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Background: Climate change is expected to affect the distribution of environmental suitability for 
malaria transmission by altering temperature and rainfall patterns; however, the local and global 
impacts of climate change on malaria transmission are uncertain.

Objective: We assessed the effect of climate change on malaria transmission in West Africa.

Methods: We coupled a detailed mechanistic hydrology and entomology model with climate pro-
jections from general circulation models (GCMs) to predict changes in vectorial capacity, an indica-
tion of the risk of human malaria infections, resulting from changes in the availability of mosquito 
breeding sites and temperature-dependent development rates. Because there is strong disagreement 
in climate predictions from different GCMs, we focused on the GCM projections that produced the 
best and worst conditions for malaria transmission in each zone of the study area.

Results: Simulation-based estimates suggest that in the desert fringes of the Sahara, vectorial 
capacity would increase under the worst-case scenario, but not enough to sustain transmission. 
In the transitional zone of the Sahel, climate change is predicted to decrease vectorial capacity. In 
the wetter regions to the south, our estimates suggest an increase in vectorial capacity under all 
scenarios. However, because malaria is already highly endemic among human populations in these 
regions, we expect that changes in malaria incidence would be small.

Conclusion: Our findings highlight the importance of rainfall in shaping the impact of climate 
change on malaria transmission in future climates. Even under the GCM predictions most condu-
cive to malaria transmission, we do not expect to see a significant increase in malaria prevalence in 
this region.

Citation: Yamana TK, Eltahir EA. 2013. Projected impacts of climate change on environmental 
suitability for malaria transmission in West Africa. Environ Health Perspect 121:1179–1186;  http://
dx.doi.org/10.1289/ehp.1206174

Introduction
The response of malaria transmission to cli-
mate change has been the subject of research 
and intense debate since the mid-1990s, 
and it has been investigated using both 
biological/mechanistic models and statistical 
models (Parham and Michael 2010; Rogers 
and Randolph 2000). Although early stud-
ies reported predictions of a widespread 
increase in malaria transmission (Martens P 
et al. 1999; Martens W et al. 1995; Martin 
and Lefebvre 1995; Tanser et al. 2003), more 
recent studies suggest a shift in distribution 
rather than a large net increase (Ermert et al. 
2012; Lafferty 2009; Thomas et al. 2004).

Previous studies on this topic in West 
Africa have been limited by the relatively 
crude representation of processes dependent 
on rainfall in malaria models, as well as by 
the great uncertainty in climate change pro-
jections in this region. Although the rela-
tionships between temperature and malaria 
transmission are relatively well understood, 
modeling methods that have been used 
up to now to estimate the effect of climate 
change on malaria transmission are lim-
ited in their ability to address the effects 
of changes in rainfall. The primary malaria 
vectors in Africa, Anopheles gambiae sensu 
lato and Anopheles funestus, breed primarily 
in pools of water formed from rainfall. Few 

malaria models attempt to model the causal 
relationships between rainfall and mosquito 
breeding sites, relying instead on rules for 
minimum threshold values of rainfall required 
for malaria transmission to occur (Craig et al. 
1999; Martens et al. 1999), with some mod-
els including an upper threshold of rainfall 
above which additional rainfall is assumed 
to decrease mosquito density (Parham and 
Michael 2010). Shaman et al. (2002) and 
Porphyre et al. (2005) used hydrological mod-
els to link rainfall to the abundance of Culex 
and Aedes mosquitoes, which breed in flood-
waters and serve as the primary vectors for 
several arboviruses. Montosi et al. (2012) used 
an ecohydrological model as well as a simpli-
fied linear model to calculate soil water con-
tent, which was then used to model malaria 
incidence. The processes by which rainfall 
is diverted into pools suitable for Anopheles 
breeding are strongly dependent on the fre-
quency, intensity, and duration of rainfall 
events in addition to site-specific topographi-
cal features, soil characteristics, and vegetation 
cover. The persistence of these pools depend 
on evaporation and infiltration rates; pools 
that dry out before adult mosquitoes emerge 
from eggs are not viable breeding sites.

