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Studies of the Repair of O°-Alkylguanine
and O*-Alkylthymine in DNA by
Alkyltransferases from Mammalian Cells
and Bacteria

by Anthony E. Pegg,* M. Eileen Dolan,* David
Scicchitano,* and Kazushige Morimoto*

0O°-Methylguanine in DNA is repaired by the action of a protein termed O°-alkylguanine-DNA alkyl-
transferase (AT) which transfers the methyl group to a cysteine residue in its own sequence. Since the
cysteine which is methylated is not regenerated rapidly, if at all, the capacity for repair of O°-methyl-
guanine is limited by the number of molecules of the AT available within the cell. The level and inducibility
of the AT differed greatly in different mammalian cell types and species with the highest levels in human
tissues and in liver and the lowest levels in brain. Only a small induction occurred in rat liver in response
to exposure to alkylating agents. In E. coli such exposure increased the activity more than 100-fold. The
AT was not specific for methyl groups but also removed ethyl, 2-hydroxyethyl, n-propyl, isopropyl and n-
butyl groups from the O°-position in DNA. The protein isolated from E. coli removed methyl groups much
more rapidly than the larger alkyl groups but the mammalian AT isolated from rat liver showed much
less difference in rate with adducts of different size. Ethyl and n-propyl groups were removed by the rat
liver AT only three to four times more slowly than methyl groups. Another important difference between
the bacterial and mammalian ATs is that the bacterial protein was also able to remove methyl groups
from the O‘-position of thymine in methylated DNA or poly(dT) but the AT from rat liver or human
fibroblasts did not repair O‘-methylthymidine. These results indicate that the results obtained with the
E. coli system may not be a suitable model for extrapolation to predictions of the effects of alkylating
agents in initiating tumors or mutations in mammalian cells.

Introduction

Dimethylnitrosamine and related carcinogens are
converted enzymatically into reactive alkylating agents
(1,2). Such alkylating agents act as mutagens and tumor
initiators by interaction with the cellular DNA. At least
12 sites in DNA are targets for alkylation by dialkyl-
nitrosamines and N-alkyl-N-nitroso-ureas, but there is
evidence that attacks on the oxygen atoms of guanine
and possibly also pyrimidines may be of particular im-
portance in mutagenesis and carcinogenesis (2-7).

0°-Methylguanine in DNA is repaired by an unusual
mechanism involving a protein termed O°-alkylguanine-
DNA alkyltransferase (AT). AT reacts with DNA con-
taining O°-alkylguanine residues and catalyzes the
transfer of the alkyl group to a cysteine acceptor site
contained within its protein sequence (8-16). This trans-
fer restores the DN A structure to normal within a single
step but the AT protein becomes stoichiometrically in-
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activated because the alkylcysteine is not regenerated
rapidly if at all. Therefore, the number of O°-alkyl-
guanine adducts which can be repaired without waiting
for new AT to be synthesized is limited to the number
of molecules of AT present. The present paper describes
measurements of the amount of AT activity in various
mammalian cells types, studies of the inducibility of AT
in rodent liver and comparisons of the specificity of the
E. coli and rat liver AT with respect to the size of the
alkyl group which can be removed and the alkylated
base which can be repaired.

Materials and Methods

Detailed descriptions of the preparation of mammal-
ian cell extracts containing AT and the assay of AT
activity using radioactive [*H]methylated-DNA sub-
‘strate are given in the literature (10,11,13,17-19). AT
was purified from E. coli strain BS21 as described by
Demple et al. (12). Alkylated DNA substrates were
prepared by reaction of the appropriate N-alkyl-N-ni-
trosourea with calf thymus DNA (13,20). Quantitation
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Table 1. 0%-Alkylguanine-DNA alkyltransferase activity
in human and rodent tissues."

Alkyltransferase activity, fmole/mg

Tissue Rat Human
Liver 115 940
Colon 21 260
Lung 54 120
Esophagus 29 220
Brain 10 76
Meningeoma N.M. 207
Neurinoma N.M. 143

* Experimental details are given in the literature (14,17,18).

of unlabeled O°-alkylguanines by fluorescence detection
after separation by HPLC was as described by Pegg et
al. (20). The competition assay for AT activity in which
a known amount of AT is incubated with an unlabeled
alkylated DNA substrate for various times and the re-
maining AT activity quantitated by addition of
[*Hlmethylated DNA was carried out as described else-
where (20). The preparation of [*H]methylated poly (dT),
analysis of methylated poly (dT) or DNA for methylated
pyrimidine bases and assay for loss of O‘-methylthymine
was as described by Dolan et al. (21).

