stratified by probability category were too 

sparse to develop pesticide-specific models. 

 

RESULTS  

Agricultural Drift Pathway 

We identified seven studies reporting concentrations in house dust of multiple pesticide active 

ingredients in homes at varying distances from fields (Table 1) from which we extracted 52 sets 

of estimates. The reported distances ranged from 10 to 3690 ft (3 to 1125 m) with 25th, 50th, and 

75th percentiles of 75 ft (23 m), 300 ft (91 m), and 820 ft (250 m), respectively. GSDs ranged 
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from 1.4 to 10. Overall, house dust pesticide concentrations decreased sharply and non-linearly 

with increasing house distance from treated fields that was linear on a log-log scale, as shown in 

Figure 1. The model predicted GMs that were 64% lower in homes of 820 ft compared to 75 ft  

(the inter-quartile range [IQR]) and 35% lower in homes of 820 ft compared to 300 ft (75th 

percentile and median). The magnitude of decrease varied by pesticide type, with a 78% decrease 

in predicted GMs across the IQR for herbicides and fungicides and 51% across the IQR for 

insecticides (Table 2, shown in Supplemental Material, Figure S1). These magnitudes of 

decreases were statistically different (p-value=0.049) in a model that included all data and an 

interaction term for pesticide type and ln-distance. The magnitude of decline for chlorpyrifos 

mirrored that of all insecticides (50% across the IQR).  

 

Para-occupational Pathway 

We identified five studies reporting pesticide concentrations in house dust that could be used to 

quantify the mean difference between homes of farmers with high vs. low pesticide use (Table 

3). From these studies we derived 15 estimates of the ratio of GMs (GM Ratio) for homes of 

farmers in the high use versus reference group. The GM ratios varied from 0.57 to 31 and the 

variances of the ln-ratios varied across three orders of magnitude.  

 

Overall, in a meta-regression model, we found that dust pesticide concentrations were 2.3 times 

higher (95% CI: 1.5, 3.3) in homes of farmers with high pesticide use versus the reference group 

(Table 4). Sensitivity analyses indicated higher ratios in studies of farmers who applied specific 

pesticides in specific time windows or frequencies (Ratio: 3.8, 95% CI: 1.6, 9.2) than in studies 
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with more general comparisons between farmers who applied or did not apply pesticides (Ratio: 

2.0, 95% CI: 1.3, 3.0). It is not clear if these differences were related to differences between the 

comparison group type or pesticide type. However, these differences between the ratios were not 

statistically significant in a model that included all data and that incorporated pesticide type as an 

explanatory variable (p-value=0.14). Additionally, the ratios were higher for atrazine (Ratio: 4.7, 

95% CI: 1.6, 13) than for chlorpyrifos (Ratio: 1.6, 95% CI: 1.1, 2.3) (p-value for 

comparison=0.06); however, these comparisons were based on small numbers. The between-

statistic variances estimated by these models were not statistically significantly different from 

zero. 

 

Residential Use Pathway 

We identified five studies reporting pesticide concentrations in house dust in agricultural homes 

that were treated or not treated (i.e., high use vs. reference) for various insects and weeds in the 

home, garden, or yard (Table 5). From these studies we derived 88 estimates of the ratios of GMs 

between treated vs. non-treated homes. The GM ratios varied from 0.22 to 6.8. Overall, dust 

pesticide concentrations were 1.3 times higher (95% CI: 1.1, 1.4) in households that treated vs. 

did not treat their homes, gardens, or yards for insect or weeds (Table 6). The magnitude of the 

contribution increased with the probability of use of an active ingredient for the specific pest 

treatment. For probability categories 0%, 1-19%, and ≥20%, respectively, the dust pesticide 

concentrations were 1.0 (95% CI: 0.8, 1.3), 1.3 (95% CI: 1.1, 1.4), and 1.5 (95% CI: 1.2, 1.9) 

times higher in households that treated vs. did not treat. The magnitude of the effect by 

probability category was somewhat larger when Deziel et al. 2015a was excluded (Table 6). 
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However, this effect was only statistically different at the 1-19% probability category in models 

that included all data and a fixed-effect term for data source (1=Deziel et al. 2015a; 0=all other 

studies; p-values of 0.5, 0.002 and 0.4 for probability categories 0%, 1-19%, and ≥20%, 

respectively; not shown). Stratified analyses also showed some differences in the magnitude of 

effect between herbicides and insecticides for the 1-19% probability category, but not the 0% 

and ≥20% categories (Table 6); this difference was not statistically significant (p-value = 0.2). 

