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BACKGROUND: Two of the most important causes of global disease fall in the realm of environmental health: household air pollution (HAP) and poor
water, sanitation, and hygiene (WASH) conditions. Interventions, such as clean cookstoves, household water treatment, and improved sanitation
facilities, have great potential to yield reductions in disease burden. However, in recent trials and implementation efforts, interventions to improve
HAP and WASH conditions have shown few of the desired health gains, raising fundamental questions about current approaches.

OBJECTIVES: We describe how the failure to consider the complex systems that characterize diverse real-world conditions may doom promising new
approaches prematurely. We provide examples of the application of systems approaches, including system dynamics, network analysis, and agent-
based modeling, to the global environmental health priorities of HAP and WASH research and programs. Finally, we offer suggestions on how to
approach systems science.

METHODS: Systems science applied to environmental health can address major challenges by a) enhancing understanding of existing system structures
and behaviors that accelerate or impede aims; b) developing understanding and agreement on a problem among stakeholders; and c) guiding interven-
tion and policy formulation. When employed in participatory processes that engage study populations, policy makers, and implementers, systems sci-
ence helps ensure that research is responsive to local priorities and reflect real-world conditions. Systems approaches also help interpret unexpected
outcomes by revealing emergent properties of the system due to interactions among variables, yielding complex behaviors and sometimes counterin-
tuitive results.
DISCUSSION: Systems science offers powerful and underused tools to accelerate our ability to identify barriers and facilitators to success in environ-
mental health interventions. This approach is especially useful in the context of implementation research because it explicitly accounts for the interac-
tion of processes occurring at multiple scales, across social and environmental dimensions, with a particular emphasis on linkages and feedback
among these processes. https://doi.org/10.1289/EHP7010

Introduction
Two environmental risk factors underlie the substantial global dis-
ease burden affecting young children and vulnerable populations
around the world: household air pollution (HAP) exposure and
deficiencies in water, sanitation, and hygiene (WASH). Both HAP
and WASH face challenges to underlying assumptions regarding
the viability of known interventions to achieve intended and sus-
tained reductions in disease burden. Observational studies of HAP
have consistently shown strong associations with adverse health
conditions throughout the life course, including pneumonia, hyper-
tension, and adverse birth outcomes (Thakur et al. 2018), as well as

all-causemortality (Hystad et al. 2019). PoorWASH is also associ-
ated with a range of adverse health outcomes, including enteric vi-
ral, bacterial, and protozoan pathogen infections and diarrheal
disease, schistosomiasis, and soil-transmitted helminth infections
(Clasen et al. 2015; GBD 2016 Risk Factors Collaborators 2017).
Technological solutions designed, investigated, and evaluated in
laboratory settings, including clean cookstoves and water filters,
offer promising solutions, but seldom deliver expected results
when implemented in real-world settings (Clasen and Smith 2019;
Sesan et al. 2018). Recently completed randomized controlled tri-
als (RCTs) have returned disappointing results for interventions
that are already in widespread use, raising questions regarding ba-
sic assumptions of efficacy, effectiveness, potential for scale-up,
and technology and policy options to address these priority envi-
ronmental health concerns (Luby et al. 2018; Mortimer et al. 2017;
Null et al. 2018).

In the present paper we consider HAP and WASH together,
despite their different exposures and etiologies, because of four
important commonalities. First, the greatest disease burden for
both is concentrated in the poorest populations of low- and
middle-income countries (LMICs), especially in rural and peri-
urban areas. Second, although both HAP and WASH are subject
to important policy-based social service and infrastructure chal-
lenges, they are commonly addressed with interventions at the
household and community levels (e.g., cleaner cookstoves,
latrines, and water filtration devices). Third, these technology-
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focused interventions have both struggled to achieve the high lev-
els of reach, adoption, and adherence necessary to reduce expo-
sure and improve health. Finally, the emissions/effluents from
one home have wider ecological impacts or spillover effects, sug-
gesting that high levels of adoption are required in order to
achieve favorable health outcomes at individual, household, and
community scales (Sesan et al. 2018).

Here we argue that a systems science approach offers powerful,
underused tools to develop guidance for intervention design and
implementation in HAP and WASH. Systems science is the appli-
cation of scientific methods to the understanding of complex sys-
tems. It allows for consideration of problems and solutions across
multiple dimensions, at various scales, and is dynamic in scope. A
focus on systems challenges reductionist explanations that seek to
explain behavior in terms of properties of constituent parts (Bunge
1997; Capra and Luisi 2014) and considers emergent properties
that cannot be understood by reducing behavior to constituent
terms. Challenges to implementing and sustaining evidence-based
interventions, especially in complex socio-environmental arenas,
are often systemic in nature; and thus, systems science methods
may be especially appropriate (Luke et al. 2018). Systems science
is an important complement to the randomized controlled trial
approach that has dominated both HAP and WASH research in
recent years. Unexpected and often disappointing trial results sug-
gest that a different approach to studying implementation processes
and outcomes is needed.

In public health, systems science methods have been applied
to a wide range of issues including tobacco policy and regulation,
cancer prevention, infectious disease, obesity and diabetes pre-
vention, intentional injury, health systems, drug abuse/addiction,
and others (Luke and Stamatakis 2012). To date, their application
to environmental health challenges is limited (Currie et al. 2018).

