
Arsenic contamination has become a major
public health concern worldwide, especially
in Asia. Epidemiologic data show that long-
term arsenic exposure results in the risk of
various cancers [Bettley and O’Shea 1975;
International Agency for Research on Cancer
(IARC) 1980; Landolph 1994; Nriagu 2002],
especially in the lung and skin via inhalation
and ingestion (Landolph 1994). High arsenic
concentrations in drinking water (0.35–1.14
mg/L) caused increased risks of cancer of the
skin, bladder, kidney, lung, and colon
(National Research Council 1999). The skin
cancers associated with arsenite exposure
include Bowen’s disease (carcinoma in situ),
basal cell carcinoma, and squamous cell carci-
noma (Tseng et al. 1968; Yu et al. 2006). 

The mouse skin model of multistage car-
cinogenesis has demonstrated that cancer
development results from the coordination of
genetic mutation and alterations of epigenetic
factors, including the machineries regulating
cell proliferation and apoptosis (Hecker
1987; Zoumpourlis et al. 2003). Acquiring
the capacity to evade apoptosis is a hallmark
of most cancers (Hanahan and Weinberg
2000). Under normal circumstances, DNA-
damaged or mutated cells are eliminated by
apoptosis. Acquired resistance to apoptosis is
a critical molecular event during carcinogene-
sis, and disruption of apoptosis has been

shown to play a major role in tumor forma-
tion and malignant progression (Hanahan
and Weinberg 2000; Hickman 2002).
Whereas the induction of cell proliferation by
arsenite has been extensively studied, the
events implicated in regulating the apoptosis
of skin cells exposed to arsenite remain largely
unknown.

Cyclooxygenase (COX), the rate-limiting
enzyme in the conversion of arachidonic acid
to prostanoids (Sheng et al. 2001; Smith et al.
1996), exists as two distinct isoforms (Feng
et al. 1993). COX-2 is an inducible immedi-
ate-early gene. Its expression is low or non-
detectable in most tissues, but it can be readily
induced in response to cell activation by
cytokines, growth factors, and tumor promot-
ers (Feng et al. 1993; Smith et al. 1996).
Increasing evidence indicates that COX-2 is
related to skin cancer development. Mice defi-
cient in COX-2 develop 75% fewer tumors
than their wild type littermates when sub-
jected to a 9,10-dimethylbenz[a]anthracene/
12-O-tetradecanoylphorbol-13-acetate two-
stage chemical carcinogenesis protocol (Tiano
et al. 2002). Moreover, oral administration of
specific COX-2 inhibitors is effective in
reducing ultraviolet-B–induced skin carcino-
genesis by up to 90% (Fischer et al. 1999).
Although the exact mechanisms remain to be
extensively investigated, COX-2 is thought to

contribute to carcinogenesis mainly by pro-
moting cell proliferation and antagonizing cell
apoptosis (Krysan et al. 2005; Tsujii and
DuBois 1995; Wang et al. 2005).

The role of COX-2 in apoptosis resistance
and carcinogenesis suggests that COX-2 may
be involved in the regulation of apoptosis of
skin cells exposed to arsenite. Therefore, in the
present study we examined the effect of arsenite
exposure on COX-2 expression in mouse epi-
dermal JB6 Cl41 cells, and we further investi-
gated the role of COX-2 in apoptosis resistance
during arsenite exposure. The results showed
that exposure to arsenite caused significant
COX-2 expression through the inhibitor of
κβ (Iκβ) kinase (IKKβ)/nuclear factor κB
(NFκB) pathway, which thereby played an
important role in antagonizing the apoptosis
induced by arsenite. These results suggest that
COX-2 induction in arsenite-exposed skin cells
may facilitate skin cancer development by con-
ferring an apoptosis resistance and supporting
the survival of the cells with genetic alterations
that are usually eliminated by apoptosis. 

