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Figure S1. Retention time validation through analysis of chemical series

A. Dot plot representing the retention time by HILIC chromatography of annotated acylcarnitines
according to their hydrophobicity (recalculated LogP = mean (LogD pH = 3.0, xLogP3). Red circles
represent compounds validated by MS/MS fragmentation, whereas grey diamonds correspond to
acylcarnitines only validated through their RT, m/z and known occurrence in biological fluids. Note
that acylcarnitines with a second carboxylic acid function have shifted similarly to their annotation.

B. Similar dot plot presenting the annotated fatty acids separated by C18 chromatography.
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Figure S2. MS/MS validation of annotated compounds.

A. Signal intensities of the compounds were retrieved. A box and whisker plot could then be
constructed to validate their higher or lower presence in exposed animals. An example is shown for
isobutyryl-L-carnitine.

B. Compound annotation with some proposals of formulas. The first one corresponds to isobutyryl-L-
carnitine.

C. An example of fragmentation prediction is shown for this same isobutyryl-L-carnitine

D. MS/MS experimental spectrum of isobutyryl-L-carnitine
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Figure S3. Analysis of significant discriminating features for C1 and C3 samples

A. Volcano plots were created through observed median Fold change and adjusted p-value
algorithm), comparing the metabolite level for the indicated groups (C1 or C3) quantified against
control values, separated with C18 chromatography and quantified in positive mode. The most
significant metabolites were annotated when possible and indicated directly on the plot. Cut-off for
fold change/Adjusted P-value = 1.5/0.001 for (C1), 2/0.01 for (C3)

B. Similar analysis with metabolites quantified in negative mode. Cut-off for fold change/Adjusted P-
value = 1.3/0.05 for (C1), 1.5/0.01 for (C3)

C. Similar analysis with metabolites separated with HILIC chromatography and quantified in positive
mode. Cut-off for fold change/Adjusted P-value = 2/0.01 for (C1), 2/0.01 for (C3)

D. Similar analysis with the chromatography and the metabolites quantified in negative mode. Cut-
off for fold change/Adjusted P-value = 1.5/0.01 for (C1), 1.5/0.01 for (C3)
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Figure S4. Metabolic network analysis through structural identity and pathway mapping

A-B. Data associated with 635 annotated metabolites were used to perform a Chemical Similarity
Enrichment Analysis (ChemRICH). A Tanimoto chemical similarity mapping form a clustered circular
similarity tree. Dark black lines indicate boundaries of clusters that were significantly different in
exposed animals at the indicated concentration versus control mice (P-value < 0.05). Higher
metabolite levels in DphP-exposed mice (compared to those expose to vehicle) have been labelled as
red nodes, lower levels have been marked in blue. The Acylcarnitine Cluster label has also been
indicated.

C-D. ChemRICH set enrichment statistics plot of 635 metabolites extracted from exposed animals
with the indicated concentration of DPhP versus control. Each node reflects a significantly altered
cluster of metabolites. Enrichment P-values were obtained using the Kolmogorov-Smirnov test and
median XlogP3 was calculated from individual values associated with each metabolite present in the
cluster. Node size represents the total number of metabolites in each set of clusters. Continuous
scale color for the nodes shows the proportion of fully increased (red) or fully decreased (blue) family
of compounds in exposed mice compared to control mice. Nodes with an intermediate color (pink to
purple) have both increased and decreased metabolites.

E-F. MetaMapp visualisation of the same metabolomics data highlighting the differential metabolic
regulation and the organisation of metabolic clusters based on KEGG reactant pair information and
Tanimoto chemical similarity matrix. Only metabolites significantly different (adjusted p-value < 0.05)
were used to build the network. Metabolite levels that were higher in exposed mice have been
labelled as red nodes ; those with lower levels have been marked in blue (continuous scale with
white intermediate). P-values is encoded in node size (lowest p-value = highest size). Cluster are
indicated. Metabolites previously clustered together based on their structural similarity could now be
separated according to their different pathway mapping.
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Figure S5. Hierarchical clustering of annotated features based on their median levels in each group of
samples

633 metabolites represented by 876 features and the 4 groups of exposed and control animals were
clustered hierarchically through their relative level (centroid linkage with spearman correlation).
Features corresponding to the same metabolite present in different analytical procedure have been
separated, explaining why a metabolite can appear several times in the Heatmap. Yellow-blue
encoding is used to represent these metabolites according to their absolute amounts. Distance
between levels of samples and metabolites are shown as two tree plots. Subclusters and a couple of
compounds highlighted in the main manuscript or in the Figure 4 are indicated.
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Figure S6. Correlation analysis between metabolic quantification obtained in positive mode

A-C. Correlation plots were created by comparing the observed fold changes of annotated
metabolites quantified in both HILIC and C18 positive mode. Fold change corresponds to the
difference of metabolite levels between the indicated group and control animals. A subcategory
corresponding to acylcarnitine was extracted from other compounds. R coefficient correlation is
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Figure S7. Correlation analysis between metabolic quantification obtained in negative mode

A-C. Correlation plots were created by comparing the observed fold changes of annotated
metabolites quantified in both HILIC and C18 negative mode. Fold change corresponds to the
difference of metabolite levels between the indicated group and control animals. A subcategory
corresponding to fatty acids was extracted from other compounds. R coefficient correlation is

indicated for bulk compounds and fatty acids
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Figure S8. Gene ontology analysis of transcripts significantly dysregulated upon exposure to DPhP

A-C. Gene ontology analysis using the Log2 Fold Change of mRNA expression derived from animals
exposed to the indicated concentration of DPhP vs control animals and performed through
Functional Enrichment Analysis (© STRING Consortium 2019). Results are presented as a volcano plot
of the significant discriminating functions. Terms related to lipid oxidation, lipid metabolic processes
and xenobiotics metabolism are highlighted as indicated.
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Figure S9. Protein interaction network based on significantly dysregulated genes upon exposure to
DPhP.

A-C. Genes significantly dysregulated upon exposure to the indicated concentrations of DPhP and
overlapping the indicated GO term were used to build a protein-protein interaction network (©
STRING Consortium 2019) with a high level of confidence. Genes belonging to a particular network
are highlighted in blue (Mitochondria), red (Peroxisome) or green (glycerophospholipid). Numbers of
edges and nodes are indicated, as well as Protein-Protein-Interaction (PPl) enrichment (see methods).
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Figure S10. Histological alterations induced by exposure to DPhP

A. Liver sections of mice exposed to the indicated concentrations of DPhP or a vehicle were
immunostained with an antibody directed against Hmgcs2. Star, cross and hash denote the
centrilobular, the intermediate and the portal area of the liver, respectively.

B. Liver sections of mice exposed to the indicated concentrations of DPhP or a vehicle were
immunostained with an antibody directed against Perilipin 2. Star, cross and hash denote the
centrilobular, the intermediate and the portal area or the liver, respectively.