Where HAP Programs Have Underdelivered
Since the 1950s, many efforts at scales ranging from the local to the
national have sought to improve household access to clean cook-
stoves (Manibog 1984). The vast majority of efforts prior to 2000
focused on decreasing consumption of solid fuels to reduce per-
ceived pressure on forest resources, and subsequently, global
warming contributions from the same fuels accelerated interest in
the field (Rosenthal 2015; K Smith et al. 2000). With recognition
of the enormous health burden of HAP over the past decade, the
household energy sector has turned its focus to promoting meas-
ures with the greatest potential for mitigating this adverse health
burden. Focusing on health goals has raised expectations for clean
cooking technologies and their implementation considerably, but
supposedly clean cookstove interventions have not always deliv-
ered desired improvements in health. Despite air pollution reduc-
tions of 50% or more in the most successful programs, post-
intervention levels of fine particulate matter (PM≤ 2:5 lm in aero-
dynamic diameter) generally remained 2–40 times higher than the
World Health Organization interim air quality guideline of
35 lg=m3 average annual concentration in homes with the new
stoves (Quansah et al. 2017).

Randomized trials with cleaner stoves or fuels have also
returned mixed results (Alexander et al. 2017; Mortimer et al.
2017; Smith et al. 2011; Thompson et al. 2011; Tielsch et al.
2016). Some of the shortfalls are related to inherent limitations of
the technologies. A well-understood limitation of previous house-
hold energy programs was that air pollution emissions from
improved cookstoves in community settings greatly exceeded
what was expected based on laboratory testing (Coffey et al.
2017; Eilenberg et al. 2018). Clean fuel interventions with lique-
fied petroleum gas (LPG), electric induction, ethanol, biogas, and
pellet-fueled gasifier stoves have consistently outperformed

traditional and improved solid-fuel stoves in both laboratory and
field studies (Champion and Grieshop 2019; Jagger et al. 2017;
Wathore et al. 2017) and are the most likely to achieve the
desired air quality and health benefits.

Beyond these technology lessons, several implementation
issues have emerged, leading HAP interventions to fall short of
expectations. These include low initial adoption rates for clean
fuels and stoves (Lewis and Pattanayak 2012; Mobarak et al. 2012;
Troncoso and Soares da Silva 2017), concomitant use of polluting
stoves (stove stacking) among adopters (Masera et al. 2000;
Puzzolo et al. 2016), and issues with supply chains and cost for
both stoves and fuels (Jagger andDas 2018; Puzzolo et al. 2019).

Finally, because most relevant LMIC homes are relatively
open to outdoor air, ambient air quality sets the floor for house-
hold exposure levels. Evidence is growing that household cook-
ing can be a major contributor to poor local outdoor air quality
(Butt et al. 2016; Chowdhury et al. 2019a; Snider et al. 2018) and
its associated health effects (Conibear et al. 2018). Still poorly
understood are the degree and conditions under which greater
density and coverage of clean cooking interventions at scale can
reliably reduce background ambient pollution (although see
Chowdhury et al. 2019b for estimates for India).

The accumulating body of evidence from experiments, obser-
vational studies, and models over the past two decades has led to a
consensus in the health science community that achieving major
reductions in levels of HAP will require at least three important
shifts in the way HAP programs and policies are conceived. First,
the technology, including fuels, must emit little to no particulate
matter (Wathore et al. 2017; World Health Organization 2014).
Second, individual households must rely on clean fuels and stoves
for the overwhelming majority of their energy needs, with only
very occasional combustion of polluting fuels for any purpose
(Johnson and Chiang 2015). Third, local ambient conditions need
also be relatively clean, probably requiring high, effective cover-
age of clean cooking at the community and larger levels (see, e.g.,
Weaver et al. 2019).

Where WASH Programs Have Underdelivered
Through the first half of the last century, higher-income settings
implemented large-scale infrastructural solutions such as sewer-
age, centralized water and wastewater treatment, and piped water
to homes, achieving significant improvements in health (Cutler
and Miller 2005). In contrast, in rural LMIC settings, such invest-
ments were (and continue to be) insufficient, especially in sewer-
age. As such, improvements in water and sanitation were
traditionally focused on expanding access to improved, but low-
cost, technologies (protected wells and springs, pit latrines) that
were suitable for scaling up in rural settings. Other household-
scale approaches, including behavior change programs to promote
handwashing and promotion of water filtration devices to provide
clean water at the point of use, were steadily advanced by develop-
ment agencies and local nongovernmental organizations (Dangour
et al. 2013; Darvesh et al. 2017). These approaches were believed
to be cost-effective solutions because they did not require substan-
tial expenditures on infrastructure. With limited resources, lower-
income countries continued to implement these low-cost
approaches to WASH, with some affirming evidence of efficacy in
randomized and nonrandomized trials and systematic reviews
through the early 2000s (Esrey et al. 1985, 1991).

In more recent years, a number of rigorous randomized trials of
low-cost interventions in WASH yielded findings of little or no
effect for most outcomes of interest, including diarrhea, linear
growth, stunting, and helminth infections (Clasen et al. 2015).
Examples include large sanitation trials in India (Clasen et al.
2014; Patil et al. 2014) and trials of multiple WASH and nutrition
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interventions in Bangladesh (Luby et al. 2018), Kenya (Null et al.
2018), and Zimbabwe (Humphrey et al. 2019). Except for the
Bangladesh trial, which reported protective effects from the sanita-
tion and handwashing interventions, none of these trials showed
thatWASH interventions were protective against diarrhea or stunt-
ing. Some of these studies were effectiveness trials of program-
matically delivered interventions in which investigators explored
the effects of improved water supplies, household water treatment,
improved sanitation, and handwashing with soap (Clasen et al.
2014; Dangour et al. 2013; Patil et al. 2014; Sinharoy et al. 2017).
In those cases, the investigators generally found poor intervention
quality, coverage, uptake, or use—failures that could explain the
lack of protective health effects because of incomplete interruption
of exposure to human enteric pathogens.