Results and Discussion

Species and Tissue Distribution of AT

AT has been detected in all normal and tumor tissues
examined from both rats and humans but the amount
of activity found varies substantially (13-18,22—-25). Even
allowing for the much greater individual variations in
the human samples (14,17,18,22—-25), there is general
agreement that human tissue samples are much more
active than their rodent equivalents. Typical values from
assays carried out in our laboratory are shown in Table
1. It should be noted that these values are based on
homogenates of tissues which may contain many differ-
ent cell types and results are averages which may dis-
guise substantial differences between individual cells.
Also, mammalian cells vary substantially in size and
protein content and since the AT activities are ex-
pressed as a function of protein, the relative activities
of large cells such as hepatocytes are somewhat under-
estimated. In fact, AT activities of purified rat hepa-
tocyte preparations were about five times as high as
those of isolated nonparenchymal cells (26).

A number of human cultured cell lines have been shown
to have little or no AT activity (15,19,27-30). Such lines
termed mer~ (28-30) are very much more sensitive to
toxicity and mutagenesis by alkylating agents than the
equivalent mer* lines which have high AT levels (19,28-
30). The mer™ phenotype has frequently been found in
transformed-cell lines (30), but some established “nor-
mal” human fibroblasts have recently been found to lack
AT activity (19), so the characteristic is not limited to

malignant cells. Since 25-30% of the human tumor cells
lines which have been tested were found to be mer~ (30),
it appeared possible that a significant number of primary
tumors might also lack AT activity. This could render
them more sensitive to therapeutic alkylating agents
which produce lesions repairable by the AT (31-35).
Unfortunately, this does not appear to be the case since
examination of the AT activity of extracts from a con-
siderable number of brain tumors (Table 1) (17) and a
variety of other tumors (24,25) revealed that all the
tumors tested had activity and that some were consid-
erably higher than their normal tissue equivalents.

Induction of AT

In E. coli AT is highly inducible in response to ex-
posure to alkylating agents. As part of the adaptive
response increases of several hundred fold occur within
a few hours of treatment with alkylating agents (36—
38). There is no clearly equivalent phenomenon in mam-
malian cells. Although some investigators have claimed
that small increases in AT occur in cultured cells ex-
posed to N-methyl-N'-nitro-N-nitrosoguanidine or N-
methyl-N-nitrosourea (39-41), these changes were at
most a few fold, and others using similar protocols have
failed to find any increase at all (42-44).

A more clearcut increase in AT activity occurs in the
livers of rats treated with dimethylnitrosamine (5,45—
48) or other nitrosamines or with 1,2-dimethylhydrazine
(5,10,26,47). Such exposure results in about a 3-fold rise
in AT (Table 2) but similar increases are produced by
exposure to other hepatoxins which are not metabolized
to simple alkylating agents (Table 2) (10,49,50). An even
larger 6- to 7-fold increase in AT activity in rat liver
(Table 2) was observed in rat liver regenerating after
partial hepatectomy (11). These results suggest that the
increases in AT may be related to regenerative cell
replication and/or hormonal changes in response to the
toxic inducing agents. Evidence has been published that
rat liver AT activity responds to both growth hormone
and thyroxin (51). The increased liver AT after hepa-
toxins and partial hepatectomy may, however, be lim-
ited to the rat. Attempts to induce hepatic AT in other
rodents (mice, gerbils, hamsters) by either nitrosamines
or partial hepatectomy has been unsuccessful (2,52-54).
The small increase in hepatic AT in response to alkyl-
ating agents is, therefore, at present limited only to
rats and seems quite different from the adaptive
response.

Although AT is increased in rat liver hepatocytes
regenerating after partial hepatectomy there is no oblig-
atory coupling between cell replication rates and the
AT level. The AT activity of rat liver shortly after birth
is considerably lower than in the adult (Table 2) (51),
even though the hepatocytes in the neonatal rat are
dividing more rapidly. Similarly, the induction of AT
by 1,2-dimethylhydrazine occurs only in hepatocytes and
not in nonparenchymal cells (26) but the rate of DNA
synthesis is greater in the nonparenchymal cells. The
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Table 2. Induction of rat liver O%alkylguanine-DNA
alkyltransferase activity.”

Table 3. Substrate specificity of alkyltransferase
from rat liver and E. coli.