 

DISCUSSION 

To our knowledge, this is the first use of meta-regression models to summarize environmental 

pesticide concentrations reported in the published literature. This approach allowed us to 

estimate the average ratios in pesticide concentration in house dust from various pathways across 

multiple studies while accounting for both the study size and concentration variability. Overall, 

pesticide concentrations in house dust decreased rapidly with increasing distance, with predicted 

GMs decreasing 64% across the IQR of the published data.  Pesticide concentrations in dust were 

also 2.3 times higher (95% CI: 1.5, 3.3) in homes where a resident had high versus low 

agricultural use of pesticides and 1.3 times higher (95% CI; 1.1, 1.4) in homes where pesticides 

were used in the home, garden, or yard versus not used for specific pests. These findings provide 

data-driven weights, with confidence intervals, that could be used in future exposure assessment 

efforts in epidemiologic studies. In addition, this study provides a framework for applying meta-

regression models to analyze published data for other exposures and exposure determinants of 

interest. 
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The contribution of the residential use pathway increased with increasing probability of the 

pesticide treatment type including the active ingredient, but there was little evidence for 

subgroup differences in the other two pathways. Sensitivity analyses suggested that the 

magnitude of the contribution of each pathway may differ by pesticide type or active ingredient. 

At this time we have insufficient evidence to confirm these differences, as sample sizes were 

generally small. For example, agricultural drift might be influenced by pesticide type or active 

ingredient (e.g., due to differences in the volatility of active ingredients), crop type, meteorology, 

and pesticide application method (Damalas and Eleftherohorinos 2011; Ward et al. 2006). 

However, in our comparisons, the strong correlations among potential explanatory variables 

prevented us from disentangling whether the observed differences were attributable to any of 

those factors, and important differences may have been missed because of sparse data. Because 

of our transparent approach, our results can be updated as more data becomes available. 

 

Using a mixed-effects model framework provided an opportunity to systematically account for 

both the within-study and between-study variability for specific pesticides and the power of the 

study based on the number of measurements. However, differences may still have been masked. 

For instance, in the agricultural drift model, there is potential for aggregation bias because we 

evaluated only an overall trend, rather than pesticide/study-specific trends. Preliminary models 

that incorporated a random slope did not detect pesticide/study-specific trends, but differences 

may have been missed due to computational limitations and sparse data. Visual inspection 

showed that most pesticide/study-specific trends paralleled the overall trend (Supplemental 

Material, Figure S2); for these the random intercept would be sufficient to capture the offset in 
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the intercept. However, we may have missed important differences for the small number of 

trends that did not parallel the overall trend. This challenge was also encountered in a previous 

meta-regression analysis of occupational lead data, where industry-specific temporal trends were 

unable to capture differences related to variability in the jobs that were monitored (Koh et al. 

2014).  

 

These models estimated an average effect that provides an estimate of the median change in dust 

pesticide concentration between distances (drift) or comparison groups (para-occupational, 

residential use pathways). In epidemiologic studies, comparing arithmetic means may be of 

greater interest. The arithmetic mean (AM) can be approximated using the equation AM = 

exp(β+0.5*SE2), where β and SE are the model parameter and its standard error before 

exponentiating the terms. Here, for the three pathways, the AM and GM were identical at one 

decimal place (not shown). Estimating the ratio of the AMs between comparison groups, that is, 

AMhigh/AMreference instead of GMhigh/GMreference; is more challenging, because the log-normal 

statistical properties of the former’s exposure distribution are more difficult to obtain and 

incorporate into statistical models. More flexible modeling approaches, such as Bayesian 

approaches that can specify different exposure distributions for each parameter, may address this 

challenge.  

 

Limitations 

There were several additional limitations to these analyses related to the coverage of the data and 

use of surrogates to represent these three exposure pathways. First, the magnitude of these 
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differences may be overestimated due to publication bias because studies that observed no 

association between pesticide house dust levels and a particular pathway often did not report 

summary statistics or regression coefficients and could not be included here. Publication bias 

may account for differences in the contribution of the residential use pathway between the Deziel 

et al. (2015a) study and all other papers. The Deziel et al. (2015a) study included 74 of the 88 

statistics and reported all possible comparisons between multiple pesticides and pest treatments, 

whereas other papers evaluating several pesticides generally reported only statistically significant 

findings. For the agricultural drift pathway, several studies stated that they did not observe an 

association between dust pesticide concentrations and distance from home to treated fields 

without providing the underlying summary statistics (Coronado et al. 2011; Curwin et al. 2005; 

McCauley et al. 2003). However, in these studies, the homes tended to be located very close to 

the fields, limiting the variability in distance categories. Second, as described above, the data 

were generally too sparse to identify whether differences in pesticide house dust concentrations 

varied by subgroups (e.g., pesticide type, crop type, application method, geographic location, or 

time period) and important distinctions may have been missed. Third, we used exposure 

surrogates to create our comparison groups; the exposure pathways may be better characterized 

with other metrics. For instance, compared to self-reported distance to treated fields, agricultural 

drift may be better captured using geographic information systems approaches that use satellite 

images, crop maps, historical farm records, and state pesticide use reporting databases to better 

classify exposure according to crop acreage or quantity of active ingredients applied near 

residences (Fenske 2005; Gunier et al. 2011; Harnly et al. 2009; Jones et al. 2014; Ritz and Rull 

2008; Ward et al. 2000); Fourth, most of the studies were based in the northwestern United 
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States (Washington and Oregon) and Iowa, and thus the results may not be generalizable to 

populations in other geographic regions. Lastly, the lack of reporting of active ingredient-specific 

information in the published studies of the residential use treatments, and the resulting use of 

group-level probability-based weights from the NCI pesticide exposure matrix, introduces 

uncertainty in the quantification of the contribution of the residential use pathway. This pesticide 

exposure matrix was last updated with market and usage data from the year 2000 and may have 

limited relevance for informing residential use of certain pesticides subsequent to that year.   