Correct, consistent, and sustained adoption of healthy WASH
practices, including handwashing with soap, was also shown to
present important behavior change barriers (Freeman et al. 2014;
Martin et al. 2018). Increasingly, poor compliance was shown to be
fundamentally limiting for most WASH interventions (Brown and
Clasen 2012).However, even in efficacy trials inwhich the interven-
tions achieved high levels of compliance (Humphrey et al. 2019;
Luby et al. 2018; Null et al. 2018), results were disappointing.

These recent studies highlight both our limited understanding
of whichmodes of diarrheal disease transmission are dominant and
how these might vary by environmental context. Some pathways,
such as food and animals, are not effectively addressed with basic
WASH infrastructure. Furthermore, we are learning that many
water supply systems periodically deliver unsafe water, often due
to intermittent operation (Bivins et al. 2017). Studies of low-cost
approaches to drinking water revealed that, even if safe at the point
of collection, water was often contaminated with fecal pathogens
during storage in the home (Levy et al. 2008; Wright et al. 2004).
In some cases, exposures may also arise from zoonotic agents not
addressed by conventional sanitation interventions (Berendes et al.
2018; Daniels et al. 2016; Penakalapati et al. 2017).

WASH is considerably more mature than the HAP field and
offers experience with more types of interventions. The HAP
community can learn a great deal from WASH experiences
(Clasen and Smith 2019; Sesan et al. 2018). However, results
from these recent WASH trials also suggest that major challenges
underlie the successful implementation of environmental health
interventions in low-income settings. Despite a much deeper evi-
dence base to draw upon, WASH continues to be a major public
health concern for most low-income countries.

Diagnosing the Problem
When outcome measures fall short of expectations, commentators
frequently focus on the inadequacies of the technology. As
described in the preceding two sections, there are numerous exam-
ples of projects that have underdelivered because of shortcomings
of the technology. Many improved biomass stoves do not deliver
the air pollution reductions required to greatly minimize adverse
health impacts, although they do reduce fuel use and may provide
some reduction in air pollution (Jagger et al. 2017). Improved
water supplies do not necessarily provide water that is safe at the
point of collection (Bain et al. 2014), in part because most house-
hold water treatment options fail to cover the full array of water-
borne pathogens or fail to keep water safe after it is treated
(Shaheed et al. 2014). Even if water is effectively treated, the bene-
fits of household-level water quality interventions are realized only
if they are used exclusively (Enger et al. 2013).

Furthermore, focusing primarily on the household level may
not always be the appropriate scale of implementation and evalua-
tion.Household–to–ambient air pollution interactions (Huang et al.
2015), and herd immunity to diarrheal disease demonstrate

substantial indirect effects at the community level (Fuller and
Eisenberg 2016). Associated nonlinear exposure–response rela-
tionships (Burnett et al. 2014; Jung et al. 2017) mean that density
and coverage of the intervention may be critical. In some cases,
this becomes evident during efficacy-stage testing under relatively
controlled conditions. However, it is more commonly apparent
when the interventions are deployed in communities at scale.

Importantly, even effective, scaled interventions may fall short
when attempted in a new environment. LPG cooking interventions
may be very effectivewhere air pollution exposure is dominated by
indoor sources, but in highly polluted urban environments, they
may not reduce fine particulate and other air pollutants sufficiently
to reach the threshold levels thought necessary to achieve health
gains (Liu et al. 2019), but see Chowdhury et al. (2019b) for an esti-
mate of ambient effects of a large-scale clean fuel intervention in
India. AWASH intervention that is effective in one setting may be
wholly ineffective in another where there is a different dominant
pathogen or transmission pathway (Eisenberg et al. 2007).
Relevant social variables include individual, community, or insti-
tutional behaviors. This may also reflect larger-scale systems prob-
lems related to supply chains, availability of substitutes (e.g.,
freely available biomass fuels), price instability, and regulatory
challenges that these technologies confront in real-world settings,
especially in LMICs (Thomas 2016).

Finally, sustained effectiveness of most public health interven-
tions is a major challenge. In low resource settings, program leaders
often find themselves trapped in cycles of iterative attempts tomain-
tain or improve outcomes in the original communities. Decline in
adherence to proven use protocols is common without continual
reinforcement of behavior change messages over time (Brown and
Clasen 2012) or adequate supply or servicing of new technologies
required to achieve exposure reductions (Jagger and Das 2018). For
example, wide-scale efforts to encourage community-led total sani-
tation in rural low-income settings have suffered from backsliding
(slippage) to open defecation (Venkataramanan et al. 2018).
Importantly, even if an intervention is effective initially, exogenous
conditions may change over time. For example, economic factors
such as price increases or supply chain failures make clean fuels
(Puzzolo et al. 2019) and water treatment devices (Schmidt and
Cairncross 2009) and their maintenance less accessible. Migration
to and from communities may fundamentally affect social or envi-
ronmental patterns necessary to maintain the health benefits of the
intervention (Eisenberg et al. 2006). Climate change brings unfore-
seen flooding, potentially distributing contaminants across the
household and the village (Mertens et al. 2019). For each of these
likely developments, the intervention no longer works in the way it
did under prior conditions.