Here, we bridge the gap between rain-
fall and corresponding mosquito abun-
dances using the Hydrology, Entomology, 

and Malaria Transmission Simulator 
(HYDREMATS) (Bomblies et al. 2008). By 
mechanistically translating rainfall into water 
pools, we can simulate the effects of projected 
changes in climate on malaria transmission 
in West Africa. In addition, we address the 
high uncertainty of climate predictions in this 
region by estimating the impact of changes in 
rainfall over the full range predicted by current 
climate models.

Methods
Model description. We performed data 
simulations to study the impacts of cli-
mate change on environmental suitabil-
ity for malaria transmission in West Africa 
using the HYDREMATS model developed 
by Bomblies et al. (2008), which has been 
used in other recent studies in West Africa 
(Bomblies 2012; Bomblies and Eltahir 2010; 
Bomblies et al. 2009; Gianotti et al. 2009; 
Yamana and Eltahir 2010, 2011). Detailed 
information about HYDREMATS has been 
reported previously (Bomblies et al. 2008). 
In brief, the model is a physics-based hydrol-
ogy model coupled with an individual-
based entomology model that is run at a 
spatial resolution of 10 m with a 1-hr time 
step (see Supplemental Material, Figure S1). 
The hydrology component explicitly repre-
sents water pools available as breeding sites 
to anopheline mosquitoes by simulating the 
flow of rainfall into topographical low points 
and water loss due to evaporation and infil-
tration. The temperature of each water pool 
is computed by solving a system of energy 
balance and heat transfer equations (Bomblies 
et al. 2008).

The HYDREMATS entomology com-
ponent simulates individual mosquito and 
human agents (see Supplemental Material, 
Figure  S1). Human agents are assumed 
to be immobile and are assigned to village 
residences because malaria transmission in 
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this region occurs primarily at night when 
humans are indoors (Service 1993). Mosquito 
agents have a probabilistic response to their 
environment based on a prescribed set of 
rules governing dispersal and discrete events 
including feeding, resting, egg-laying, and 
death (see Supplemental Material, Figure S2, 
Table S1). The model tracks the location, 
infective status, and reproductive status of 
each female mosquito through time.

The aquatic stage of mosquitoes is simu-
lated in water pools. When an adult mos-
quito in the ovipositing stage encounters a 
water pool, the probability that she will lay 
eggs varies depending on water depth. The 
model assumes that eggs in each pool progress 
through four larval stages and a pupal stage 
before emerging as adults at a temperature-
dependent rate developed by Depinay et al. 
(2004) [see Supplemental Material, Methods: 
Development rate of aquatic-stage mosquitoes 
(p. 5) and Table S2]. Aquatic stage mosqui-
toes contained in a pool that dries out are 
killed, reflecting the importance of pool per-
sistence to larval development.

Wherea s  p r ev iou s  s tud i e s  u s ing 
HYDREMATS focused on Anopheles gambiae 
sensu lato mosquitoes, here we also consider 
A. funestus, another important vector in the 
wetter parts of West Africa. The primary dif-
ference between the two types of mosquitoes 
is their breeding preference: Members of the 
A. gambiae complex breed in small, tempo-
rary pools, and A. funestus breeds in larger, 
more persistent water bodies. Both types of 
pools are modeled in HYDREMATS, and we 
do not currently distinguish between species 
of Anopheles mosquitoes. The entomological 
parameters of the model are tuned using data 
for A. gambiae because this complex has been 
studied much more extensively (Coetzee and 
Fontenille 2004). Moreover, we do not expect 
parameter values specific to A. funestus to be 
significantly different because the two types 
of mosquitoes have similar adult survival and 
dispersal behavior (Midega et al. 2007) and 
both are primarily nocturnal, endophagic, 
and anthrophilic (Horsfall 1943).

The model output most relevant to our 
study is the vectorial capacity (VC), which 
is a measure of environmental suitability for 
malaria transmission defined as the average 
number of human inoculations of a parasite 
originating from a single case of malaria if 
all vectors biting the original case were to 
become infected (Garrett-Jones and Grab 
1964). We compute VC using the following 
set of equations:

	 VC = ma2D,	 [1]

where m is the number of female mosquitoes 
per human simulated by HYDREMATS, a 
is the average number of bites taken by each 

mosquito per time step, and D is the expected 
duration of infective life of the mosquito 
(in days). A constant biting rate (a = 0.2) is 
assumed, consistent with observations in this 
region (Garrett-Jones and Shidrawi 1969).