 

There were also several limitations to the abstracted data and the modeling framework. First, it is 

difficult to disentangle the independent contribution of each pathway. Although we abstracted 

data that accounted for the other potential pathways through adjustment in multivariable 

regression models or stratification wherever possible, the estimates of the contributions of each 

pathway may be confounded by other pathways. Second, development of the richest data source 

possible required approximations, with varying errors, when GMs and GSDs were not directly 

reported. For example, we assumed the median was approximately equivalent to the GM. In 

addition, we visually extracted medians from graphs in 4 of the 7 studies of agricultural drift, 

which introduced imprecision in the estimates. Similarly, based on visual inspection of the data, 

we assumed a lognormal distribution for both the dust pesticide concentrations and the ratios. 

Deviations from this assumption could affect the point estimates, p-values and confidence 

intervals. As a result, we presented results only to 2 significant figures and we use confidence 

intervals and p-values as guides and not definitive measures of scientific significance. 
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These findings provide insight into the contributions of these exposure pathways to the indoor 

dust pesticide concentrations; however, the impact of these differences to the pesticide exposure 

of adults remains uncertain because individual behaviors and characteristics also influence the 

amount of pesticide exposure and absorption (Hoppin et al. 2006). Pesticide concentrations in 

air, food, water, and biological specimens may also be used to represent adult exposure and dose. 

However, our prior review found that evaluations in media other than dust were rare, often had 

low detection rates, and for biomarkers represented only very recent exposure (Deziel et al. 

2015b); as a result, these metrics were not included in these analyses. Previous studies that have 

compared concentrations or loadings of pesticides in bulk dust or wipes with concentrations of 

pesticide biomarkers in adults have observed weak to moderate correlations or associations 

(Thompson et al. 2014, Curwin et al. 2007; Arbuckle et al. 2006). However, making these 

comparisons is challenging because the varying media reflect different exposure windows, with 

dust samples representing a cumulative time window representing weeks, months, or years, and 

biomarkers often representing exposure in the hours to days prior to sample collection (Barr et al. 

2006, Bouvier et al. 2006; Morgan et al. 2008). Future research with repeated biological 

measures would advance our understanding of the predictive value of pesticide house dust 

measurements for long-term exposures in adults. In addition, the framework used here can be 

expanded to other sample media as more data becomes available.  

 

CONCLUSION 
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We used a novel application of meta-analysis to published pesticide exposure data to quantify the 

relative difference in dust pesticide concentrations in relation to surrogates representing three 

pesticide use and transport exposure pathways in agricultural populations.  Our analyses found 

that homes near treated fields, homes of farmers who applied pesticides more frequently or 

recently, and homes of those who applied pesticides around the home, garden, and yard, had 

quantifiably higher pesticide concentrations in the dust compared to their reference groups. 

These results can inform the development of data-driven environmental exposure categorizations 

for epidemiologic studies. Our transparent meta-regression models can be updated when new 

data are available or further restricted or expanded based on the population of interest. 

Additionally, the framework developed for these analyses can be applied to other published 

exposure data. 
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Table 1 Agricultural drift: Dust pesticide concentration geometric means (GMs) in 
agricultural homes at varying distances from fields. 

Author-Year, 
State 

Pesticide 
Pesticide 
Type 

Distance 
(ft)a 

N 
samples 

GM (µg/g) GSD 
Statistic 
ID 

Pesticide-
Paper ID 

Fenske-2002 
Washington 

chlorpyrifos insecticide 100 46 0.42 2.30 11 15 

chlorpyrifos insecticide 300 15 0.17 2.05 12 15 
chlorpyrifos insecticide 25 33 0.45 2.35 15 15 
chlorpyrifos insecticide 125 13 0.35 2.10 16 15 
chlorpyrifos insecticide 760 4 0.19 4.40 17 15 
chlorpyrifos insecticide 1980 11 0.15 1.75 18 15 
ethyl parathion insecticide 100 46 0.022 3.56 13 7 
ethyl parathion insecticide 300 15 0.025 4.56 14 7 

Golla-2012 
Iowa 

atrazine-non-planting 
seasonb 

herbicide 37.5 10 0.026 8.5 50 10 

 
atrazine-non-planting 
seasonb 

herbicide 137.5 10 0.063 10.1 51 10 

 
atrazine-non-planting 
seasonb 

herbicide 300 11 0.021 7 52 10 

atrazine-planting seasonb herbicide 37.5 10 0.28 7.5 47 10 
atrazine-planting seasonb herbicide 137.5 10 0.64 10 48 10 
atrazine-planting seasonb herbicide 300 11 0.33 6.9 49 10 