Materials and Methods

Cell culture. Mouse epidermal JB6 Cl41 cells
and their stable transfectants were cultured in
Eagle’s minimal essential medium (MEM;
Calbiochem, San Diego, CA) supplemented
with 5% fetal bovine serum (FBS), 1% peni-
cillin/streptomycin, and 2 mM L-glutamine
(Life Technologies, Inc. Rockville, MD) at
37°C in a humidified atmosphere with 5%
CO2 in the air. To investigate the potential
contribution of the NFκB transcription factor
to COX-2 transcriptional induction by arsen-
ite, we used COX-2-luciferase (COX-2-Luc)
reporter containing full length (–1432/+59) or
a mutation of the NFκB binding sites
(–223/–214) of human COX-2 gene promoter
linked to the luciferase (Subbaramaiah et al.
2001; Yan et al. 2000) and/or with IKKβ-KM
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BACKGROUND: Arsenic contamination has become a major public health concern worldwide.
Epidemiologic data show that long-term arsenic exposure results in the risk of skin cancer.
However, the mechanisms underlying carcinogenic effects of arsenite on skin remain to be studied. 

OBJECTIVES: In the present study we evaluated cyclooxygenase-2 (COX-2) expression, the signaling
pathways leading to COX-2 induction, and its antiapoptotic function in the response to arsenite
exposure in mouse epidermal JB6 Cl41 cells. 

METHODS: We used the luciferase reporter assay and Western blots to determine COX-2 induction
by arsenite. We utilized dominant negative mutant, genetic knockout, gene knockdown, and gene
overexpression approaches to elucidate the signaling pathway involved in COX-2 induction and its
protective effect on cell apoptosis. 

RESULTS: The induction of COX-2 by arsenite was inhibited in Cl41 cells transfected with
IKKβ-KM, a dominant mutant inhibitor of kβ (Ikβ) kinase (IKKβ), and in IKKβ-knockout
(IKKβ–/–) mouse embryonic fibroblasts (MEFs). IKKβ/nuclear factor κB (NFκB) pathway-mediated
COX-2 induction exerted an antiapoptotic effect on the cells exposed to arsenite because cell apopto-
sis was significantly enhanced in the Cl41 cells transfected with IKKβ-KM or COX-2 small interfer-
ence RNA (siCOX-2). In addition, IKKβ–/– MEFs stably transfected with COX-2 showed more
resistance to arsenite-induced apoptosis compared with the same control vector–transfected cells.

CONCLUSIONS: These results demonstrate that arsenite exposure can induce COX-2 expression
through the IKKβ/NFκB pathway, which thereby exerts an antiapoptotic effect in response to arsen-
ite. In light of the importance of apoptosis evasion during carcinogenesis, we anticipate that COX-2
induction may be at least partially responsible for the carcinogenic effect of arsenite on skin. 
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as described previously (Ouyang et al. 2006).
Wild-type and IKKβ knockout (IKKβ–/–)

mouse embryonic fibroblasts (MEFs) were cul-
tured in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% FBS, 1% peni-
cillin/streptomycin, and 2 mM L-glutamine.

Construction of the siRNA vector. The spe-
cific small-interference RNA (siRNA)–targeted
mouse COX-2 was designed using the siRNA
converter of Ambion Inc. (2006a) according to
the gene sequence in GenBank (mouse NM-
011198, National Center for Biotechnology
Information 2006b) and guidelines for siRNA
(Ambion Inc. 2006b); the siRNA was syn-
thesized by Invitrogen (Carlsbad, CA). The
target sequence for mouse COX-2 was
5´-AGACAGATCATAAGCGAGGA-3´. The
siRNA sequence was controlled via BLAST
search (National Center for Biotechnology
Information 2006a) and did not show any
homology to other known genes. The siRNA
was then inserted into pSuppressor vector 
and verified by DNA sequencing. The siRNA
vector was designated as siCOX-2.