D is defined as the number of days an 
average mosquito will be infective and is a 
function of temperature, maximized at 28°C. 
D is given by the following equation:

	 D = pEIP/–ln(p),	 [2]

where p is the daily survival probability of the 
mosquito, and EIP is the extrinsic incuba-
tion period, defined as the number of days 
Plasmodium falciparum must be present 
within the mosquito before it can be trans-
mitted to humans.

The survival of mosquitoes is given by 
the equation:

	 p = exp[–1/(–4.4 + 1.31T – 0.03T  2)],	 [3]

where T is the daily average air temperature 
in degrees Celsius (Martens 1997). This func-
tion gives maximum longevity in the range 
of 20–25°C, and severe mortality at tempera-
tures < 10°C and > 35°C.

EIP is given by the equation:

	 EIP = 111/(T – 16),	 [4]

where T is the daily average air tempera-
ture in degrees Celsius (Detinova 1962). 
Malaria transmission can only occur when 
the mosquito lifespan exceeds the EIP. We 
also tested the sensitivity of our results to 
an alternate formulation for EIP (Paaijmans 
et  al. 2009)[see Supplemental Material, 
Methods: Alternate EIP formulation (p. 6) 
and Figure S3].

Study area. The climate of West Africa 
is distinctively characterized by strong 
north to south gradients in both tempera-
ture and rainfall (Figure 1A,B). The climate 
is highly seasonal, dominated by the West 
African monsoon. We focused on the region 
bounded by 4°N and 21.5°N, and 18°W and 
16°E, which we divided into five subregions 
(Zones 1–5 in Figure  1), corresponding 
roughly to the following ecoclimate zones, 
respectively: Sahelo-Sahara, Sahel, Soudan, 
Soudano-Guinean, and Guinea Coast 
(Nicholson 1993).

The baseline period for this study 
was 1980–1999, in keeping with the 
Intergovernmental Panel on Climate Change’s 
Fourth Assessment Report (IPCC 2007; 
Solomon et al. 2007). The mean annual rain-
fall and wet-season temperature for each zone 
were calculated for the baseline period using 
standard climate data from Climatic Research 
Unit time-series version 3.1 (CRU) data 
(Mitchell and Jones 2005) (Table 1).

We focused on this West African region 
because of its significant malaria burden. The 
spatial distribution of parasite rate in children 
2–10 years of age in 2007 estimated by the 
Malaria Atlas Project (Hay et al. 2009) indi-
cates that malaria burden increases roughly 
from north to south (Figure 1C). Using the 
malaria endemicity classification proposed by 
Hay et al. (2008), Zone 1 experiences unsta-
ble transmission, Zone 2 is divided roughly 
equally between unstable and moderate stable 
transmission, Zone 3 is a mixture of mod-
erate and intense stable transmission, and 
Zones 4 and 5 are primarily areas of intense 
transmission (Table 1). Malaria transmission 
in regions where transmission is classified as 
unstable is especially sensitive to effects of 
climate on vectorial capacity because human 
populations in these areas have little or no 
acquired immunity and the infrastructure for 
malaria control is likely to be limited.

Design of data simulations: baseline cli-
mate. The first step in estimating the potential 
impacts of climate change on environmen-
tal suitability for malaria transmission was 
to establish vectorial capacity under baseline 
conditions using HYDREMATS and current 
climate data. HYDREMATS is a very fine-
resolution model that runs on the village scale. 
Although this resolution allows us to simulate 
the details of mosquito breeding and malaria 
transmission, its high computational cost 
precludes the simulation of large geographic 
areas. However, West Africa is well known for 
its pronounced north–south climate gradient 
(Figure 1A,B), whereas its climate conditions 
are relatively constant east to west (Eltahir 
and Gong 1996; Nicholson 1993). We there-
fore approximated the VC for each zone by 
simulating conditions for a single hypothetical 
village with climate conditions that are repre-
sentative of that zone. We conducted a 7-year 
simulation at each of the five representative 
locations under baseline climate conditions.