Gunier-2011 carbaryl  insecticide 820 19 0.044 9 33 3 
California carbaryl  insecticide 2460 70 0.015 9 34 3 

chlorpyrifos insecticide 820 68 0.047 4 35 16 
chlorpyrifos insecticide 2460 21 0.028 4 36 16 
chlorthal herbicide 820 4 0.026 4 37 4 
chlorthal herbicide 2460 85 0.0005 4 38 4 
diazinon  insecticide 820 29 0.018 7 39 5 
diazinon  insecticide 2460 60 0.019 7 40 5 
iprodione  fungicide 820 42 0.015 3 41 6 
iprodione  fungicide 2460 47 0.01 3 42 6 
phosmet insecticide 820 31 0.016 4 43 18 
phosmet insecticide 2460 58 0.013 4 44 18 
simazine  herbicide 820 43 0.041 5 45 8 
simazine  herbicide 2460 46 0.014 5 46 8 

Lu-2000 azinphos methyl insecticide 100 45 1.6 2.30 5 12 
Washington azinphos methyl insecticide 300 15 0.69 3.10 6 12 

 
dimethyl 
organophosphates 

insecticide 25 35 3 2.94 1 1 

 
dimethyl 
organophosphates 

insecticide 125 12 1.8 2.99 2 1 

 
dimethyl 
organophosphates 

insecticide 760 4 1.2 1.41 3 1 

 
dimethyl 
organophosphates 

insecticide 1980 11 0.8 2.87 4 1 

 
dimethyl 
organophosphates 

insecticide 100 45 2.5 2.18 9 1 

 
dimethyl 
organophosphates 

insecticide 300 15 1.01 2.70 10 1 

phosmet insecticide 100 45 0.51 3.74 7 19 
phosmet insecticide 300 15 0.27 2.75 8 19 
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McCauley-2001 azinphos methyl insecticide 10 6 1.6 2.3 29 13 
Oregon azinphos methyl insecticide 40 7 1.8 3.2 30 13 

azinphos methyl insecticide 87.5 5 0.085 3.5 31 13 
azinphos methyl insecticide 735 4 1.8 4.1 32 13 

Simcox-1995 azinphos methyl insecticide 25 48 1.4 3.66 21 11 
Washington azinphos methyl insecticide 75 15 0.91 2.38 22 11 

chlorpyrifos insecticide 25 48 0.18 2.74 25 14 
chlorpyrifos insecticide 75 15 0.30 3.96 26 14 
ethyl parathion insecticide 25 48 0.11 4.40 27 2 
ethyl parathion insecticide 75 15 0.055 12.7 28 2 
phosmet insecticide 25 48 0.35 10.1 23 17 
phosmet insecticide 75 15 0.45 4.40 24 17 

Ward-2006 10 herbicides herbicide 1230 82 0.098 3.5 19 9 
Iowa 10 herbicides herbicide 3690 79 0.045 2.0 20 9 

Abbreviations: GM, geometric mean; GSD, geometric standard deviation 

a Distance categories were assigned the midpoint of the category.  
b Golla et al. (2012) measured atrazine at homes of varying distances to fields across two seasons.  
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Table 2 Agricultural drift: Model parameters for predicting GM dust pesticide 
concentrations in agricultural homes at varying distances from fields. 

 
Model  β (SE) Exp(β)  

(95%CI) 
Between-

Result 
Variance,  

in ln µg/g (SE) 

Between-
Pesticide/Paper 

Variance,  
in ln µg/g (SE) 

     
All summary measures (n=52)   0.80 (0.21) 1.56 (0.66) 

Intercept 0.15 (0.72) 1.2 (0.28, 4.8)   

Ln(Distance in feet) -0.43 (0.11) 0.65 (0.52, 0.81)   

Herbicides/Fungicides (n=14)   2.0 (0.77) Not estimated 

     Intercept 0.68 (1.7) 2.0 (0.07, 52)   

     Ln(Distance in feet) -0.64 (0.26) 0.53 (0.32, 0.88)   

Insecticides (n=38)   0.33 (0.10) 1.79 (0.75) 

Intercept -0.22 (0.59) 0.80 (0.25, 2.6)   

Ln(Distance in feet) -0.30 (0.09) 0.74 (0.62, 0.88)   

Chlorpyrifos (n=10)   0.11 (0.06) ~0 

Intercept -0.43 (0.55) 0.65 (0.22, 1.9)   

Ln(Distance in feet) -0.29 (0.08) 0.75 (0.64, 0.87)   

Abbreviations: CI, confidence interval; GM, geometric mean; GSD, geometric standard deviation; SE, standard 
error  

a Predicted GM at a given distance = ݀ఉೞ೗೚೛೐ exp൫ߚ௜௡௧௘௥௖௘௣௧൯ (Equation 13). Percent (%) change between distances 

݀ଵand ݀ଶ ൌ ൣ1 െ ሺ݀ଶ ݀ଵ⁄ ሻఉೞ೗೚೛೐൧ ൈ 100 (Equation 14).  
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Table 3  Para-occupational exposure: Ratios of dust pesticide concentration GMs between measurements taken in homes of farmers 

with high pesticide use compared to those with low pesticide use.  

