ResearchOpen Access

Dioxin Exposure, from Infancy through Puberty, Produces Endocrine Disruption and Affects Human Semen Quality

    Published: by:131



    Environmental toxicants are allegedly involved in decreasing semen quality in recent decades; however, definitive proof is not yet available. In 1976 an accident exposed residents in Seveso, Italy, to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).


    The purpose of this study was to investigate reproductive hormones and sperm quality in exposed males.


    We studied 135 males exposed to TCDD at three age groups, infancy/prepuberty (1–9 years), puberty (10–17 years), and adulthood (18–26 years), and 184 healthy male comparisons using 1976 serum TCDD levels and semen quality and reproductive hormones from samples collected 22 years later.


    Relative to comparisons, 71 men (mean age at exposure, 6.2 years; median serum TCDD, 210 ppt) at 22–31 years of age showed reductions in sperm concentration (53.6 vs. 72.5 million/mL; p = 0.025); percent progressive motility (33.2% vs. 40.8%; p < 0.001); total motile sperm count (44.2 vs. 77.5 × 106; p = 0.018); estradiol (76.2 vs. 95.9 pmol/L; p = 0.001); and an increase in follicle-stimulating hormone (FSH; 3.58 vs. 2.98 IU/L; p = 0.055). Forty-four men (mean age at exposure, 13.2 years; median serum TCDD, 164 ppt) at 32–39 years of age showed increased total sperm count (272 vs. 191.9 × 106; p = 0.042), total motile sperm count (105 vs. 64.9 ×106; p = 0.036), FSH (4.1 vs. 3.2 UI/L; p = 0.038), and reduced estradiol (74.4 vs. 92.9 pmol/L; p < 0.001). No effects were observed in 20 men, 40–47 years of age, who were exposed to TCDD (median, 123 ppt) as adults (mean age at exposure, 21.5 years).


    Exposure to TCDD in infancy reduces sperm concentration and motility, and an opposite effect is seen with exposure during puberty. Exposure in either period leads to permanent reduction of estradiol and increased FSH. These effects are permanent and occur at TCDD concentrations < 68 ppt, which is within one order of magnitude of those in the industrialized world in the 1970s and 1980s and may be responsible at least in part for the reported decrease in sperm quality, especially in younger men.

    In the last 50 years a significant global decline in human sperm concentrations of about 1% per year (Auger et al. 1995; Carlsen et al. 1992; Menchini-Fabris et al. 1996; Sharpe and Skakkebaek 1993; Swan et al. 2000) has been reported in Western countries, although with regional differences (Jorgensen et al. 2001; Swan et al. 2003). Furthermore, the youngest generations within a single country have been found to have lower sperm counts (Andersen et al. 2000; Auger et al. 1995; Van Waeleghem et al. 1996).

    These phenomena may be related to increasing exposures to estrogenic, anti-estrogenic, or antiandrogenic chemicals during critical phases of testicular development (Damstra et al. 2002; Sharpe 2001; Sharpe and Skakkebaek 1993). Exposures to poly-chlorinated dibenzo-p-dioxins (PCDDs), polychlorinated biphenyls (PCBs), and poly-chlorinated dibenzofurans (PCDFs), which are products and by-products of industrial or combustion processes, have the potential to disrupt multiple endocrine pathways and induce toxic responses. For example, experimental animal data have shown adverse effects in testicular function, including reduced sperm counts and motility, after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Faqi et al. 1998; Mably et al. 1992; Roman and Peterson 1998).

    The prenatal and perinatal periods are particularly sensitive, and indeed, higher exposure doses are required to produce similar effects in adult animals (Damstra et al. 2002; Roman and Peterson 1998; Theobald et al. 2003). No definitive data are available for men, but Guo et al. (2000) observed alterations in sperm morphology and motility after prenatal exposure to PCBs/PCDFs in the Yucheng cohort, and Hauser et al. (2005) reported a decrease in sperm motility as a consequence of exposure to PCBs and phthalates in adults.

    An explosion on 10 July 1976 at a trichlorophenol manufacturing plant near Seveso, Italy (Bertazzi et al. 2001; Mocarelli et al. 1986) released up to 30 kg of TCDD (Di Domenico et al. 1990; Needham et al. 1997).

    We investigated the relationship between serum TCDD concentrations in 1976 and semen quality and male reproductive hormones 22 years later. The men studied were exposed either during infancy/prepuberty, puberty, or during early adult life.

    Materials and Methods


    A total of 397 Caucasian males (of the eligible 415) from the highly TCDD-contaminated A zone (Di Domenico et al. 1990; Needham et al. 1997) and from nearby contaminated areas, all of whom were 1–26 years of age in 1976, were invited to participate in the study conducted in 1997–1998 (Figure 1). Frozen serum samples (generally ≤ 1 mL in volume) from blood collected in 1976–1977 from these subjects were available for TCDD measurements.

    A total of 372 consecutive healthy volunteer blood donors the same age as the exposed men, but not living in TCDD-contaminated areas (i.e., they were not exposed to TCDD by the Seveso explosion) were also invited to participate (Figure 1). All participants were first screened for any hidden disease by clinical laboratory tests for liver, bone marrow, kidney, and pancreatic functions. All participants with specific diseases or conditions (Table 1) were excluded.