The CRU data set and other monthly pre-
cipitation data available for 1980–1999, the 
baseline period, are of insufficient temporal 
resolution to be used with HYDREMATS, 
which requires as an input a rainfall series 
with an hourly resolution. To represent the 
role of fine-scale variability of rainfall in the 
process of formation of breeding pools, we 
therefore disaggregated the CRU data into an 
hourly rainfall time series [see Supplemental 
Material, Methods: Disaggregation of CRU 
data into hourly rainfall series (p. 8)].

Temperature, wind speed, wind direction, 
and radiation data were taken from the ERA-
Interim data set (Dee et al. 2011). Vegetation 
and soil properties were taken from the 
University of Maryland Department of 
Geography's Global Land Cover Classification 
database (Hansen 1998) and the Harmonized 
World Soil Database, version 1.1 (Food and 
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Agriculture Organization 2013). We assumed 
typical topographical conditions and house-
hold locations as observed in Banizoumbou, 
Niger (Bomblies et al. 2008), that were held 
constant among zones. [See Supplemental 
Material, Methods: Summary of data sources 
(p. 10) and Table S3 for additional informa-
tion on these data sources.]

Design of data simulations: future climate. 
After establishing baseline conditions, we 
repeated the simulations using future climate 
projections as inputs to HYDREMATS. We 
considered the entire range of predictions from 
the 19 general circulation models (GCMs) 
contributing to the A1B emissions scenario of 
the IPCC’s Fourth Assessment report (IPCC 
2007; Solomon et al. 2007). This scenario 
describes a future characterized by rapid eco-
nomic growth; decreased heterogeneity among 
nations through increased interactions, capac-
ity building, and cooperation; and a balance 
between fossil fuel and alternative energy 
sources (Solomon et al. 2007). The models dif-
fer greatly in their predictions of future climate 
in West Africa. This disagreement implies that 
at least some of the GCMs are substantially 
flawed in their representation of the climate 

in this region (Christensen et al. 2007; Cook 
and Vizy 2006). Therefore, we conducted a 
preliminary analysis to identify the GCMs that 
would maximize and minimize vectorial capac-
ity in each zone during 2080–2099, under 
the assumption that the true outcome will 
fall within the bounds set by these extreme 
scenarios. As discussed in detail in “Results,” 
we determined that the GCMs resulting in 
the wettest and driest climate projections 
would produce the maximum and minimum 
estimates of VC, respectively.

We conducted four simulations of future 
VC for each zone. First, to highlight the 
impact of changes in rainfall, we simulated 

the predicted changes in rainfall only, while 
keeping baseline values of temperature and all 
other variables. Two 7-year simulations were 
conducted for each region, one using the dri-
est outcome predicted by the models and one 
using the wettest outcome (referred to as dry 
and wet simulations, respectively). Next, to 
assess the combined impact of increased tem-
perature and changing rainfall, we repeated 
the simulations with predicted temperature 
increases included in addition to changes 
in precipitation (dry-hot and wet-warm 
simulations, respectively).

Projected changes in rainfall and tempera-
ture between the baseline period (1980–1999) 

Figure 1. Baseline climate and malaria transmission conditions in West Africa. Zones 1–5 correspond roughly to the following ecoclimate zones: Zone 1, Sahelo-
Sahara; Zone 2, Sahel; Zone 3, Soudan; Zone 4, Soudano-Guinean; and Zone 5, Guinea Coast (Nicholson 1993). (A) Mean annual rainfall (mm/year) from CRU, 
1980–1999 [data from Mitchell and Jones (2005)]. (B) Mean surface air temperature (°C) during the wet season from CRU, 1980–1999 [data from Mitchell and 
Jones (2005)]. (C) Mean parasite rate in children 2–10 years of age in 2007 estimated by the Malaria Atlas Project (Hay et al. 2009); white areas over land indicate 
unstable malaria transmission, and the gray area in Zone 1 indicates no malaria risk.
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Table 1. Characteristics of the study zones.