 
Author-
Year, 
State 

Pesticide Pesticide 
Type 

Exposure 
Comparison Groups  

Low Pesticide Use Group  
(Reference) 

 High Pesticide Use Group  Ratios 
 

Statistic 
ID 

    N 
homes 

N 
samples1 

GM 
(µg/g) 

GSD  N 
homes 

N 
samplesa 

GM 
(µg/g) 

GSD  GM 
Ratio 
(High/ 
Ref) 

Ln-
Ratio 

Variance 
of ln-
Ratio 

 

Curwin-
2005 

2,4-D herbicide farmers who applied 
2,4-D <30 vs ≥30 
days before dust 
sampling 

3 3.8 0.340 

2.7 

 2 2.3 1.7 4.0  5.00 1.6 1.1 15 

Iowa atrazine herbicide farmers who applied 
active ingredient of 
interest <7 vs ≥7 days 
before dust sampling 

≤20b 16.1 0.016 11  ≤20 b 16 0.17 11  11 2.4 0.71 11 
 chlorpyrifos insecticide ≤20 b 50.0 0.010 13  2 1.2 0.07 2.1  1.9 0.63 0.68 13 
 glyphosate herbicide ≤5 b 8.2 0.92 2.1  ≤5 b 5.9 1.1 2.4  1.2 0.18 0.20 14 
 metolachlor herbicide ≤20 b 50.0 0.010 13  ≤20 b 11 0.31 20  31 3.4 0.94 12 
Fenske-2002 chlorpyrifos insecticide farmers who apply vs 

do not apply 
pesticides 

12 12 0.225 1.8  49 49 0.38 2.4  1.7 0.52 0.046 1 
Washington ethyl parathion insecticide 12 12 0.005 5.4  49 49 0.03 3.9  5.8 1.8 0.27 2 

Golla-2012 
Iowa 

atrazine herbicide farmers who applied 
atrazine ≥2 vs. <2 
days per season 

16 17.8 0.241 6.7  15 17 0.65 8.5  2.7 0.99 0.48 3 

Lu-2000 azinphos methyl insecticide farmers who apply vs 
do not apply 
pesticides 

13 13 1.03 2.3  49 49 1.4 2.5  1.3 0.29 0.071 4 
Washington dimethyl OPs insecticide 13 13 1.1 2.3  49 49 2.4 2.3  2.1 0.73 0.066 6 
 phosmet insecticide 13 13 0.11 1.9  49 49 0.54 3.6  4.8 1.6 0.065 5 
Simcox-
1995 

azinphosmethyl insecticide farmers who apply vs 
do not apply 
pesticides 

20 20 1.4 1.2  28 28 1.1 1.0  0.74 -0.30 0.002 7 

Washington chlorpyrifos insecticide 20 20 0.30 0.54  28 28 0.17 0.41  0.57 -0.56 0.047 9 
 ethyl parathion insecticide 20 20 0.043 0.21  28 28 0.05 0.23  1.23 0.21 0.20 10 
 phosmet insecticide 20 20 0.30 0.54  28 28 0.32 0.57  1.09 0.083 0.030 8 

a For studies with repeated measures at a home (Curwin et al. 2005, Golla et al. 2012), the “N samples” refers to the effective sample size (see Equations 7 and 8). 
b Used median of category in design effect calculations.  
Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; GM, geometric mean; GSD, geometric standard deviation; OP, organophosphate; Ref, reference  
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Table 4 Para-occupational exposure: Predicted ratios of dust pesticide concentrations 
of homes of farmers with high vs. low pesticide use based on meta-regression 
models. 

 
Model Predicted Ratio 

for High vs. 
Low Usea 
(95%CI) 

Between-Result 
Variance, in log-

µg/g (SE) 

All summary measures (n=15) 2.3 (1.5, 3.3) 0.26 (0.23) 

   

Farmers who apply vs do not apply pesticides b (n=9, all 
insecticides) 

2.0 (1.3, 3.0) 0.21 (0.19) 

Farmers who applied specific pesticides in specific time windows 
or at specific frequencies. c (n=6, all herbicides) 

3.8 (1.6, 9.2) 0.61 (0.68) 

   

Atrazine (n=2) 4.7 (1.6, 13) ~0 

Chlorpyrifos (n=3) 1.6 (1.1, 2.3) ~0 
a Ratios of dust pesticide concentrations of homes of farmers with high vs. low pesticide use based on meta-
regression models. Calculated as the exponentiated regression coefficient for the intercept from the meta-regression 
model.  
bExcludes Golla et al. (2012) and Curwin et al. (2005). 
cIncludes two studies: Curwin et al. (2005), which compared applications <7 vs ≥7 and <30 vs ≥30 days and  
Golla et al. (2012), which compared application ≥2 vs. <2 days per season. 
Abbreviations: CI, confidence interval; SE, standard error 
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Table 5 Residential use exposure: Ratios in dust pesticide concentration GMs 
between measurements taken in agricultural homes that were treated (high use) vs. not 
treated (reference) for home, garden, or yard insects or weeds. 