Stable transfection. Cl41 cells were
transfected with either siCOX-2 or small-
interference–green fluorescent protein.
IKKβ–/– MEFs were transfected with COX-2

expression vector, which was a gift from
K. Subbaramaiah (Weill Medical College of
Cornell University, New York, NY). The
transfection was performed by Lipofectamine
2000 reagent (Gibco BRL, Rockville, MD)
according to the manufacturer’s instructions.
Briefly, the cells were cultured in a 6-well plate
to 85–90% confluence. Five micrograms of
plasmid DNA was mixed with 10 µL Lipo-
fectamine 2000 reagent and then used to trans-
fect each well in the absence of serum. After
4–6 hr, the medium was replaced with 5%
FBS MEM for Cl41 cells or 10% FBS
DMEM for MEFs. Approximately 36–48 hr
after the beginning of the transfection, the cells
were cultured with medium containing
500 µg/mL G418 (Gibco BRL). After selection
for 28–45 days with G418, the stable transfec-
tants were identified by Western blot. Stable
transfectants, Cl41-mock, Cl41-siCOX-2,
IKKβ–/–(vector), and IKKβ–/–(COX-2) were
established and cultured in G418-free medium
for at least two passages before each experiment.

COX-2 expression assay. We cultured 2 ×
105 Cl41 cells, IKKβ–/– MEFs, and their
transfectants in each well of 6-well plates to
70–80% confluence. After exposure to arsen-
ite for indicated times, the cells were washed

once with ice-cold phosphate-buffered saline
(PBS) and then extracted with sodium dodecyl
sulfate (SDS) sample buffer. The cell extracts
(with GAPDH used as a control for protein
loading) were separated on polyacrylamide-
SDS gels, transferred, and probed with a rab-
bit-specific antibody against COX-2 (Cayman
Chemical, Ann Arbor, MI). The protein band,
specifically bound to the primary antibody,
was detected using an anti-rabbit IgG-alkaline
phosphatase-linked antibody and an enhanced
chemifluorescence Western blotting system
(Amersham Biosciences, Piscataway, NJ). 

Cell apoptosis analysis by flow cytometry.
Cells (2 × 105) were seeded into each well of
6-well plates and cultured to 70–80% conflu-
ence. After exposure to arsenite, the cells
were harvested and fixed with 3 mL ice-cold
80% ethanol overnight. The fixed cells were
washed twice with PBS and then suspended
in propidium iodide (PI) staining solution
(50 µg/mL PI, 10 mg/mL RNase A) (Sigma
Chemical, St. Louis, MO) for at least 1 hr at
4°C. Cell apoptosis was determined by flow
cytometry using the Epics XL FACS and
EXPO 32 software (Beckman Coulter,
Miami, FL) as described previously (Ouyang
et al. 2006).

TUNEL assay. We performed the TUNEL
assay using an in situ cell death detection kit
(Roche Applied Science, Indianapolis, IN) fol-
lowing the kit instructions. Briefly, the exposed
cells were fixed by 4% polyparaformaldehyde
solution in PBS for 24 hr at room temperature.
After rinsing with PBS, the cells were resus-
pended in a solution with 0.1% Triton X-100
and 0.1% sodium citrate for 5 min to increase
permeability of the cell membrane, and then
incubated with 50 µL TUNEL reaction mix-
ture containing terminal deoxynucleotidyl
transferase (TdT) and fluorescein isothio-
cyanate-deoxyuridine triphosphate (FITC-
dUTP) for 60 min at 37°C. After washing, the
label incorporated at the damaged sites of the
DNA was visualized by flow cytometry using
the Epics XL FACS and EXPO 32 software.