    The participants completed a questionnaire on health and socioeconomic status and donated blood and semen samples (samples were collected the morning after having been sexually abstinent for at least 3 days). The study protocol was approved by the Institutional Human Subjects Committee. All study participants gave written informed consent.

    Laboratory data

    Semen samples

    Participants collected a postmasturbatory semen sample at home. Each sample was transported at approximately body temperature to the Desio Hospital laboratory and kept at 37°C until examination, which occurred within 1 hr after ejaculation and tests were performed in blind by the same two technicians according to the World Health Organization (WHO 1982) recommendation. Ejaculate volume was calculated gravimetrically. Sperm motility was assessed at 400× magnification on a microscope heating stage (37°C) in duplicate, and the average value was recorded. Sperm concentration was measured using a Bürker-Türk chamber at phase contrast (400× magnification). Morphology was evaluated by the same observer on 300 Papanicolaou-stained sperm per slide (David et al. 1975; Jouannet et al. 1988).

    Serum hormone analyses

    Fasting blood samples were obtained on the same morning as semen collection. An aliquot of serum was stored at −80°C and analyzed for hormone levels in large batches to reduce interassay variability. Serum 17β-estradiol (E2), follicle-stimulating hormone (FSH), inhibin B, and luteinizing hormone (LH) were measured according to established immunofluorimetric methods, and testosterone was measured by radioimmunoassay. Quality control protocols were applied with strict criteria for all tests.

    Serum TCDD measurements

    Vials containing 0.6–1.0 mL serum samples stored frozen since 1976–1977 were analyzed for TCDD by isotope-dilution mass spectrometry at the Centers for Disease Control and Prevention (Patterson et al. 1987). Serum TCDD concentrations (parts per trillion on serum lipid basis) were also determined in samples drawn in 1997–1998 from all individuals whose 1976–1977 serum TCDD value exceeded 15 ppt [then the “background level” (Needham et al. 1997)] and in pooled samples of men from uncontaminated areas to assess the background levels in 1998/2002. The samples with concentrations less than the detection limit were assigned a value half of that limit.

    Statistical analyses

    We established and maintained a general database using SAS software (version 8.2; SAS Institute Inc., Cary, NC, USA). The exposed and comparison groups were divided, according to the developmental stage of the reproductive system (Sharpe et al. 2003), into three 1976 age classes: infancy/prepuberty, puberty, and young adult (1–9, 10–17, and 18–26 years of age, respectively). Sensitivity analyses were performed to test the cutoff among the age groups. Sperm and hormone data were fitted with a general linear model including group, age class, interaction group × age class as terms, and with abstinence length (not considered for hormone analysis), smoking status (total number of cigarettes smoked per day during months of habitual smoking), body mass index (BMI), and chronic exposure to solvents and other toxic substances in the furniture-manufacturing industry as covariates. We applied scale transformations to approximate normal distribution and homoscedasticity: sperm concentration, total sperm count, progressive motile sperm count, and concentrations of E2, testosterone, and FSH were log-transformed; semen volume and concentrations of LH and inhibin B were square-root–transformed. Results were expressed as back transformation of least squares means (i.e., the means adjusted for all the terms in the model). Two families of comparisons were considered: “among groups within age-class” and “among age classes within group.” According to the Bonferroni principle, a 0.025 comparison-wise risk of type I error ensures a family-wise risk of type I error ≤ 0.05.


    The biological and socioeconomic characteristics of the two study groups were similar, except for a higher education level and lower occupation in the furniture-manufacturing industry in the comparison group (Table 1). These differences did not affect the comparison between exposed and unexposed groups; the effect of the inclusion of these variables as covariates in the model was negligible.

    The incidence of self-reported varicocele or cryptorchidism were not statistically different in the exposed and comparison groups; however, we excluded these men from the analyses.

    The 1976 serum TCDD concentrations of eligible men who did and did not participate in the study were similar (Figure 1). The TCDD concentrations (Figure 2A, 2B) were also comparable among exposed age groups. Median serum TCDD levels in 1998 (Figure 2C, 2D) were higher in males exposed in 1976 as adults than in males who were exposed as children. This is in agreement with the much shorter TCDD half-life in children (Aylward et al. 2005; Kreuzer et al. 1997), but this observation did not explain any statistically significant effects.

    We assumed that serum TCDD concentrations for the comparison groups were ≤ 15 ppt in 1976–1977 (Needham et al. 1997) and < 6 ppt in 1998/2002 on the basis of serum results for residents of uncontaminated areas around Seveso (Mocarelli P, unpublished data). Because the only dioxin-like chemical involved with the Seveso incident was TCDD, we focused on TCDD for these analyses. If TCDD acts in concert with other dioxin-like chemicals in affecting sperm quality, the total dioxin toxic equivalency (TEQ) should be considered. In nine serum pools from females residing in the uncontaminated area in 1976, Eskenazi et al. (2004) found an average TEQ of 100 ppt.