Zone Ecoclimate zonea
Annual rainfall 

1980–1999 (mm)b

Mean wet season 
temperature 

1980–1999 (°C)b
Malaria transmission class 

2007c

1 Sahelo-Sahara 52 32.2 Unstable
2 Sahel 223 31.3 Unstable/moderate stable
3 Soudan 715 28.9 Moderate/intense
4 Soudano-Guinea 1,286 26.8 Moderate/intense
5 Guinea Coast 1,743 25.7 Intense
aData from Nicholson 1993. bData from Mitchell and Jones 2005. cMalaria endemicity class based on criteria outlined by 
Hay et al. (2008) and calculated from mean parasite rate in children 2–10 years of age in 2007 estimated by the Malaria 
Atlas Project (Hay et al. 2009).
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and the future (2080–2099) are provided 
by the GCM outputs. We assume that cli-
mate change will take the form of shifts in 
the north–south rainfall gradient, consistent 
with historical changes in rainfall regimes 
in this region (Bomblies and Eltahir 2010; 
Irizarry-Ortiz et al. 2003). The 2080–2099 
precipitation time series were created by select-
ing a location directly north (for decreased 
rainfall scenarios) or south (for increased 
rainfall scenarios) of the representative vil-
lage in each zone where the current rainfall 
is equal to the annual rainfall predicted by 
a GCM for 2080–2099, and disaggregating 
using CMORPH [see Supplemental Material, 
Methods: 2080–2099 Precipitation time series 
(p. 11)]. The increase in temperature for each 
zone was represented by adding the mean 
wet-season temperature increase of the GCM 
grid cell containing each village to each hourly 
data point used in the simulation of baseline 
climate. The remaining model inputs were 
not changed.

Results
Analysis of climate predictions from GCMs. 
Before conducting our numerical simulations, 
we analyzed GCM outputs to identify 
the predictions that would maximize and 
minimize VC. The uncertainty for predicted 
rainfall is much greater than for predicted 
temperature; although all of the models predict 
a temperature increase between 2 and 6°C, the 
predicted changes in rainfall differ in even their 
sign and range from a decline of 400% to an 
increase of 260% (Figure 2). The wide range 
of possible rainfall outcomes underscores the 
importance of considering changes in rainfall 
when assessing future climates.

The mean change in temperature and pre-
cipitation predicted by each GCM is shown 
in Figure 3A. In Zones 1–3, which are cur-
rently drier and warmer than is optimal for 

malaria transmission, the conditions that 
would maximize VC would be the wettest and 
coolest prediction, whereas the driest and hot-
test prediction would minimize VC. In these 
regions, increases in precipitation are associ-
ated with less warming because a wetter cli-
mate would lead to more evaporative cooling, 
counteracting some of the warming caused 
by greenhouse gasses. Similarly, decreases in 
precipitation are associated with greater warm-
ing. This association is less pronounced in 
Zones 4 and 5 because the relative change in 
precipitation is much smaller, thus decreasing 
the impact of the change in evaporative cool-
ing. The changes in the expectation of infective 
life, D, calculated from the predicted changes 
in temperature from each GCM are shown 
in Figure 3B. In Zones 1 and 2, the wettest 
prediction also has the smallest decrease in D, 
and the driest prediction corresponds to the 
greatest decrease in D. In Zones 3, 4, and 5, we 
assume that the wettest and driest predictions 
will result in the highest and lowest predictions 
for vectorial capacity, respectively because the 
percent change in precipitation between pre-
dictions varies more than the percent change 
in D caused by increased temperature. Table 2 
summarizes the projected changes in rainfall 
and temperature corresponding to the two 
extreme future climate change scenarios for 
each zone. We did not investigate the accuracy 
of the climate models, but instead selected the 
most extreme predictions of climate change, 
assuming that the resulting simulations would 
indicate the upper and lower bounds of poten-
tial changes in vectorial capacity.

Simulation results using HYDREMATS. 
The results of the simulations were analyzed in 
terms of the components of the equation for 
vectorial capacity. Projections of weekly aver-
age values over the representative 7-year simu-
lation are shown in Supplemental Material, 
Figure S4, for simulations that accounted for 

changing rainfall only, and in Figure 4 for the 
simulations changing rainfall and temperature. 
Figure 5 shows the estimated percent change 
in D, m, and VC averaged over the length of 
the simulation for each zone.