RCTs have enormous power to provide internal validity (i.e.,
high causal inference/attribution) and insights into adoption and
adherence in tightly controlled experimental settings. RCTs also
have a critical role in defining the scalable unit of an intervention
(e.g., a combined technology and behavior change package).
However, external validity of trial results can be often limited by
contextual factors that underlie success or shortfalls in programs,
including environmental and social differences of the sort described
in the preceding paragraphs. Given the recent history of failures of
larger effectiveness and translational trials for these environmental
health interventions, some may conclude that they just are not effec-
tive, or alternatively, that theywere inadequately deployed.

However, the importance of both endogenous and contex-
tual factors as critical determinants of sustainability and scal-
ability suggests that different analytical approaches are needed
to support the development of effectiveness and translational
studies whether these are conducted through RCTs or other
approaches.
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Cycles in Environmental Health Intervention Policies

At the policy level, we often see a pattern of initial success,
excitement, and hype around a potentially effective interven-
tion, followed by real-world failures or shortfalls and subse-
quent loss of political and financial support to the next big
thing. Even potentially important interventions are often rolled
out before there is sufficient evidence to guide them, and a
wave of premature enthusiasm and associated financing effec-
tively set them up for failure (Little et al. 2012). Clean cooking
and water filtration interventions illustrate this pattern ele-
gantly. Gartner’s Hype Cycle (Fenn and Raskino 2008) is a
widely employed conceptual tool from the technology business
community to describe and predict the path of development to
establishment of a new technology in industry. In Figure 1 we
map the history of HAP and WASH interventions onto
Gartner’s Hype Cycle to illustrate how a similar pattern has
unfolded in the environmental health intervention science and
policy communities.

The clean cooking movement received new impetus and rapid
increases in investment beginning in 2010 when the HAP disease
burden was recognized, and improved cookstoves were perceived
by the policy community to offer win-win-win solutions for health,
climate, and women’s empowerment (Bhattacharyya and Light
2010). As the scientific and development communities gradually
uncovered significant shortcomings in cookstove programs enthu-
siasm began to wane and international funding for this work
declined precipitously (Figure 1A). Today, some believe that we
may have lost important momentum because of these incautious
efforts (Ezzati and Baumgartner 2017). Ironically, this has

occurred as the field is maturing scientifically and greater under-
standing of what benefits are achievable as well as a greatly
improved understanding of the socioeconomic and environmental
conditions for successful and sustainable interventions are accru-
ing rapidly.

Parallels in WASH include household water filtration technol-
ogy (Figure 1B) and community-led total sanitation (CLTS), both
potentially transformative interventions initially supported by
substantial research and programmatic efforts, only to have rigor-
ous trial results reveal limitations to the approaches (Brown et al.
2019). Enthusiasm for household-level chlorination has been
tempered by challenges in supply chains, low adoption, and new
evidence on the prevalence of chlorine-resistant diarrheagenic
agents such as Cryptosporidium (Kotloff et al. 2019). The fact
that interventions may not live up to the initial hype should not
mask the real benefits such solutions can deliver: for example,
household water treatment technologies have shortcomings, but
systematic reviews of the evidence base reveal the approach’s
potential as an interim solution that can improve water quality
and reduce diarrheal disease in vulnerable populations (Clasen
et al. 2015).

Whether intervention shortfalls are due to efficacy, effective-
ness, implementation challenges, or changes to underlying ena-
bling conditions, failures may result in enormous social and
financial costs. Before the Clean Cooking Alliance focused their
efforts toward clean fuels, approximately 40 million homes
received improved stoves (ISO tiers 1–2) (Global Alliance for
Clean Cookstoves 2017) for which there is little to no evidence of
health benefits (although some reductions in greenhouse gas
emissions, quantity of fuel used, and time spent collecting fuels
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Figure 1. (A) Household air pollution (HAP)—clean cookstove history mapped onto Gartner’s Hype Cycle (adapted from Fenn and Raskino 2008). (B)
Water, sanitation, and hygiene (WASH)—point-of-use water treatment history mapped onto Gartner’s Hype Cycle (adapted from Fenn and Raskino 2008).
Note: HWTS, household water treatment and safe storage; NGO, nongovernmental organization; R&D, research and development; WHO, World Health
Organization.
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are possible). Worse are projects that have led to large negative
unintended consequences, usually due to incomplete knowledge
about the context. A tragic example is the arsenic poisoning epi-
demic in Bangladesh that resulted from a decades-long program
to reduce diarrheal disease by installing tube wells into naturally
contaminated soil strata (AH Smith et al. 2000). A consequence
is that today populations in Bangladesh are still grappling with
diarrheal disease from exposure to contaminated surface water,
simultaneous with poisoning from exposure to arsenic from tube
wells (Yunus et al. 2016) and social conflict regarding access to
safe water (Sultana 2011).

What Implementation Science Offers
Implementation science (IS) is a relatively new field that provides a
set of theoretical, analytical, and experimental methods to under-
stand the processes that make interventions successful and sustain-
able in service delivery programs at scale and over time (Colditz and
Emmons 2019; Glasgow et al. 2004; Madon et al. 2007; Rosenthal
et al. 2017; Yamey 2011). The field draws on conceptual frame-
works that focus analysis on those types of organizational and com-
munity processes that are required for broad and sustained uptake of
new evidence-based programs and policies (Damschroder et al.
2009; Tabak et al. 2012). Increasingly, implementation science
frameworks are linked to RCTs that aim to evaluate hypotheses
regarding the importance of specific approaches to, for example,
individual or household behavior change, or adoption of an inter-
vention by institutions in a given setting (Curran et al. 2012).