    TCDD exposure and semen quality

    In 71 men exposed at 1–9 years of age (mean, 6.2 years), serum TCDD concentrations (median, 210 ppt) had a significant effect on semen quality measured 22 years later. Indeed, significant decreases in sperm count (p = 0.025), progressive sperm motility (p = 0.001), and total number of motile sperm (p = 0.01) were observed relative to the comparison group (Table 2). Quartile distribution (Figure 3A, 3C) shows that serum TCDD concentrations ≤ 113 ppt (median of first quartile, 68 ppt) adversely affected sperm concentration and total motile sperm count.

    In contrast to the observed effects on men exposed at 1–9 years of age, exposure (median TCDD serum concentration, 164 ppt) at 10–17 years of age (mean, 13.2 years) resulted in effects that appeared to be stimulatory to semen parameters (Table 2 and Figure 3B, 3D).

    In 20 men 40–47 years of age who were exposed to TCDD (serum concentration, 15.5–1,310 ppt; median, 123 ppt) at 18–26 years of age (mean, 21.5 years), we found no statistically significant differences for any of the sperm variables compared with the 32 men in the comparison group. Moreover, no trends in these variables were related to different TCDD serum concentrations in 1998. Also, we observed no statistically significant differences for sperm morphology between exposed and comparison groups.

    TCDD exposure and hormone levels

    Men exposed to TCDD at 1–9 and 10–17 years of age had lower serum E2 concentrations (p < 0.001) and higher serum FSH concentrations (p = 0.055 and p = 0.038, respectively) than the comparison groups (Table 2). We found differences in E2 at TCDD concentrations < 53 ppt (Figure 3E, 3F). In contrast, subjects exposed at 18–26 years of age (mean, 21.5 years) showed no differences in concentrations of E2 (p = 0.248) or other hormones relative to the comparison group. Exposure status had no effect on testosterone or inhibin B concentrations in any group.

    Comparison between TCDD exposure during infancy and during puberty

    The semen of men exposed to TCDD at 1–9 years of age presented significantly greater effects relative to their respective comparisons than semen from men exposed at 10–17 years of age (Table 2). Indeed, the former group showed statistically significant lower sperm concentrations (p = 0.008), total sperm counts (p = 0.004), progressive motility (p = 0.005), and total motile sperm counts (p < 0.001) than the latter. No statistically significant differences were noted among the comparison groups (Table 2).


    This study on men from Seveso provides evidence of a permanent disruptive effect of TCDD on the human male reproductive system, depending on the age at exposure. Prepubertal children (< 9 years of age) are very sensitive to TCDD, with a reduction of sperm concentration and motility observed at serum levels < 68 ppt (equivalent to a body burden of about 12 ng/kg body weight). In contrast, exposure to TCDD during puberty causes an increase of these semen parameters. If men who are first exposed at 1–9 years of age continued to be exposed at 10–17 years of age to higher than background levels, we would expect the effects to balance out. However, this is not the case. One possible explanation is the much shorter TCDD half-life (months, not years) in young children. Therefore, some of the children exposed at 1–9 years of age may have had a low dose of TCDD (> 15 ppt background level) still present at puberty, which did not determine a stimulatory effect; the other possibility is the presence of a higher dose at puberty, which nevertheless did not produce a stimulatory effect. Therefore, this contributes to the hypothesis of a permanent effect (Mocarelli et al. 2000); note the striking differences between men exposed at 1–9 years of age compared with those exposed at 10–17 years as shown in Table 2. Indeed, exposure to endocrine-disrupting chemicals during the period when “programming” of the endocrine system is in progress may result in a permanent change of function or sensitivity to stimulatory/inhibitory signals (Damstra et al. 2002). One consequence of these opposite effects in infancy compared with puberty could be that the action of dioxin and similar pollutants in the general male population is obscured because the two effects could cancel out each other to give an average normal appearance.

    However, in both age groups, TCDD exposure results in a significant reduction in serum E2 levels in adulthood. It is important to note that the TCDD body burden and serum levels of these men were within background levels for that time period, demonstrating a permanent effect of the original low dose they received (Figure 2). No effect was observed at all when exposure to TCDD occurred during adulthood.

    This study has several strengths. First, we have clearly and directly related original exposure levels of the ubiquitous environmental endocrine disruptor TCDD to reproductive outcomes years after exposure. Second, the participants of the study are fully representative of the available eligible population. Third, the TCDD concentrations affecting children, particularly boys, is similar to the maternal TCDD body burden that has been shown to induce a reduction in sperm numbers in adult rats exposed in utero and/or during lactation to TCDD (Faqi et al. 1998; Mably et al. 1992; Roman and Peterson 1998; Theobald et al. 2003) and to serum concentration shown to decrease the sex ratio (Mocarelli et al. 1996 and 2000) in offspring of TCDD-exposed men at Seveso. These serum concentrations are also lower than the concentrations shown at Seveso to induce a slight, nonstatistically significant increased risk of endometriosis (Eskenazi et al. 2002) and breast cancer (Warner et al. 2002) in women, and developmental dental aberrations in men exposed at ages younger than 5 years (Alaluusua et al. 2004).