Alkyltransferase

Treatment activity, fmole/mg
Control adult 93 + 21
Dimethylnitrosamine

(2 mg/kg/day for 21 days) 224 + 23
Diethylnitrosamine

(10 mg/kg/day for 21 days) 245 * 49
1,2-Dimethylhydrazine

(3 mg/kg/day for 21 days) 247 + 16
Partial hepatectomy

(48 hr after operation) 496 + 68
Thioacetamide

(48 hr after 75 mg/kg) 185 + 28
Carbon tetrachloride

(48 hr after 1.5 mL/kg) 199 + 24
1 day old 24+ 8
7 days old 53+17

*Data from references (10,11,51).

low level of AT in neonatal rat liver has recently been
confirmed by Ro et al. (55), and a very low activity of
AT in some human fetal tissues including liver was found
by Krokan and colleagues (56).

Specificity of Alkyl Group Removal

The ability of the AT to remove alkyl groups of dif-
ferent sizes was tested using three different assay pro-
cedures (20,57). Radioactive substrates were used for
studies of methyl, ethyl, n-propyl, and isopropyl ad-
ducts by either the bacterial or mammalian AT. Studies
of 2-hydroxyethyl, n-butyl and isobutyl adducts were
carried out with unlabeled substrates. These O°-deriv-
atives could be quantitated after HPLC separation by
fluorescence detection and this assay was used for the
E. coli AT. However, this method was not sensitive
enough for studies of the rat liver AT which was avail-
able only in limited amounts. The activity of the rat
liver AT towards the substrates not available in a ra-
dioactive form were, therefore, carried out by use of a
competition assay. In this assay, the rat liver AT was
incubated with the unlabeled alkylated substrate for
varying amounts of time and then a radioactive meth-
ylated substrate was added and its repair was used to
estimate the amount of AT activity remaining. A sum-
mary of the results is shown in Table 3. All of these
adducts could be removed from the O%-position of guan-
ine by the bacterial and mammalian AT. The E. coli AT
which was very rapid on methyl groups was much slower
with the longer adducts. This result is in agreement
with the report by Lindahl and colleagues that ethyl
and 2-hydroxyethyl- groups are removed at least 100
times slower than methyl groups by the bacterial pro-
tein (32). Although the rat liver AT was also faster with
methyl groups than with larger adducts there was much
less difference between the rates than with the E. coli
AT. For example, the E. coli AT removes n-propyl or
ethyl groups 50 to 100 times more slowly than methyl

Alkyltransferase
activity, as time

Alkyl group at for 50% removal, min

0°-position of guanine E. coli Rat liver
Methyl <0.5 <1
Ethyl 10 2
n-Propyl 15 3
n-Butyl 35 Substrate®
Isopropyl >90 60
2-Hydroxyethyl >90 35
Isobutyl >90 Not tested

* Rate not determined.

but the rat liver AT is only 3 to 4 times slower on these
adducts.

This finding has considerable practical importance in
the interpretation of studies of carcinogenesis by al-
kylating agents. When expressed in terms of the num-
ber of DNA adducts formed at the O°-position of guanine
by carcinogenic doses, diethylnitrosamine is about 15
times more potent than dimethylnitrosamine (20,58). If
the formation and persistence until repair of 0°-alkyl-
guanine in DNA were the only factor involved in tumor
initiation, the repair would have to be at least 15 times
slower which is not the case. This suggests that some
other lesions, possibly O*-alkylthymine (which is formed
in greater amounts by ethylating than by methylating
agents), may be the critical lesion in cells such as he-
patocytes containing a high AT activity.

Another important consequence of these results is
that the rapid removal of larger adducts from DNA by
the mammalian AT is likely to confer resistance to the
formation of lethal crosslinks by certain bifunctional al-
kylating agents (31-35). Such crosslink formation is
thought to involve an initial attack on the O°-position
of guanine (forming a 2-chloroethyl adduct) which then
takes part in a slower reaction leading to a stable cross-
link. If the O%-adduct is removed by the AT before this
reaction occurs the lethal lesion is prevented. The rel-
atively rapid removal of longer chain adducts by the rat
liver AT should enable this to happen until the number
of lesions exceeds the amount of AT.

Finally, it was apparent that the AT could remove
branched adducts such as isopropyl from the O°-position
of DNA (Table 3), but that in the presence of DNA
substrates containing both n-propyl and isopropyl ad-
ducts (such as DNA reacted with N-n-propyl-N-nitro-
sourea), the protein shows a marked preference for the
linear derivative and the isopropyl groups start to be
the lost only when most of the n-propyl is already gone.

Specificity of the Alkylated Base Substrate

Recent studies on the adaptive response in E. coli
(37,38) have indicated that the initial AT protein syn-
thesized by the bacteria is considerably larger than the
product of 18,000 molecular weight which has been pur-
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