The ability to understand the aspects of programs that enable
successful transfer from one setting to another is a key compo-
nent of successful implementation at scale. Because multisite
RCTs are expensive, programs are sometimes launched based on
efficacy studies or limited range effectiveness trials (Madon et al.

2007) without examining implementation variables such as
context-specific adoption or maintenance needs that may be criti-
cal to the success of the intervention. The implicit assumption in
these cases is that future projects can invest in adapting effective
interventions to new conditions elsewhere in the world.
Implementation research uncovers factors that may be influential
to success by offering experimental and analytical frameworks to
systematically consider and evaluate individual and institutional
behaviors and environmental variables that are often obscured or
assumed to be constant (Glasgow et al. 1999; Rosenthal et al.
2017).

Systems Science Expands Implementation Science
Approaches
Systems science offers powerful, underused tools to develop les-
sons for intervention design and implementation in both HAP
and WASH. Broadly speaking, systems science is the application
of scientific methods to the understanding of complex systems
(Galea et al. 2010). Systems science has been embraced by some
in the implementation science community because of its utility to
describe, analyze, and simulate complex systems that defy tradi-
tional methods (Burke et al. 2015; Hammond and Dubé 2012).
Importantly, systems science does not make an a priori commit-
ment that all phenomena are best understood in terms of systems.
Rather, it provides tools for consideration of phenomena that
may not be amenable to analyses focusing on decomposed sys-
tem elements and their properties. Challenges to implementing
and sustaining evidence-based interventions, are often systemic
in nature and, thus, systems science methods may offer much
promise (Luke et al. 2018).

System science methods include a variety of tools that gener-
ally fall under the following categories: network analysis (NA),

Successful use of HWTS 
in controlling cholera 
outbreaks

Early trials and systema�c 
reviews sugges�ng drama�c 
reduc�ons of diarrheal disease

Rapid development of new 
technologies and approaches by 
public and private sectors

Reduced donor 
investments in 
HWTS strategy

Studies show 
large declines in 
use over �me

Refinement of HWTS 
roles in specific se�ngs, 
including in disaster 
response

Focus on user 
behaviors and the 
technology/user 
interface

Re-framing use from 
“silver bullet” to one 
strategy in WASH tool 
box

Con�nued itera�on 
on technology design 
and delivery

Research on sustainability 
and mul�- household 
approaches that reduce 
need for behavior change

Release of WHO 
tes�ng data 

Evidence of poor 
adherence to water 
quality interven�ons

Cri�cism of unblinded 
trials with subjec�ve 
outcome measures

Evidence of water quality 
improvements in 
reducing diarrheal 
disease

Large-scale rollout of 
HWTS at scale in 
mul�ple countries

Technology 
trigger

Peak of inflated 
expecta�ons

Trough of 
disillusionment

Plateau of 
produc�vity

Slope of 
enlightenment

time

expectations
WHO establishes 
performance guidelines 
for HWTS

Gartner’s Hype Cycle WASH – Water Filtration History B

Figure 1. (Continued.)
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system dynamics (SD), agent-based modeling (ABM), and in
some cases Geographic Information Systems (GIS). Some of
these methods are more descriptive and oriented toward statistical
analysis and visualization of data (e.g., network analysis, geo-
graphic information systems), whereas others are more focused
on theory development and computational modeling (e.g., system
dynamics, agent-based modeling) (Table 1). The use of GIS is al-
ready well developed in the environmental health community
(see, e.g., Nuckols et al. 2004; Peng et al. 2018). Here, we focus
primarily on opportunities for advancing HAP and WASH with
three modeling approaches, network analysis, system dynamics,
and agent-based modeling. In Table 1 and the following para-
graphs we provide a brief description of each of these methods
and references for more detailed information.

Network analysis focuses on the relationships among sets of
actors. The actors can be any type of entity that can have a rela-
tionship or tie with others: point sources, persons, animals, organ-
izations, countries, websites, documents, and even genes. These
networks provide information on social structure that can play an
important role in either promoting or mitigating disease proc-
esses. Almost all NA makes use of one or more of three different
analytic modes: network visualization, network description, and
statistical modeling of networks.

System dynamics (SD) is based on the idea that system behavior
(e.g., the frequency of exposures over continuous time) results from
the interplay of a set of feedbackmechanisms or loops relating accu-
mulations and their corresponding rates of change or flows. Models
of the feedback system can be described informally using a series of
causal diagrams or more formally as a system of nonlinear ordinary
differential equations that can be simulated on a computer. System
behavior is then explained in terms of an explicit set of balancing
and reinforcing feedback loops, whether that is at an aggregate, indi-
vidual, or multilevel system (Richardson 2020; Sterman 2018). The
visual conventions of SD (e.g., casual loop diagrams, stock and flow
diagrams) have evolved into a set of participatory methods for
involving communities and other stakeholders in the process of con-
ceptualizing, formulating, and analyzing the results ofmodels called
group model building (e.g., Hovmand 2014; Richardson and
Andersen 1995; Vennix 1996).

Agent-based modeling (ABM) uses computer simulation to
study complex systems from the ground up, by analyzing how

individual elements of a system (agents) behave as a function of
individual properties, their environment, and their interactions with
each other. Through these behaviors, emergent properties of the
overall system are revealed. Compared with SD, this results in a
form of decentralizedmodeling where there is no formalized defini-
tion of global system behavior; that is, feedback mechanisms are
implicit (vs. explicit in SD) and emerge through the interaction of
agentswithin their environment.