    However, the study may be weak because of sampling problems involving voluntary sperm analysis. A bias, mainly due to low compliance (∼ 20–40%), has been recorded using sampling as a representation of the general population (Jorgensen et al. 2001). To deal with such bias, we chose healthy blood donors from a nearby area; this group of men showed a high compliance (∼ 60%) (Table 1) and may be considered representative of the general healthy male population. In any case, we were able to overcome a possible bias by the observation of very significant differences between the 22- to 31-year-old and the 32- to 39-year-old exposed groups (Table 2), whereas no differences were seen between the equivalent comparison groups.

    A possible role of chronic exposure to solvents or other toxic substances used in the furniture-manufacturing industry has been ruled out by similar exposure (Table 1) and by multivariate statistical analysis.

    Currently, no data directly relate TCDD exposure at a young age with human sperm quality. The only similar data are those on effects of PCBs and phthalates: Hauser et al. (2005) reported a decrease of sperm motility after exposure to PCBs and phthalates as in our case; and Guo et al. (2000) observed alterations in sperm morphology after prenatal exposure to PCBs/PCDFs (unlike our data) after an incident in Taiwan in 1979. Also, in Taiwan, men exposed to PCBs/PCDFs at 18–30 years of age showed abnormal sperm morphology (Huang et al. 2003). These researchers, however, did not measure PCB/PCDF concentrations at exposure and did not show modification in sperm number, as is the case in the present study. This effect, present in experimental animals (Roman and Peterson 1998; Theobald et al. 2003), could have gone unnoticed because of the absence of exposure data on children in those studies.

    Possible explanations

    The contrasting effects of infant versus pubertal TCDD exposure on sperm count and the lack of effect in adults may have a physiologic explanation related to differences in the hormonal regulation of Sertoli cell proliferation with age (Sharpe et al. 2003).

    Final Sertoli cell number is the main determinant (other than abstinence period) of sperm count in men (Sharpe et al. 2003). Proliferation of these cells in humans occurs during three periods: fetal, postnatal (0–8 months of age), and probably prepubertal. Thus, in the present study, a similar exposure during the prepubertal period (average age, 6.2 years) suppresses Sertoli cell number, whereas exposure during the peripubertal period stimulates Sertoli cell number. This differential action may reflect diversities in the mechanisms that regulate Sertoli cell proliferation at these two time points. Androgens may be the primary stimulator of perinatal and prepubertal proliferation (Atanassova et al. 2005), whereas peripubertal proliferation is driven principally by FSH (Johnston et al. 2004). Differential effects of TCDD on androgen and FSH action in infancy compared with puberty may provide a ready explanation for the observed differences in sperm count.

    TCDD and other dioxin-like chemicals produce their effects primarily through the aryl hydrocarbon receptor (AhR). Activation of AhR by dioxin, therefore, could be a mechanism by which androgen action is reduced; this could explain the observed decrease in sperm count in adults who were exposed to TCDD as young children (i.e., when Sertoli cell development is more testosterone dependent). This hypothesis is supported by the observation that in utero exposure of human males to maternal smoking causes reduced sperm counts in the offspring at adulthood; this probably is a result of reduced Sertoli cell number (Jensen et al. 2004; Storgaard et al. 2003) due to the action of polycyclic aromatic hydrocarbons present in cigarette smoke on AhR.

    In contrast, when TCDD contamination occurs at puberty, Sertoli cell proliferation is primarily FSH dependent. E2 is a potent negative regulator of FSH secretion, and studies have shown that E2 suppression of FSH can reduce Sertoli cell proliferation and number (Johnston et al. 2004).

    TCDD-induced reduction of E2 levels (and corresponding elevation of FSH levels), as shown in adults exposed during infancy or puberty (present study), may indicate that increased FSH levels during puberty may lead to increased Sertoli cell proliferation, and hence, to higher sperm counts in adulthood. Although a similar change may have occurred in boys exposed during infancy, the effect of FSH on Sertoli cell proliferation at this age may be insignificant and/or it may be counteracted by the negative repercussions related to suppression of androgen action. Exposure to TCDD after puberty (i.e., after completion of the reproductive system) would not modify estrogen concentration or semen quality, which is consistent with our results.

    Taken together, our data are consistent with the untested hypothesis that TCDD exposure during sensitive developmental “windows” may affect expression of responsive genes (with or without the effects of estrogens and/or androgens), permanently altering the programming of the primordial germ cells.

    The effect of AhR signaling could be stimulatory or inhibitory, depending on the interplay of factors that include the level of dioxin exposure, the period of sensitivity and/or development of the target cells, and the actual level of key regulatory molecules, including the androgen-estrogen balance. It could also explain the lack of effect of TCDD on spermatogenesis of the mature reproductive system and the “normal morphology” of sperm of exposed men.