Results

Arsenite exposure induced COX-2 expression
in Cl41 cells through the IKKβ/NFκB path-
way. Previous studies demonstrated that
arsenite exerts its carcinogenic effect mainly
by activating signal pathways and inducing
gene expression involved in the regulation of
cell proliferation and apoptosis (Huang et al.
2004; Pi et al. 2005; Rossman 2003; Yang
and Frenkel 2002). COX-2, a key inducible
enzyme in the biosynthesis of prostaglandins,
has been related to inflammation, apoptosis,
and carcinogenesis (Liu et al. 1998; Tsujii
and DuBois 1995; Tsujii et al. 1997, 1998).
To determine whether COX-2 is also
involved in cell response to arsenite exposure,
we examined COX-2 induction by arsenite in
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Figure 1. COX-2 expression induced by arsenite exposure through the IKKβ/NFκB pathway. (A) C141 cells
were treated with various concentrations of arsenite as indicated for 12 hr, extracted, and then analyzed by
Western blot with specific antibodies against COX-2 or GAPDH, as described in “Materials and Methods.”
(B, C) Relative COX-2 induction (activity relative to control) in Cl41 cells treated with 40 µM arsenite for 12 hr
(B) and stably transfected with COX-2-Luc reporter containing full length (–1432/+59) or mutation of the
NFκB binding sites (–223/–214) of the human COX-2 gene promoter linked to luciferase (C); each bar indi-
cates the mean ± SD of triplicate wells. (D, E) Cl41 cells transfected with control vector or IKKβ-KM (D) or
wild-type MEFs and IKKβ–/– MEFs (E) were exposed to arsenite for 12 or 24 hr and then subjected to
Western blot assay. 
*Significant increase compared with medium control. **Significant decrease compared with intact COX-2 luciferase
induction (p < 0.01). 
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mouse epidermal Cl41 cells. As determined
by Western blot analysis (Figure 1A), arsenite
exposure caused a significant elevation of
COX-2 protein level. Moreover, Cl41 cells
exposed to arsenite for 12 hr showed a
marked induction of COX-2 transcription in
the gene reporter assay (Figure 1B). 

The promoter region of the COX-2 gene
contains a canonical TATA box and multiple
putative transcriptional regulatory elements,
including NFκB, which has been indicated to
be activated in Cl41 cells by arsenite exposure
(Li et al. 2004). We investigated the potential
contribution of the NFκB transcription factor
to COX-2 transcriptional induction by arsen-
ite using the COX-2-Luc reporter containing
full length (–1432/+59) or mutant NFκB
binding sites (–223/–214) of the COX-2 gene
promoter. As shown in Figure 1C, deletion of
NFκB binding sites impaired arsenite-induced
COX-2 transcriptional induction. Moreover,
the stable transfectants of Cl41 cells harboring
IKKβ-KM, a dominant mutant of IKKβ
(Ouyang et al. 2006), and IKKβ–/– MEFs
were used to further confirm the requirement
of the IKKβ/NFκB pathway for the induction
of COX-2 by arsenite. Arsenite-induced
COX-2 expression was dramatically inhibited
in the IKKβ-KM-transfected Cl41 cells, as
well as in IKKβ–/– MEFs, when compared
with control vector-transfected Cl41 cells or
wild-type MEFs (Figure 1D, E). The basal
level of COX-2 varied at different time points,
which might be due to cell cycle progression
(Figure 1D, E). Collectively, these results indi-
cate that arsenite can induce COX-2 expres-
sion at both protein and transcription levels
via an IKKβ/NFκB–dependent pathway, sug-
gesting that COX-2 is involved in cell
response to arsenite exposure.

COX-2 induction through the IKKβ/
NFκB pathway exerted an antiapoptotic effect
on cells exposed to arsenite. In view of the
importance of COX-2 in the regulation of cell
apoptotic response in some cells, we proposed
that the induction of COX-2 may also be
implicated in the regulation of cell apoptosis
upon arsenite exposure. Based on the above
results that the IKKβ/NFκB pathway was
required for COX-2 induction in the cells
exposed to arsenite, we examined the apoptosis
of Cl41 cells transfected with IKKβ-KM after
the exposure to arsenite. The results obtained
from microscopic observation of cell morphol-
ogy (Figure 2A), DNA content analysis by PI
staining followed by flow cytometry analysis
(Figure 2B), and DNA fragment detection by
TUNEL assay followed by flow cytometry
analysis (Figure 2C) showed that the transfec-
tion of IKKβ-KM made Cl41 cells much more
sensitive to apoptotic induction by arsenite. 

To confirm the importance of COX-2 in
the regulation of apoptotic response after
arsenite exposure, we pretreated Cl41 cells with

NS398, an inhibitor of COX-2, and found
that it significantly sensitized the cells to arsen-
ite-induced cell apoptosis (Figure 3A, B), sug-
gesting that COX-2 may be the mediator
responsible for the antiapoptotic effect. This
notion was further confirmed by the finding
that knockdown of endogenous COX-2
expression by its specific siRNA rendered Cl41
cells much more susceptible to cell apoptotic
induction by arsenite (Figure 3C, D). 