Transparency and replicability remain cornerstones of science,
and systems science tools are no exception (Barton et al. 2020). In
principle, computational models used in systems science (e.g., sys-
tem dynamics and agent-based modeling) offer an added level of
transparency relative to more traditional statistical approaches by
making assumptions fully explicit (e.g., as a set of differential equa-
tions or programming code) that can be independently explored and
modified to test the implications of assumptions,measurement errors,
research designs, and so on through sensitivity analysis. This has the
advantage over traditional statistical approaches in that one can
explore the robustness of a policy to system states beyond what has
been historically observed or collected as part of an experiment—
something that is highly relevant when we consider structural
changes in environmental health triggered by global trends such as
climate change, pandemics, and forced displacement of populations
due to conflict and environmental disasters. However, this potential
to be more transparent is often lost when computational models
become overly complicated, lack adequate documentation, or
require computational resources with limited access (Meadows and
Robinson 1985; Pilkey and Pilkey-Jarvis 2007). A number of stand-
ards have, therefore, emerged for reporting guidelines (e.g., Caro
et al. 2012; Rahmandad and Sterman 2012).

Although applications of systems approaches are growing in
other health implementation arenas, to date, systems applications in
environmental health have been limited. Eisenberg et al. (2012)
reviewed the history of diarrheal disease research and identified
how systems approaches would be helpful in understanding interde-
pendencies across multiple enteric disease transmission pathways.
Zelner et al. (2012) used network analysis to understand connected-
ness between and within communities in relation to reported
diarrheal events and found that high connectedness between com-
munities enhances risk of disease, as expected. However, high con-
nectedness within a community reduces risk of diarrheal disease.

Table 1. Three systems science tools.

Tool Focus Key strengths Source data Key references

Network analysis (NA) Relationships between actors Visualization; identification of
structure in social systems;
can be empirical or model
based

Surveys, observations, administra-
tive data (e.g., membership ros-
ters, emails), social media data

Luke and Harris 2007;
Valente 2010, 2012

System dynamics (SD) Dynamic behavior generated
by an explicit set of feed-
back mechanisms over time

Identifying endogenous sour-
ces of dynamic behavior in
a set of feedback loops;
ability to identify key lever-
age points for system
interventions

Time series to establish empirical
basis for reference modes; em-
pirical research results that pro-
vide estimates for model
parameters and initial condi-
tions; key informant interviews,
direct observation, group model
building, expert panels, and
grounded theory approaches to
qualitative data analysis for
structural relationships

Rahmandad et al. 2015;
Sterman 2018

Agent-based modeling
(ABM)

Emergent patterns from inter-
action of actors with struc-
tured exposures

Ability to examine interaction
of individual or groups of
actors with each other and
with their social and physi-
cal environments; can deal
with actor and environmen-
tal heterogeneity

ABMs can take advantage of all of
the data sources mentioned for
NA and SD. For example, theo-
ries can be used to design agent
rules; empirical data can be
used to characterize agents and
their physical/social
environments

Epstein 2007
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More recently, scientists applied systems approaches to understand
user behavior in relation to interventions. For example, Kumar et al.
(2017) have examined behavioral dynamics at the community scale
to understand the process of adopting of LPG cooking, and Chalise
et al. (2018) analyzed abandonment of biogas digesters and their
stoves.

Systems science methods applied to environmental health can
be useful for:

• Enhancing understanding of existing system structures and
behaviors—and the types of feedback mechanisms causing
those behaviors—that can accelerate or impede environmen-
tal health aims, including potential unintended consequences.

• Developing understanding and agreement on a problem among
stakeholders, which is particularly important for WASH and
HAP because of their dependence on numerous stakeholders at
the household, community, and policy maker levels. Group
model building, for example, can help bring the diversity of
choices and associated tradeoffs among relevant stakeholders
to the surface, and can facilitate decision-making.

• Guiding intervention and policy formulation, where simula-
tions can be particularly useful to estimate the effects of
interventions before attempting them at scale in populations,
potentially sidestepping some of the significant economic
and social costs of testing the interventions in situ. For
example, Mellor et al. (2014) simulated a water filter inter-
vention to predict sustainability of effectiveness in reducing
diarrheal incidence.
If systems approaches are developed in an iterative participa-

tory process that engages study populations, policy makers, and
implementers, they help ensure that research is responsive to local
priorities and reflects real-world conditions, making research a
more co-creative and less an extractive process (Dilling and Lemos
2011; Eisenberg et al. 2012; Israel et al. 2005;Mauser et al. 2013).

When a model fails to generate the expected outcomes, this
can be due to faulty data or model structure. Faulty data are due
to measurement error, either systematic or random. Faulty model
structure is due to building a model incorrectly (discovered
through verification testing) or building a model of a theory cor-
rectly, but based on a theory that is faulty (discovered through
validation testing). Weak measurement models, verification test-
ing, or validation testing can contribute to a false confidence in a
model of a system. A strong program of validating measurements
and verifying that a model has been built correctly can, however,
falsify a theory. In doing so, a model can typically be advanced
that can offer a stronger alternative explanation for emergent
behavior of a system. In either case (whether discovering and cor-
recting measurement errors and specification errors or advancing
a stronger alternative explanation), the process is consistent with
a progressive program of scientific research (Lakatos 1970).

Some Suggested Applications of Systems Science to HAP
and WASH Problems
An important goal for the application of systems science in the
fields of HAP and WASH is to accelerate learning and flatten the
Hype Cycle (Figure 2) to achieve steadier gains in health out-
comes. This might be characterized as accelerating the pace of
innovation, partly through failing fast or quickly identifying strat-
egies that may not result in changes in exposure. Using systems
approaches in the early design and planning stages of a WASH or
HAP interventional program can help scientists and policy-
makers think more clearly about the larger socioeconomic and
environmental context in which disease occurs and about how
innovations may work at the development, intervention, program,
and sustainment stages over time. In this way, we would hope to
head off many pitfalls, reduce the temporal and financial costs of

failed trials and interventions, and achieve public health impacts
more reliably.