    Our results directly demonstrate a reduction in E2 and a permanent effect on semen quality in human males as a result of the disruptive action of low concentrations of TCDD on the endocrine system. This occurs after exposure especially in infancy/prepuberty, less in puberty, and not in adulthood, at levels, until recently, that were seen in the general population of many industrialized countries. Our data could explain, at least in part, the reported reduction (Andersen et al. 2000; Menchini-Fabris et al. 1996; Van Waeleghem et al. 1996) of semen quality of the youngest populations in Western countries. In fact, these data demonstrate that serum concentrations of about 100 TEQ are border limits; however, at these levels, effects on E2 concentration and on the developing male reproductive system begin to be produced. Certain human populations, especially children during breast-feeding (Link et al. 2005), may have a total body burden of dioxin-like chemicals close to this limit. Sensitive children can also be affected at lower concentrations; it will be of interest to see if, as a result of public health efforts in decreasing dioxin levels [from a TEQ level in children in Seveso in 1976 of about 100 ppt (Eskenazi et al. 2004) to about 10 ppt in Germany in 2002/2003 (Link et al. 2005)], there will be a reversal in the reported reduction of semen quality. One remaining significant question will be to determine whether in utero exposure will affect human sperm quality.

    Figure 1 Flow chart of study showing the relationship between eligible men in 1976, participant men in 1998, and the comparison group on the effects of exposure to TCDD at different ages (1–9; 10–17; 18–26 years) on reproductive hormones and semen quality. Values in parentheses indicate the percentage of men respective to the eligible ones.

    aMedian TCDD serum concentration in 1976 (ppt on a serum lipid basis). bVery highly exposed men (> 2,000 ppt) were excluded: 10 men who were 1–9 years old in 1976 and 6 men who were 10–17 years old in 1976, with median serum concentrations of 6,350 ppt and 3,700 ppt, respectively; none of the men exposed at 18–26 years of age was exposed to > 2,000 ppt TCDD. cFor information about this group, see Table 1. dSerum TCDD concentrations for the comparison groups were assumed to be ≤ 15 ppt in 1976 and < 6 ppt in 1998. eValues in parentheses indicate compliance of the comparison group.

    Figure 2 Box plots showing dioxin concentration on a serum lipid basis (A,C) and body burden [ng/kg body weight (bw); B,D] in the same men in 1976 (A, B) and in 1998 (C, D). Values shown are median (line within box), 25th and 75th percentiles (bottom and top of box, respectively), and outliers (circles). Whiskers indicate values within 1.5 times the interquartile range (25th–75th percentiles), and values in parentheses indicate number of men. Serum dioxin concentrations in comparison groups were < 15 ppt in 1976 and < 6.0 ppt in 1998. Because weight was not available in medical records for most of the subjects, dioxin body burden was mostly derived in 1976 using normal percentile distribution of weight according to age.

    Figure 3 TCDD quartile distribution (adjusted mean and 95% confidence interval) of sperm concentration (A, B), total motile sperm count (C, D), and serum E2 (E, F) for exposed men and of same-age comparison groups [A,C,E; men who were 1–9 years of age in 1976 (22–31 years of age in 1998); B,D,F; men who were 10–17 years of age in 1976 (32–39 years of age in 1998). Median concentrations of TCDD quartiles (shown in parentheses) are expressed as parts per trillion on a serum lipid basis in 1976.

    Table 1 Characteristics of study participants by age at time of study.

    Exposed (n = 257)
    Comparison (n = 372)
    Characteristic by age group22–3132–3940–4722–3132–3940–47
    Age class (years)
     At exposure to dioxin in 19761–910–1718–26
    No. recruited for the study130903717613660
     No. refused402911755223
     No. interested9061261018437
     Percent compliance696870576262
    No. excluded from the study (n)a
     Urological diseases1111
     Hormonal therapy111
     Varicocele and cryptorchidism021120
    Participants (n)714420827131
     Age [years (mean ± SD)]
      At the time of the test28.1 ± 2.535.0 ± 2.243.3 ± 2.227.3 ± 2.935.5 ± 2.343.1 ± 2.3
      At exposure to dioxin in 19766.2 ± 2.513.2 ± 2.221.5 ± 2.2
     BMI (%)b
      < 2553.554.545.076.853.541.9
      > 301.44.615.
     Education level (%)
      ≤ Middle school46.561.470.029.339.451.6
      High school46.534.125.042.643.735.5
      Current student2.817.1
     Tobacco use (%)
        ≤ 5 cigarettes/day1.
       > 5 cigarettes/day25.320.510.030.532.422.5
     Maternal smoking during pregnancy (%)
     Alcohol use (%)
       ≤ 10 g /day18.315.920.
      11–20 g /day2.
      21–30 g /day8.
      > 30 g /day70.472.780.063.462.064.5
     Employment status (%)
       Furniture manufacturing10.038.620.
      School, other21.127.345.032.949.338.6
     Exposure to chemical substances (%)c69.

    aExcluded for self-reported causes (questionnaire) or because of pathologic results of clinical laboratory tests (aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, C-reactive protein, glucose, creatinine, complete blood cell count and differential, hemoglobin, hepatitis B surface antigen, hepatitis B core antibody, hepatitis C. Urine analysis was performed for all subjects.


    cMostly organic solvents, adhesives, paints, colors, and powders (wood, hides, metals).

    Table 2 Differences in sperm and hormone data between men exposed to TCDD and nonexposed comparison groups by age at time of study (age at dioxin exposure in 1976).