Expected duration of mosquito infectivity. 
In the case of changing rainfall only, D, the 
estimated duration of mosquito infectivity, 
does not change because it depends only on 
temperature. When we also simulate rising 
temperatures, D increases in Zones 4 and 5 
because the temperature in these areas at base-
line (1980–1999) is below the optimal tem-
perature for transmission (Figure 4A). The 
relative changes in D in Zones 1, 2, and 3 are 
highly seasonal (Figure 4A). During the rainy 
summer months when malaria transmission 
can occur, the simulated temperature exceeds 
optimal levels for mosquito survival, resulting 
in a decrease in D and VC.

Mosquito density. In general, our simu
lations predict that increased rainfall will 
lead to more mosquitoes, although the mag-
nitude of the change varies by region (see 
Supplemental Material, Figure S4). Relative 
to baseline values, the greatest predicted 
increase in m, the number of female mos-
quitoes per human, occurs in Zone 1, where 
increased rainfall leads to greater persistence 
of water pools, and in Zone 4, where the ear-
lier onset of the rainy season leads to higher 
peak values of mosquito populations. When 
rainfall is predicted to decrease, mosquito 
populations in all five zones decrease sub-
stantially from baseline values, particularly in 
Zones 1 and 2, which become too dry to sus-
tain mosquito life, and Zone 3 (Figure 4B).

In many cases,  the changes in m 
from baseline values predicted by simula-
tions where only rainfall was changed (see 
Supplemental Material, Figure S4) and simu-
lations where both rainfall and temperature 
were changed (Figure 4B) is small because 
m depends primarily on rainfall. The poten-
tial impact of rising temperatures on mos-
quito density is more apparent in Figure 5A, 
where we see that with increased rainfall and 
warming (wet-warm simulation), the overall 
effect on Zones 1, 4, and 5 is an increase in 
m; however, in Zones 2 and 3, there is a net 
decrease in m. With warming and decreased 
rainfall (Figure  5B; dry-hot simulation), 
high temperatures in Zones 1–3 amplify the 
estimated effect of decreased rainfall, further 
decreasing m. In Zones 4 and 5, the high 
temperatures reduce the estimated effect of 
decreased rainfall, leading to a smaller net 
reduction in m.

We use HYDREMATS to calculate the 
mosquito density, m, which is a function of 
the number of humans and the total num-
ber of mosquitoes. In general, the mosquito 
population in the village can be described 
by three different variables: total number of 

Figure 2. Predicted changes in temperature and rainfall, zonally averaged for each model. Each blue line 
is the zonally averaged change in temperature (A) and rainfall (B) predicted between the baseline period 
(1980–1999) and 2080–2099 by a single SRES A1B GCM, averaged zonally over land points between 18°W 
and 16°E.
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real mosquitoes in the village, total number 
of simulated mosquitoes in the model, and 
sampled real mosquitoes in discrete locations 
captured by light traps. It is not possible to 
observe the total number of real mosquitoes 
in the village in order to compare it with 
the total number of simulated mosquitoes. 
However, HYDREMATS has been shown to 
simulate a total number of mosquitoes that 
mimics the relative differences observed in 
mosquitoes captured by light traps between 
wet and dry years (Bomblies et  al. 2008) 
and under different hydrological conditions 
(Bomblies et al. 2009).

We hold the number of humans and the 
configuration of residences constant among 
villages now and in the future, an assumption 
that affects m. This assumption allows us to 
isolate the impact of climate change on vecto-
rial capacity while neglecting the potential 

impacts of the human population variability 
and change in space and time.

Vectorial capacity. As with the density 
of mosquitoes, in many cases accounting for 
changes in temperature, in addition to pre-
cipitation (i.e., in the wet-warm and dry-hot 
simulations, Figure 4C), had a relatively small 
impact on VC (see Supplemental Material, 
Figure  S4), which highlights the impor-
tance of rainfall in assessing future VC. In 
the wet-warm scenario (Figure 5A), there is 
an overall increase in VC in Zones 1, 4, and 
5. In contrast, there is little change in VC 
from baseline in Zones 2 and 3 because the 
positive effect of increased rainfall on mos-
quito density is offset by negative effects of 
higher temperatures on both density and the 
duration of infectivity. In the dry-hot simula-
tions (Figure 5B), VC is reduced to zero in 
Zones 1 and 2 and substantially decreased 

in Zone 3, whereas there is a small increase 
in VC in Zones 4 and 5 because the posi-
tive effect of warmer temperatures outweighs 
the decrease in breeding sites with reduced 
precipitation. However, in almost all cases, 
the estimated percent change in m, which 
depends primarily on rainfall, is greater than 
the percent change in D, which depends on 
temperature only, thus adding further sup-
port for the importance of rainfall.