Below are examples of topics in which systems methods might
be applied productively to complex questions in WASH and HAP.

• Behavioral adherence requirements: Behavioral data—such
as from stove use and water filter use monitors—is increas-
ingly integrated into intervention deployment, behavior
monitoring, and exposure assessment efforts. These rich,
time-series data could be combined with network analysis
and agent-based models (Ginexi et al. 2014) to help predict
the effects of a program roll out on exposure for different
levels of adherence to a HAP or WASH intervention. In this
way, investigators could examine their assumptions and
identify potential challenges prior to large-scale and expen-
sive exposure and health assessments. Several investigators
have done work in this area using quantitative microbial risk
assessment (Hayashi et al. 2019).

• Community engagement and design: Community engage-
ment is widely understood to be important for acceptability
and sustainability of an intervention (Israel et al. 2005). It is
especially important when complex individual behaviors
have either social or exposure spillover effects on other
households. Incorporating community-based system dynam-
ics (Hovmand 2014) or another form of group model build-
ing in designing a community-based WASH intervention
can be extremely useful to identify critical behaviors and de-
velop a consensus understanding of how the sanitation and
hygiene practices of one group affects others. An interven-
tion that emerges from this process is much more likely to
be sustained and enforced by the community members indi-
vidually not only because of acceptability borne of commu-
nity participation but also because it is more likely to have
correctly identified local facilitators and barriers to imple-
mentation (Powell et al. 2017).

• Predicting effectiveness: Sanitation interventions aim to inter-
rupt transmission of specific enteric infections, but threshold
effects reflecting herd immunity can be important mediators
of benefits (Fuller and Eisenberg 2016). An analog in HAP
interventionswould be the question of thresholds for coverage
in community-scale programs that reduce ambient pollution
sufficiently to yield health benefits for the population. In the
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Figure 2. Aspirational (flattened hype) cycle that accelerates research, devel-
opment, and scale-up successes of effective environmental health interven-
tions employing systems science methods in the context of implementation
science (hypothetical curve). Note: R&D, research and development.
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sanitation–infection domain, these thresholds have been
explored with transmission models in a variety of contexts
including drinking water. Population-scale models can be
developed using system dynamics tools that force investiga-
tors to specify their mechanistic assumptions and to investigate
how changing these assumptions around exposures, interven-
tion coverage, and adherence might impact disease incidence.
These can be also be linked to networks to evaluate how differ-
ent features of community structure affect outcomes.

• Dissemination/diffusion of interventions: Behaviors, includ-
ing the adoption of new HAP and WASH technologies, often
diffuse through communities through social connections and
word of mouth (Rogers 2003; Valente et al. 2015). Social net-
work analysis helps elucidate the underlying structure of
social ties and could be useful in determining the patterns of
information transfer in a community that will influence the
adoption and use of an environmental health technology.
Understanding the underlying social network structure, more-
over, could shed light on potential interventions that could act
through social networks to influence adoption and use. For
example, social ties could be used to leverage group incentives
for sustained use of LPG cooking (where each member of a
group receives the incentive only if all members demonstrate
the desired behavior) or to identify well-connected influencers
whomight be good targets formarketing and outreach efforts.

• Emergent patterns from individual variation: Fuel and stove
stacking is ubiquitous in clean cooking programs, and yet we
have a limited understanding of the choices people will
make when multiple clean and traditional cooking options
are available. Moreover, population-scale exposure results
from hundreds of thousands of individual choices. Individual
(agent-based) models based on survey data of the diverse
choices people have made and their socioeconomic and envi-
ronmental covariates may offer opportunities to explore
what will happen at scale in relation to diverse influences, as
well as the relative strength of these influences on outcomes.

• Scale-up, bottlenecks, and delays: Advanced gasifier stoves
fueled by compressed wood pellets show promise as a clean
cooking technology for both health- and climate-related objec-
tives (Champion and Grieshop 2019). These stove/fuel combi-
nations are being explored in development programs and
commercial projects, but the technology faces significant chal-
lenges in scale-up and maintenance over time because of feed-
stock supply, pellet production, distribution, and costs to end
users (Jagger and Das 2018). If enough demand is generated,
stress to multiple points in the supply chain is likely to emerge
and this could in turn dampen demand or create a new problem
with unlawful harvesting of trees for feedstock. System dynam-
ics models are particularly well suited to this type of problem
because they allow us to model complex conditions and time
delays across a wide variety of factors, including policy, eco-
nomic, social, and physical variables and then to see how these
play out over time in a given setting through simulation.

• Sustaining interventions: System science approaches are
essential to understand and solve implementation problems
that result from feedback between technologies, social and cul-
tural norms, and livelihood options that are nonlinear and
dynamic. Chalise et al. (2018) identified such feedback mecha-
nisms in sustained use of improved biogas stoves in two com-
munities; one community that sustained high levels of
exclusive biogas use and an adjacent community that largely
abandoned the technology. Using qualitative group model
building and subsequent system dynamics simulation they
traced the community interactions that led to solutions for tech-
nical and maintenance problems with fuel digesters and thus

increased use of the cleaner technology in the one community,
compared with frustration and abandonment by the other. The
group model building and simulation highlight multiple house-
hold, technical, and social factors that are interlinked in a feed-
back structure and cannot be fully understood in isolation.