    EG vs. CG
    22–31 vs. 32–39
    Characteristic by age group
    22–31 (1–9)
    32–39 (10–17)
    Participants (n)71448271
    TCDD exposure (pptb level median)
     In 1976210c164c≤15d≤15d
     In 19983.044.67< 6.0< 6.0
    Sperm concentration (106/mL)0.0250.2130.0080.817
     Mean ± SDe21.8–131.837.8–177.931.7–165.924.2–152.8
     Adjusted meane48.687.467.170.5
     Adjusted mean ± SE43.1–54.874.7–102.359.4–75.761.3–81.1
    Total sperm count (106)0.1680.0420.0040.663
     Mean ± SD55.8–428.2132.3–559.083.9–498.162.8–586.0
     Adjusted mean149.8302.8186.1206.5
     Adjusted mean ± SE131.5–170.7255.2–359.3163.2–212.3177.3–240.4
    Semen volume (mL)0.1960.1790.6620.818
     Mean ± SD1.50–5.462.12–5.171.64–4.931.87–5.36
     Adjusted mean3.403.603.033.13
     Adjusted mean ± SE3.16–3.653.28–3.932.81–3.272.86–3.41
    Progressive motility (%)f0.0010.1870.0050.673
     Mean ± SD19.6–46.928.9–53.327.3–54.223.4–51.3
     Adjusted mean32.442.140.038.5
     Adjusted mean ± SE30.5–34.339.6–44.638.1–41.936.3–40.7
    Total motile sperm count (106)g0.0180.036< 0.0010.866
     Mean ± SD11.2–174.040.0–277.025.6–234.515.8–267.0
     Adjusted mean41.8121.968.472.2
     Adjusted mean ± SE35.2–49.797.2–152.757.5–81.559.1–88.3
    E2 (pmol/L)0.0010.0010.3500.240
     Mean ± SD59.4–97.754.5–101.667.1–137.267.8–127.3
     Adjusted mean73.579.390.399.3
     Adjusted mean ± SE70.4–76.874.8–83.986.4–94.494.3–104.5
    FSH (IU/L)0.0550.0380.3840.600
     Mean ± SD2.03–6.322.84–5.931.68–5.281.69–6.05
     Adjusted mean3.584.062.983.22
     Adjusted mean ± SE3.31–3.873.66–4.512.75–3.232.93–3.53
    Testosterone (nmol/L)0.4930.1450.5150.981
     Mean ± SD12.4–21.810.7–19.013.6–23.111.8–19.5
     Adjusted mean15.915.316.416.4
     Adjusted mean ± SE15.4–16.514.6–16.015.8–17.015.8–17.1
    LH (U/L)0.9790.0090.5570.156
     Mean ± SD1.57–4.161.28–3.261.67–4.201.64–3.90
     Adjusted mean2.542.362.542.98
     Adjusted mean ± SE2.38–2.702.16–2.572.38–2.712.78–3.19
    Inhibin B (pg/mL)0.5270.2270.6400.321
     Mean ± SD74.8–172.078.9–162.274.3–171.156.8–179.2
     Adjusted mean123.4117.1117.8104.8
     Adjusted mean ± SE116.0–131.1107.7–126.9110.5–125.396.9–113.0

    Abbreviations: CG, comparison group; EG, exposed group. Threshold for significance (α= 0.05) is 0.025.

    ap-Values refer to differences adjusted by smoking status (total number of cigarettes per day during months of habitual smoking), chemical substances (mostly organic solvents, adhesives, paints, colors, wood, hides, or metal powders), age at the time of tests, BMI, alcohol use (g/day), education level, employment status, and abstinence time (days) for sperm data. Hormone data were not adjusted for education level, employment status, and abstinence time.

    bSerum lipid basis.

    cRanges of serum TCDD concentrations in 1976 and 1998 are shown in Figure 2.

    dDioxin level in comparison groups was obtained from pools of sera from people living in uncontaminated areas.

    eValues derived from back-transformation of log (sperm concentration, total sperm count, total motile sperm count, E2, testosterone, and FSH) and square-root transformation (semen volume, LH, and inhibin B); adjusted as described above. Normal values fall inside this range.

    fConsidered as A + B progressive motility of sperm, according to the WHO (1982).

    gConsidered as A + B progressive motility of sperm per total sperm count, according to the WHO (1982).

    We are indebted to all the people of the Seveso area for their civic example of courage and responsibility in a dramatic situation and for their great cooperation in permitting this sensitive study. We thank E. Acmet, L. Basso, and M. Solaro (University Department of Laboratory Medicine, Hospital of Desio) for special assistance, and all the staff of our laboratories. We also thank J. Auger (Hospital Cochin, Paris, France) for his training on classification of sperm morphology.

    This study was supported by grant 2896 from Regione Lombardia, Milano, Italy, and by the Centers for Disease Control and Prevention.