Author-Yr, 
State Pesticide 

Pesticide 
Type 

Treatment 
Typea 

N 
Samples, 
High Use 

N 
Samples, 
Reference 

GM Ratio 
(High/ 

Reference)b 
ln-

Ratio 
Variance   
ln-Ratio Probability Statistic ID 

Deziel-2013  
California carbaryl insecticide Ants/flies/roaches 36 32 2.3 0.81 0.10 1-19% 1 

carbaryl insecticide 
Professional 

Outdoor 17 44 1.2 0.19 0.16 0% 2 

carbaryl insecticide 

Professional 
Outdoor or 

Indoor 7 44 0.41 -0.89 0.27 0% 3 

chlorpyrifos insecticide 
Bees/Wasps/ 

Hornets 11 57 1.9 0.62 0.06 1-19% 4 

cyfluthrin insecticide 
Professional 

Outdoor 17 44 4.7 1.55 0.18 1-19% 5 

cyfluthrin insecticide 

Professional 
Outdoor or 

Indoor 7 44 1.1 0.07 0.36 1-19% 6 

cypermethrin insecticide 
Professional 

Outdoor 17 44 3.3 1.20 0.18 ≥20% 7 

cypermethrin insecticide 

Professional 
Outdoor or 

Indoor 7 44 1.4 0.34 0.25 ≥0% 8 

diazinon insecticide Lawn/ Garden 38 30 1.7 0.55 0.07 ≥20% 9 

diazinon insecticide 
Professional 

Outdoor 17 44 3.0 1.09 0.18 1-19% 10 

diazinon insecticide 

Professional 
Outdoor or 

Indoor 7 44 0.70 -0.36 0.41 1-19% 11 

methoxychlor insecticide 
Professional 

Outdoor 17 44 1.6 0.44 0.31 0% 12 

methoxychlor insecticide 

Professional 
Outdoor or 

Indoor 7 44 0.22 -1.51 0.56 0% 13 

permethrin insecticide 
Professional 

Outdoor 17 44 3.5 1.25 0.12 0% 14 

permethrin insecticide 

Professional 
Outdoor or 

Indoor 7 44 1.3 0.25 0.08 1-19% 15 

Gunier-2011 
California chlorpyrifos insecticide Fleas/Ticks 32 57 2.0 0.68 0.08 1-19% 16 

diazinon insecticide 
Professional 

Outdoor 89 89 2.6 0.94 0.23 1-19% 17 

phosmet insecticide 
Professional 

Outdoor 23 66 1.7 0.53 1.79 0% 18 

Lu-2000 
Washington dimethylOP insecticide Fleas/Ticks 16 84 0.33 -1.10 0.05 0% 19 

dimethylOP insecticide Garden Insects 29 61 1.1 0.10 0.04 0% 20 
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dimethylOP insecticide Lawn Insects 31 69 1.4 0.37 0.03 1-19% 21 

Golla -2012 
Iowa atrazine herbicide Lawn 8 23 1.6 0.47 4.68 1-19% 22 

Deziel-2015a 
California 2,4-D herbicide 

Professional 
Weeds 57 444 0.54 -0.62 0.05 ≥20% 23 

2,4-D herbicide Weeds 269 304 2.8 1.03 0.02 ≥20% 24 
carbaryl insecticide Ants/Cockroach 409 162 0.72 -0.33 0.07 1-19% 25 

carbaryl insecticide 
Carpenter Ants/ 

Termites 33 153 1.4 0.34 0.23 0% 26 

carbaryl insecticide 
Fleas/Ticks in the 

Home 59 516 1.9 0.64 0.14 1-19% 27 

carbaryl insecticide 
Fleas/Ticks on 

Pets 147 428 0.94 -0.06 0.07 1-19% 28 
carbaryl insecticide Flying Insects 162 409 0.88 -0.13 0.07 1-19% 29 

carbaryl insecticide 
Lawn/Garden 

Insects 170 401 1.3 0.26 0.06 1-19% 30 

carbaryl insecticide 
Professional 

Indoor 66 437 1.5 0.41 0.18 0% 31 

carbaryl insecticide 
Professional 

Outdoor 139 355 0.71 -0.34 0.12 0% 32 
chlorpyrifos insecticide Ants/Cockroach 409 162 0.99 -0.01 0.02 1-19% 33 

chlorpyrifos insecticide 
Carpenter Ants/ 

Termites 33 153 1.7 0.53 0.07 ≥20% 34 

chlorpyrifos insecticide 
Fleas/Ticks in the 

Home 59 516 0.99 -0.01 0.04 1-19% 35 

chlorpyrifos insecticide 
Fleas/Ticks on 

Pets 147 428 0.99 -0.01 0.02 0% 36 
chlorpyrifos insecticide Flying Insects 162 409 0.80 -0.22 0.02 1-19% 37 