The role of COX-2 induction in protect-
ing cells from apoptosis after arsenite exposure
was further verified by the finding that over-
expression of COX-2 in IKKβ–/– MEFs made

the cells much more resistant to arsenite-
induced apoptosis (Figure 4). Collectively,
these results demonstrate that COX-2 induc-
tion through the IKKβ/NFκB pathway can
protect arsenite-exposed cells from apoptosis.

Discussion

Arsenite is a well-documented skin carcinogen
(Landolph 1994; Nriagu 2002); skin lesions,
including skin cancers, are characteristic of
exposure to arsenite in drinking water (Haque
et al. 2003). Given the low genotoxic activity,
arsenite is thought to exert its carcinogenic
effect mainly through inducing activation of

Role of COX-2 induction via IKKβ/NFκB in resistance to arsenite-induced apoptosis
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Figure 2. Transfection of IKKβ-KM increased the susceptibility of Cl41 cells to arsenite-induced cell apop-
tosis. C141-vector and Cl41-IKKβ-KM cells were treated with arsenite for 24 hr and photographed under
microscopy (A). Cell apoptosis was analyzed using either PI staining (B) or the TUNEL assay (C) followed
by flow cytometry analysis. (B) and (C) show representative results of three independent experiments; the
numbers indicate the percentage of cells in sub-G1 phase (B) and the percentage of cells with positive
TUNEL staining (C). 
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signal pathways, which thereby affects the
expression of genes involved in regulating the
machineries of the cell cycle and apoptosis
(Huang et al. 2004; Pi et al. 2005; Rossman
2003; Yang and Frenkel 2002). In the present
study, we have addressed the events involved
in the regulation of apoptosis of cells exposed
to arsenite, and demonstrated that induction
of COX-2 expression through the IKKβ/
NFκB pathway plays a role in antagonizing
cell apoptosis caused by arsenite in mouse
epidermal Cl41 cells. 

The effect of arsenite on COX-2 expres-
sion depends on cell type and arsenite dosage.
Arsenite stimulates COX-2 expression in
endothelial cells through activating IKK/NFκB
and extracellular signal–regulated kinases,
respectively (Trouba and Germolec 2004; Tsai
et al. 2002), whereas in a recent study, Ding
et al. (2006) found that arsenite induces
COX-2 expression in human bronchial epithe-
lial Beas-2B cells through NFAT (nuclear fac-
tor of activated T cells) rather than NFκB and
activator protein-1. Arsenite has been demon-
strated to repress constitutive activation of
NFκB and COX-2 expression in human acute
myeloid leukemia (HL-60) cells (Han et al.
2005), and pretreatment of arsenite attenuates
benzo[a]pyrene cytotoxicity in a human lung
adenocarcinoma cells by decreasing cyclooxy-
genase-2 levels (Ho and Lee 2002). In the pre-
sent study, we provide the first evidence that
arsenite can induce COX-2 expression through
the IKKβ/NFκB pathway in mouse epidermal
Cl41 cells.

Although the detailed mechanisms under-
lying tumorigenesis remain largely undefined,
it is generally accepted that apoptosis evasion
is one of the hallmarks during cancer devel-
opment (Hanahan and Weinberg 2000).
Apoptosis plays a major role in developmental
biology, cellular population dynamics, and
disease states. Apoptosis typically occurs when
cellular genetic damage exceeds the repair
capacity. The suppression of apoptosis, in the
face of significant genetic damage, could facili-
tate accumulation of aberrant cells and may be
a critical step in the pathogenesis of malig-
nancy (Abrams 2002; Johnstone et al. 2002;
Zornig et al. 2001). As a sensor of cellular
stress, p53 is a critical initiator of the apop-
totic pathway (Lowe and Lin 2000). p53 pro-
tein accumulates in cells under stress, which
thereby promotes apoptosis mainly by activat-
ing the expression of proapoptotic Bcl-2 fam-
ily members (e.g., Bax, Bak, PUMA, Noxa)
and repressing antiapoptotic Bcl-2 (B-cell
leukemia) proteins (Bcl-2, Bcl-XL) and
inhibitor of apoptosis protein (survivin)
(Bartke et al. 2001; Hoffman et al. 2002;
Ryan et al. 2001; Wu et al. 2001). The elimi-
nation of these damaged cells through apopto-
sis maintains genomic stability and prevents
tumorigenesis. Because p53 mediates cell

apoptosis and growth arrest, p53 mutation is
responsible for > 50% of cancer development
in humans. In the present study, we demon-
strated that COX-2 plays an important role in
antagonizing cell apoptosis induced by arsenite
in mouse epidermal cells. Although a large
body of evidence indicates the importance of