    • Alaluusua S, Calderara P, Gerthoux PM, Lukinmaa PL, Kovero O, Needham Let al.. 2004. Developmental dental aberration after the dioxin accident in Seveso. Environ Health Perspect 112:1313-131815345345. LinkGoogle Scholar
    • Andersen AG, Jensen TK, Carlsen E, Jorgensen N, Andersson AM, Krarup T. 2000. High frequency of sub-optimal semen quality in an unselected population of young men. Hum Reprod 15:366-37210655308. Crossref, MedlineGoogle Scholar
    • Atanassova NN, Walker M, McKinnell C, Fisher JS, Sharpe RM. 2005. Evidence that androgens and oestrogens, as well as follicle-stimulating hormone, can alter Sertoli cell number in the neonatal rat. J Endocrinol 184:107-11715642788. Crossref, MedlineGoogle Scholar
    • Auger J, Kunstmann JM, Czyglik F, Jouannet P. 1995. Decline in semen quality among fertile men in Paris during the past 20 years. N Engl J Med 332:281-2857816062. Crossref, MedlineGoogle Scholar
    • Aylward LL, Brunet RC, Carrier G, Hays SM, Cushing CA, Needham LLet al.. 2005. Concentration-dependent TCDD elimination kinetics in humans: toxicokinetic modelling for moderately to highly exposed adults from Seveso, Italy, and Vienna, Austria, and impact on dose estimates for the NIOSH cohort. J Expo Anal Environ Epidemiol 15:51-6515083163. Crossref, MedlineGoogle Scholar
    • Bertazzi PA, Consonni D, Bachetti S, Rubagotti M, Baccarelli A, Zocchetti C. 2001. Health effects of dioxin exposure: a 20-year mortality study. Am J Epidemiol 153:1031-104411390319. Crossref, MedlineGoogle Scholar
    • Carlsen E, Giwercman A, Keiding N, Skakkebaek N. 1992. Evidence for decreasing quality of semen during the past 50 years. BMJ 305:609-6131393072. Crossref, MedlineGoogle Scholar
    • Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G. 2002. Global Assessment of the State-of-the-Science of Endocrine DisruptorsAvailable:[accessed 26 February 2007]. Google Scholar
    • David G, Bisson JP, Czyglik F, Jouannet P, Gernigon C. 1975. Anomalies morphologiques du spermatozoïde humain. 1: Propositions pour un système de classification. J Gynecol Obstet Biol Reprod 4(suppl 1):17-36. Google Scholar
    • Di Domenico A, Cerlesi S, Ratti S. 1990. A two-exponential model to describe the vanishing trend of 2,3,7,8-tetraclorodibenzo-p-dioxin (TCDD) in the soil of Seveso, Northern Italy. Chemosphere 20:1559-1566. CrossrefGoogle Scholar
    • Eskenazi B, Mocarelli P, Warner M, Needham L, Patterson DG, Samuels Set al.. 2004. Relationship of serum TCDD concentrations and age at exposure of female residents of Seveso, Italy. Environ Health Perspect 112:22-2714698926. LinkGoogle Scholar
    • Eskenazi B, Mocarelli P, Warner M, Samuels S, Vercellini P, Olive Det al.. 2002. Serum dioxin concentrations and endometriosis: a cohort study in Seveso, Italy. Environ Health Perspect 110:629-63412117638. LinkGoogle Scholar
    • Faqi AS, Dalsenter PR, Merker HJ, Chahoud I. 1998. Reproductive toxicity and tissue concentrations of low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin in male offspring rats exposed throughout pregnancy and lactation. Toxicol Appl Pharmacol 150:383-3929653070. Crossref, MedlineGoogle Scholar
    • Guo YL, Hsu PC, Hsu CC, Lambert GH. 2000. Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans. Lancet 356:1240-124111072947. Crossref, MedlineGoogle Scholar
    • Hauser R, Williams P, Altshul L, Calafat AM. 2005. Evidence of interaction between polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ Health Perspect 113:425-43015811833. LinkGoogle Scholar
    • Huang W, Yao WJ, Wu MH, Guo YL, Lambert GH. 2003. Sperm changes in men exposed to polychlorinated biphenyls and dibenzofurans. JAMA 289:2943-299412799401. Crossref, MedlineGoogle Scholar
    • Jensen TK, Jorgensen N, Punab M, Haugen TB, Suominen J, Zilaitiene Bet al.. 2004. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. Am J Epidemiol 159:49-5814693659. Crossref, MedlineGoogle Scholar
    • Johnston H, Backer PJ, Abel M, Charlton HM, Jackson G, Fleming Let al.. 2004. Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 145:318-32914551232. Crossref, MedlineGoogle Scholar
    • Jorgensen N, Andersen AG, Eustache F, Irvine DS, Suominen J, Petersen JHet al.. 2001. Regional differences in semen quality in Europe. Hum Reprod 16:1012-101911331653. Crossref, MedlineGoogle Scholar
    • Jouannet P, Ducot B, Feneux D, Spira A. 1988. Male factors and the likehood of pregnancy in infertile couples. I. Study of sperm characteristics. Int J Androl 11:379-3843235207. Crossref, MedlineGoogle Scholar