• Adaptability to environmental change: Behaviors and associ-
ated technologies thatmay functionwell in avoiding ormitigat-
ing environmental health challenges todaymay change quickly
or lag in their ability to adapt to future changes. Climate change
raises a host of challenges for WASH programs, in particular,
andmanyof these are influencedby social context. Cherng et al.
(2019) illustrated the use of social networks in Ecuadorian
communities to measure social cohesion across safe water
sourcing practices, and agent-based models to understand how
these structured communitieswill be able to adapt under chang-
ing flooding and drought conditions.

How to Approach Systems Modeling Productively in
Environmental Health
Environmental health scientists are increasingly turning from
assessing risks to designing and testing interventions. Research
outcomes can catalyze programs and policies that operate at large
spatial scales, and as in HAP and WASH, with great dependence
on individual and community behaviors, it behooves us to
approach interventions with an appreciation of the complexity of
these systems. Environmental health research provides rigorous
methodologies and awide variety of large data sets from both inter-
ventional and observational studies on population-based expo-
sures, behaviors, and correlated health outcomes. Combining rich
data sources with systems modeling may be especially productive
to explore the sensitivity of hoped-for outcomes to assumptions
regarding implementation variables such as household, commu-
nity, or institutional adoption and adherence. This may also help us
consider potential effects of adapting effective interventions to
locally important contextual variables such as other exposure sour-
ces, cost constraints, policy, and infrastructure influences.

As in any interdisciplinary team, depth in both analytical meth-
ods and the environmental health challenge is necessary for suc-
cess. System scientists come from diverse backgrounds, including
sociology, ecology, physics, operations research, management, en-
gineering, public health, and computer science, to name a few.
Spending time at the outset of a collaboration between environ-
mental health, systems scientists, and where relevant, policy
experts, is critical to familiarizing one another with basic concepts
and terminology in their respective fields and to agreeing on the
aims, value, and limitations of various approaches.

For the systems science community, it is important to recog-
nize that most environmental health scientists are trained to
undertake population-based risk assessments using inferential sta-
tistics. Systems approaches often include expert opinion, key in-
formant inputs, or other soft evidence in addition to experimental
results to parameterize a working model. Furthermore, systems
modeling is often conducted with significant data gaps [indeed,
this can be a primary reason for undertaking such modeling, see
Wallace et al. (2015)]. Significant discussions at the outset may
be necessary to ensure that environmental health scientists under-
stand and are comfortable with the approach.

For environmental health scientists, it may be useful to
approach systems modeling as a means of exploring and testing
their own assumptions. We recommend, where possible, an itera-
tive process including participatory or co-creative activities to
frame questions, conceptualizing an initial model, collecting data
to parameterize it, evaluating model output in relation to observa-
tions, improving the model, and then testing interventions in sil-
ico before beginning larger population-based studies. Such
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approaches can allow for evaluation of the plausibility of health
effects via changes in exposure at levels that may be health-rele-
vant—before undertaking large trials using distal outcomes.
Engagement with social, behavioral, and political scientists in the
conceptualization, parameterization, and analysis of systems
models can be important to avoid the omission of critical socio-
demographic, economic, institutional, and macro-level processes
that shape implementation. Participatory methods, such as group
model building, may be particularly useful, especially with
community-based research activities.

There are a variety of ways to build an interdisciplinary team
that include systems scientists within the constraints of project
budgets. At themost basic level, integrating systemsmodeling into
environmental health research can be done by bringing a single
experienced systems modeler into a project at the design stage and
continuing through analyses and interpretation of results. At this
level, the additional expertise may not be a large cost burden for a
project, and it could conceivably fit within, for example, a National
Institutes of Health R21 exploratory grant designed to assess basic
feasibility of an intervention. Of course, modelers may raise ques-
tions that require new data, including, for example, relationships
between community members, expectations of policy-makers, or
economic influences. Modelers may also suggest participatory
processes, surveys, and focus group exercises that the environmen-
tal health researchers did not anticipate. These in turn may require
engagement of more disciplinary expertise or significant computa-
tional coding time and, thus, further expansion of the team to the
R01 or larger level. However, one of the strengths ofmodeling gen-
erally is the ability to work within the constraints posed by the
available data by drawing on a variety of existing or easily acquired
sources to parameterize factors that may be especially challenging
to estimate from what can be collected within a given project. The
key here is understanding which factors require greater certainty
for a given question and end-use plan, andwhich factorsmay allow
for greater uncertainty.

Summary and Conclusion
Systems science approaches offer important and underexploited
tools for environmental health, especially in complex environ-
ments that change over time.Wework in a time of rapid innovation
and with a public health policy community that increasingly seeks
evidence to support decision-making. Both observational and ex-
perimental studies in environmental health generate large data sets
that can be used in both a priori and post hoc systems modeling.
These data have often been gathered using extended, multiyear
efforts, often with high collection costs. Increased use of systems
modeling in implementation research for environmental health
may offer cost-effective approaches with both heuristic value and
practical output to improve design and deployment of interventions
to improve public health. HAP andWASH science are particularly
suitable to systemsmodeling given the complexity of the socioeco-
nomic and environmental contexts that often regulate their effec-
tiveness, implementability, and scale-up potential. Many other
environmental health interventionsmay also benefit from their use.
Increased collaboration among systems and environmental health
scientists has the potential to accelerate lessons and flatten the
Hype Cycle that slows and sometimes dooms promising interven-
tions for public health before we understand their potential.
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