Finally, we also simulated the effects of 
climate change using an alternate formulation 
for EIP developed by Paaijmans et al. (2009) 
[see Supplemental Material, Results: Alternate 
EIP formulation (p. 13) and Figures S3 and 
S5]. Although this formulation led to lower 
predicted values of D and VC in all simula-
tions, relative changes between the baseline 
climate and future climate were similar to 
those based on the main analyses, except that 

Figure 3. GCM predictions for changes in temperature, rainfall, and expectation of infective life [D (in days)]. Each point represents the change in temperature and 
rainfall (A), or the change in the expectation of infective life and rainfall (B), predicted by each IPCC AR4 GCM.
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GCM output Driest prediction Wettest prediction

Table 2. Changes predicted between 1980–1999 and 2080–2099 by the wettest and driest GCMs for each zone.

Zone

Wettest prediction Driest prediction

GCMa
Change in 

rainfall (mm)
Increase in rainy season 

temperature (°C) GCM
Change in 

rainfall (mm)
Increase in rainy season 

temperature (°C)
1 CCSM3 83 2.3 GFDL-CM2.0 –105 5.6
2 CCSM3 107 2.6 GFDL-CM2.0 –206 5.2
3 ECHO-G 178 3.2 GFDL-CM2.0 –254 4.3
4 ECHO-G 214 3.1 GFDL-CM2.0 –212 3.6
5 GISS EH 295 2.8 MIROC3.2(medres) –227 2.8
aSolomon et al. 2007.
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the dry-hot conditions are predicted to lead 
to a small decrease of VC in Zones 4 and 5 
rather than a small increase.

Discussion
We simulated the effects of projected changes 
in climate on malaria transmission in West 
Africa over a range of scenarios predicted by 
current climate models, and found that the 
potential impact of changes in rainfall pat-
terns on malaria transmission may be as 
great as or greater than the potential impact 

of rising temperatures. However, our find-
ings should be interpreted in light of model 
assumptions and limitations. We do not 
consider changes in extreme weather events, 
which would have an impact on the hydrol-
ogy and water pool availability of the region. 
We also do not account for possible shifts in 
mosquito species, changes to vegetation that 
may occur as a result of climate change, or 
changes in nonenvironmental factors that will 
influence malaria transmission in this region 
(e.g., malaria control activities, access to health 

care, improved housing structures, migra-
tion, changes in population density or land 
use). Our study was limited to rural settings 
where the primary mosquito breeding sites 
are formed from rainwater. The model was 
developed and tested in the semi-arid climate 
characteristic of Zones 1–3; thus it is possible 
that it does not fully represent some of the 
hydrological processes of the wetter Zones 4 
and 5. Although we present results for an 
ensemble of future climate projections from 
AR4 GCMs, future research should evaluate 

Figure 4. Simulated effects of climate change on expectation of infective life (in days) (A), mosquito density (the number of female mosquitoes per human) (B), 
and vectorial capacity (C), from Zone 1 through Zone 5. Values shown are weekly averages for baseline simulations (1980–1999) and weekly averages based on 
wet-warm and dry-hot simulations for 2080–2099.
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the accuracy of each GCM for simulating past 
and current climate in the region to determine 
which predictions are the most plausible.