chlorpyrifos insecticide 
Lawn/Garden 

Insects 170 401 1.7 0.53 0.02 ≥20% 38 

chlorpyrifos insecticide 
Professional 

Indoor 66 437 1.5 0.41 0.05 1-19% 39 

chlorpyrifos insecticide 
Professional 

Outdoor 139 355 0.85 -0.16 0.03 ≥20% 40 

chlorthal herbicide 
Professional 

Weeds 57 444 0.72 -0.33 0.09 0% 41 
chlorthal herbicide Weeds 269 304 1.3 0.26 0.04 1-19% 42 
cyfluthrin insecticide Ants/Cockroach 409 162 0.70 -0.36 0.13 1-19% 43 

cyfluthrin insecticide 
Carpenter Ants/ 

Termites 33 153 1.2 0.18 0.36 0% 44 

cyfluthrin insecticide 
Fleas/Ticks in the 

Home 59 516 1.5 0.41 0.23 1-19% 45 

cyfluthrin insecticide 
Fleas/Ticks on 

Pets 147 428 0.95 -0.05 0.13 0% 46 
cyfluthrin insecticide Flying Insects 162 409 1.1 0.10 0.13 1-19% 47 

cyfluthrin insecticide 
Lawn/Garden 

Insects 170 401 2.3 0.83 0.11 0% 48 

cyfluthrin insecticide 
Professional 

Indoor 66 437 4.0 1.39 0.26 1-19% 49 

cyfluthrin insecticide 
Professional 

Outdoor 139 355 6.8 1.92 0.17 1-19% 50 
cypermethrin insecticide Ants/Cockroach 409 162 2.5 0.92 0.07 1-19% 51 
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cypermethrin insecticide 
Carpenter Ants/ 

Termites 33 153 0.91 -0.09 0.22 1-19% 52 

cypermethrin insecticide 
Fleas/Ticks in the 

Home 59 516 1.9 0.64 0.13 0% 53 

cypermethrin insecticide 
Fleas/Ticks on 

Pets 147 428 0.65 -0.43 0.07 0% 54 
cypermethrin insecticide Flying Insects 162 409 1.7 0.53 0.06 1-19% 55 

cypermethrin insecticide 
Lawn/Garden 

Insects 170 401 1.2 0.18 0.06 0% 56 

cypermethrin insecticide 
Professional 

Indoor 66 437 0.91 -0.09 0.16 ≥20% 57 

cypermethrin insecticide 
Professional 

Outdoor 139 355 2.3 0.83 0.09 0% 58 
diazinon insecticide Ants/Cockroach 409 162 1.00 0.00 0.03 1-19% 59 

diazinon insecticide 
Carpenter Ants/ 

Termites 33 153 1.4 0.34 0.09 0% 60 

diazinon insecticide 
Fleas/Ticks in the 

Home 59 516 1.5 0.41 0.06 1-19% 61 

diazinon insecticide 
Fleas/Ticks on 

Pets 147 428 0.87 -0.14 0.03 0% 62 
diazinon insecticide Flying Insects 162 409 0.92 -0.08 0.03 1-19% 63 

diazinon insecticide 
Lawn/Garden 

Insects 170 401 1.5 0.41 0.03 ≥20% 64 

diazinon insecticide 
Professional 

Indoor 66 437 1.5 0.41 0.07 1-19% 65 

diazinon insecticide 
Professional 

Outdoor 139 355 1.5 0.41 0.05 1-19% 66 

dicamba herbicide 
Professional 

Weeds 57 444 0.90 -0.11 0.06 ≥20% 67 
dicamba herbicide Weeds 269 304 1.9 0.64 0.02 ≥20% 68 

mecoprop herbicide 
Professional 

Weeds 57 444 0.60 -0.51 0.06 1-19% 69 
mecoprop herbicide Weeds 269 304 2.2 0.79 0.03 ≥20% 70 
permethrin insecticide Ants/Cockroach 409 162 1.3 0.26 0.03 1-19% 71 

permethrin insecticide 
Carpenter Ants/ 

Termites 33 153 0.91 -0.09 0.10 1-19% 72 

permethrin insecticide 
Fleas/Ticks in the 

Home 59 516 2.3 0.83 0.06 ≥20% 73 

permethrin insecticide 
Fleas/Ticks on 

Pets 147 428 1.2 0.18 0.03 1-19% 74 
permethrin insecticide Flying Insects 162 409 1.6 0.47 0.03 ≥20% 75 

permethrin insecticide 
Lawn/Garden 

Insects 170 401 0.74 -0.30 0.02 0% 76 

permethrin insecticide 
Professional 

Indoor 66 437 1.6 0.47 0.08 1-19% 77 

permethrin insecticide 
Professional 

Outdoor 139 355 0.97 -0.03 0.05 1-19% 78 
propoxur insecticide Ants/Cockroach 409 162 1.3 0.26 0.03 1-19% 79 

propoxur insecticide 
Carpenter Ants/ 

Termites 33 153 0.77 -0.26 0.09 0% 80 

propoxur insecticide 
Fleas/Ticks in the 

Home 59 516 1.4 0.34 0.05 1-19% 81 
propoxur insecticide Fleas/Ticks on 147 428 1.3 0.26 0.03 1-19% 82 