    • Kreuzer PE, Csanády GA, Baur C, Kessler W, Papke O, Greim Het al.. 1997. 2,3,7,8-Tetrachloro-dibenzo-p-dioxin (TCDD) and congeners in infants: a toxicokinetic model of human lifetime body burden by TCDD with special emphasis on its uptake by nutrition. Arch Toxicol 71:383-4009195020. Crossref, MedlineGoogle Scholar
    • Link B, Gabrio T, Zoellner I, Piechotowski I, Paepke O, Herrmann Tet al.. 2005. Biomonitoring of persistent organochlorine pesticides, PCDD/PCDFs and dioxin-like PCBs in blood of children from South West Germany (Daded-Wuerttembergs) from 1993 to 2003. Chemosphere 58:1185-120115667840. Crossref, MedlineGoogle Scholar
    • Mably TA, Bjerke DL, Moore RW, Gendron-Fitzpatrick A, Patterson RE. 1992. In utero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3. Effects on spermatogenesis and reproductive capability. Toxicol Appl Pharmacol 144:118-1261585364. Crossref, MedlineGoogle Scholar
    • Menchini-Fabris F, Rossi P, Palego P, Simi S, Turchi P. 1996. Declining sperm counts in Italy during the past 20 years. Andrologia 28:3049021039. Crossref, MedlineGoogle Scholar
    • Mocarelli P, Brambilla P, Gerthoux PM, Patterson DG, Needham LL. 1996. Change in sex ratio with exposure to dioxin [Letter]. Lancet 348:4098709758. Crossref, MedlineGoogle Scholar
    • Mocarelli P, Gerthoux PM, Ferrari E, Patterson DG, Kieszak SM, Brambilla Pet al.. 2000. Paternal concentrations of dioxin and sex ratio of offspring. Lancet 335:1858-186310866441. Crossref, MedlineGoogle Scholar
    • Mocarelli P, Marocchi A, Brambilla P, Gerthoux PM, Young DS, Mantel N. 1986. Clinical laboratory manifestations of exposure to dioxin in children: a six-year study of the effects of an enviromental disaster near Seveso, Italy. JAMA 256:2687-26952877102. Crossref, MedlineGoogle Scholar
    • Needham LL, Gerthoux PM, Patterson DG, Brambilla P, Turner WE, Beretta Cet al.. 1997. Serum dioxin levels in Seveso, Italy, population in 1976. Teratog Carcinog Mutagen 17:225-2409508732. Crossref, MedlineGoogle Scholar
    • Patterson DG, Hampton L, Lapeza CR, Belser WT, Green V, Alexander Let al.. 1987. High-resolution gas-chromatography/high-resolution mass spectrometric analysis of human serum on a whole weight and lipid basis for 2,3,7,8-tetra-chlorodibenzo-p-dioxin. Anal Chem 59:2000-20053631519. Crossref, MedlineGoogle Scholar
    • Roman BL, Peterson RE, Korach KS. 1998. Developmental male reproductive toxicology of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and PCBs. Reproductive and Developmental ToxicologyNew YorkMarcel Dekker593-624. Google Scholar
    • Sharpe RM. 2001. Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett 120:221-23211323180. Crossref, MedlineGoogle Scholar
    • Sharpe RM, McKinnell C, Kivlin C, Fisher JS. 2003. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769-78412773099. Crossref, MedlineGoogle Scholar
    • Sharpe RM, Skakkebaek NE. 1993. Are estrogens involved in falling sperm counts and disorders of the male reproductive tract?Lancet 341:1392-13958098802. Crossref, MedlineGoogle Scholar
    • Storgaard L, Bonde JP, Ernest E, Spano M, Andersen CY, Frydenberg Met al.. 2003. Does smoking during pregnancy affect sons’ sperm counts?Epidemiology 14:278-28612859027. Crossref, MedlineGoogle Scholar
    • Swan SH, Brazil C, Drobnis EZ, Liu F, Kruse RL, Hatch Met al.. 2003. Geographic differences in semen quality of fertile U.S. males. Environ Health Perspect 111:414-42012676592. LinkGoogle Scholar
    • Swan SH, Elkin EP, Fenster L. 2000. The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Environ Health Perspect 108:961-96611049816. LinkGoogle Scholar
    • Theobald HM, Kimmel GL, Peterson RE, Schecter A, Gasiewicz TA. 2003. Developmental and reproductive toxicity of dioxins and related compounds. Dioxins and Health 2Hoboken, NJJohn Wiley & Sons329-431. Google Scholar
    • Van Waeleghem K, De Clercq N, Vermenlen L, Schoonjans F, Comhaire F. 1996. Deterioration of sperm quality in young healthy Belgian men. Hum Reprod 11:325-3298671218. Crossref, MedlineGoogle Scholar
    • Warner M, Eskenazi B, Mocarelli P, Gerthoux PM, Samuels S, Needham Let al.. 2002. Serum dioxin concentration and breast cancer risk in the Seveso women’s health study. Environ Health Perspect 110:625-62812117637. LinkGoogle Scholar
    • WHO (World Health Organization). 1982. Laboratory Manual for the Examination of Human Semen and Sperm-cervical Mucus InteractionCambridge, UKCambridge University Press. Google Scholar