Our simulations suggest that changes 
in rainfall can have a significant impact on 
mosquito populations and vectorial capac-
ity in West Africa, particularly in the north-
ern areas where breeding sites (water pools) 
currently are a limiting factor. In addition, 
by comparing the predicted effect of chang-
ing rainfall alone to the combined effects of 
changing rainfall and increasing temperature, 
we demonstrated that temperature also plays 
an important role in determining the mos-
quito density and, thereby, influencing vec-
torial capacity. Our results stress the need 
to include rainfall in studies linking climate 
change and malaria. We also highlight the 
difficulty in making predictions of future 
environmental suitability for malaria in this 
region because the GCMs differ greatly in 
their rainfall predictions. This also is a prob-
lem for projecting other impacts of climate 
change in Africa, for example, on water sup-
plies (De Wit and Stankiewicz 2006) and 
food security (Lobell and Burke 2008). All 
research involving the impacts of changing 
rainfall in Africa should, therefore, take care 
in selecting appropriate rainfall predictions.

In the arid and semi-arid regions repre-
sented by Zones 1, 2, and 3, our simulations 
suggest that rising temperatures will move 
environmental conditions toward, and in 
some cases beyond, the upper limits toler-
ated by the Anopheles mosquito. However, if 
rainfall increases, the increased availability of 
breeding sites will tend to raise VC, somewhat 

offsetting the decreases in VC due to increas-
ing temperatures. Under the wettest future 
climate predicted by an IPCC climate model, 
our simulations suggest that the fringes of the 
Sahara desert will experience a small increase 
in VC despite extremely hot temperatures. 
However, in the Sahel region, the predicted 
impact of warming temperature dominates, 
and a decrease in VC is predicted even under 
the wettest future climate scenario.

Our simulations predict that the wetter 
and cooler Soudano-Guinean and Guinea 
Coast regions (Zones 4 and 5) will experience 
an increase in VC as a result of warming tem-
peratures, regardless of changes in rainfall. The 
driest scenarios would lead to only a slight and 
seasonal increase in VC, whereas the wettest 
scenarios could lead to a doubling or tripling 
of VC. However, malaria transmission in these 
zones is already classified as intense and stable, 
and thus these areas would be less sensitive 
to changes in mosquito ecology and vectorial 
capacity than areas where malaria transmission 
is unstable (Hay et al. 2009). Children living 
in such areas experience many malaria infec-
tions in their first years of life, and quickly 
develop immunity to severe disease (Gupta 
et  al. 1999). Therefore, malaria incidence 
in these areas is likely to be limited primar-
ily by the number of susceptible individuals 
within the population, rather than inoculation 
intensity or vectorial capacity. Consequently, 
even tripling VC would not necessarily lead 
to a significantly higher burden of malaria 
(Reiter 2008).

In contrast, Zones 1, 2, and 3 represent 
areas where malaria is unstable, or seasonally 

stable with lower intensity, and are therefore 
more sensitive to changes in VC. Even under 
the wettest conditions predicted by GCMs, 
our simulations predict that VC will decrease 
in Zones 2 and 3, whereas simulations of 
the hottest and driest scenarios predict the 
near elimination of mosquito populations in 
these zones due to a lack of breeding areas 
and intolerably hot temperatures. Although 
a 40% increase in VC is predicted in Zone 1 
under the wet-warm scenario, vectorial capac-
ity would still be too small to sustain malaria 
transmission in this zone.

Conclusions
Our simulations suggest that changes in rain-
fall will be important in shaping the impact of 
climate change on malaria transmission, and 
therefore must be considered in order to accu-
rately project the environmental suitability for 
malaria transmission in future climates. The 
disagreement among GCM projections for 
changes in rainfall makes the future of vec-
torial capacity in West Africa highly uncer-
tain. However, despite this uncertainty, our 
analysis suggests that we should not expect 
increases in malaria transmission due to cli-
mate change in areas where transmission 
is currently unstable or stable at low levels. 
In addition, although we predict a signifi-
cant increase in vectorial capacity in the two 
southern zones of our study area, we do not 
necessarily expect increases in malaria cases 
there because these areas already have intense 
stable transmission and are therefore relatively 
insensitive to changes in vectorial capacity.

In future work, we plan to analyze the 
skill of current climate models and select 
climate projections based on model per-
formance in West Africa, with a focus on 
regions that we have determined a priori to 
be sensitive to changes in vectorial capacity. 
In addition, we plan to use the immunol-
ogy component of HYDREMATS to link 
changes in climate and vectorial capacity to 
changes in malaria incidence.
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