Environ Health Perspect DOI: 10.1289/EHP426 
Advance Publication: Not Copyedited 

 

36 

 

Pets 

propoxur insecticide Flying Insects 162 409 0.88 -0.13 0.03 1-19% 83 

propoxur insecticide 
Lawn/Garden 

Insects 170 401 0.88 -0.13 0.03 0% 84 

propoxur insecticide 
Professional 

Indoor 66 437 0.89 -0.12 0.07 0% 85 

propoxur insecticide 
Professional 

Outdoor 139 355 0.80 -0.22 0.04 0% 86 

simazine herbicide 
Professional 

Weeds 57 444 1.1 0.10 0.03 1-19% 87 
simazine herbicide Weeds 269 304 1.1 0.10 0.01 0% 88 

 

a “Professional” describes a pest treatment applied by a commercial applicator, while the other treatments describe 
those done by a resident.  
bExcept for Lu et al. 2000 and Golla et al. 2012, the ratio was obtained from regression models and as a result the 
GMs for reference and comparison groups were not available. 
GM, geometric mean; OP, organophosphate 
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Table 6 Residential use: Predicted ratio in GM dust pesticide concentrations in 
treated vs. untreated agricultural homes. 
 
 

Model Predicted Ratio for 
Treated vs. 

Untreated Homes 
(95%CI)a 

Between-Statistic 
Variance, in log-

µg/g (SE) 

All summary measures (n=88) 1.3 (1.1, 1.4) 0.15 (0.04) 

   

Probability active ingredient used in treatment typeb   

All studies    

Probability: 0% (n=28) 1.0 (0.8, 1.2) 0.15 (0.07) 

Probability: 1-19% (n=45) 1.3 (1.1, 1.4) 0.08 (0.04) 

Probability:  ≥20% (n=15)  1.5 (1.2, 1.9) 0.16 (0.08) 

   

Deziel et al. 2015ac    

Probability: 0% (n=20) 1.0 (0.9, 1.2) 0.03 (0.04) 

Probability: 1-19% (n=34) 1.2 (1.1, 1.3) 0.06 (0.03) 

Probability:  ≥20% (n=12) 1.5 (1.1, 1.9) 0.17 (0.09) 

   

Excluding Deziel et al. 2015ac   

Probability: 0% (n=8) 0.9 (0.5, 1.6) 0.56 (0.83) 

Probability: 1-19%  (n=11) 1.8 (1.5, 2.2) 0.01 (0.05) 

Probability:  ≥20% (n=3) 2.0 (1.3, 2.9) - (single study) 

   

Herbicides    

Probability: 0% (n=2) 1.0 (0.9, 1.3) - (single study) 

Probability: 1-19% (n=4) 1.0 (0.7, 1.4) 0.04 (0.08) 

Probability: ≥20% (n=5) 1.5 (0.9, 2.5) 0.33 (0.23) 

   

Insecticides   

Probability: 0% (n=26) 1.0 (0.8, 1.3) 0.17 (0.08) 

Probability: 1-19% (n=41) 1.3 (1.2, 1.5) 0.08 (0.04) 

Probability:  ≥20% (n=10) 1.5 (1.3, 1.9) 0.05 (0.05) 
a Ratios of dust pesticide concentrations of homes treated vs. not treated for home, garden, and yard pests based on 
meta-regression models. Calculated as the exponentiated regression coefficient for the intercept from the meta-
regression model.  
b Probability was assigned to each active ingredient-pest treatment relationship, based on the likelihood the active 
ingredient was used for a specific pest treatment based on the National Cancer Institute Pesticide Exposure Matrix 
(http://dceg.cancer.gov/tools/design/pesticide) (Colt et al. 2006) 
c Deziel et al. (2015a) was analyzed separately because it was the largest study containing 74 of the 88 summary 
statistics.  
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Figure Legends 
 
Figure 1 GM pesticide house dust concentrations decreased logarithmically with 
distance between home and treated fields. Solid line = predicted association from meta-
regression models. Predicted GM at a given distance ࢊ in ft ൌ  ࢋ࢖࢕࢒࢙ࢼࢊ ൯࢚࢖ࢋࢉ࢘ࢋ࢚࢔࢏ࢼ൫ࢋ ൌ
 = ૙.૚૞. Circles = Distance/Pesticide/Paper-specific GMs, with circle widthࢋ૙.૝૜ିࢊ
ሺࡰࡿࡳࢍ࢕࢒ሻ૛/ࡺ. 
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Figure 1.  
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