COX-2 in the regulation of cell apoptosis, the
mechanisms are not well-defined. Nonetheless,
there is evidence supporting that COX-2 may
interfere with p53-mediated cell apoptosis
(Han et al. 2002) and regulate mitochondrial-
triggered cell apoptosis (Sun et al. 2002).
Although the exact mechanisms require further

Figure 3. COX-2 induction is required for the protection of Cl41 cells from apoptosis after arsenite exposure.
Cl41 cells were pretreated with 50 µM NS398 for 0.5 hr, treated with 20 μM arsenite for 48 hr, and pho-
tographed under microscopy (A); cell apoptosis was then analyzed by PI staining (B). (C) C141-mock vector
and Cl41-siCOX-2 cells were exposed to 20 µM arsenite for 12 hr and then extracted with SDS-sample
buffer; the cell extracts were analyzed by Western blot with antibodies against COX-2 or GAPDH. (D) C141-
mock vector and Cl41-siCOX-2 cells were treated with arsenite for 36 hr, and cell apoptosis was analyzed
using PI staining followed by flow cytometry analysis. Numbers in (B) and (D) indicate the percentage of
cells in sub-G1 phase. 
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investigation, the antiapoptotic effect of
COX-2 observed in the present study may
provide more strategies with COX-2 as the
target for skin cancer prevention and skin can-
cer therapy, especially in those countries with
high arsenite contamination in drinking water.

It is notable that the contributions of the
IKKs/NFκB pathway to carcinogen- induced
skin cancer remain controversial. IKKα has
been demonstrated to be an inhibitory factor
for the proliferation of skin epidermis (Hu
et al. 1999, 2001; Li et al. 1999) and over-
expression of active p50 and p65 NFκB sub-
units in transgenic epithelium-produced
hypoplasia and growth inhibition (Seitz et al.
1998). However, it has been reported that
the deletion of IKKβ does not affect the
proliferation of skin epidermis (Pasparakis
et al. 2002); IκBα deficiency results in a

sustained NFκB response and severe wide-
spread dermatitis characterized by epidermal
hyperplasia in mice (Klement et al. 1996).
Budunova et al. (1999) demonstrated that
epidermal inflammation and hyperplasia play
a critical role in skin tumor promotion, and
NFκB is one of the well-known mediators of
these effects. Substances such as phorbol ester
and okadaic acid, which are promoters of skin
cancer, are also strong inducers of the NFκB
response in keratinocytes (Budunova et al.
1999). In the present study, we demonstrated
that the IKKβ/NFκB pathway is required for
COX-2 induction by arsenite, suggesting that
the IKKβ/NFκB pathway may contribute to
arsenite-induced carcinogenesis by protecting
cells from apoptosis through inducing
COX-2 expression. Interestingly, we also
found that apoptosis of IKKβ–/– MEFs

induced by arsenite is affected largely by cell
density. High density of IKKβ–/– MEFs shows
much lower susceptibility to arsenite-induced
apoptosis (Song et al. 2006). The mechanisms
are now under investigation in our laboratory. 

In summary, we have demonstrated that
exposure of the cells to arsenite causes a sig-
nificant COX-2 expression in an IKKβ/
NFκB–dependent manner, which thereby
plays an important role in antagonizing apop-
tosis induced by arsenite. These results sug-
gest that arsenite, as a carcinogen, may
facilitate skin cancer development by support-
ing the survival of the cells with genetic alter-
ations, which is usually eliminated by
apoptosis. Thus, inhibition of COX-2 may be
a promising approach for skin cancer preven-
tion in those countries with severe arsenite
pollution in drinking water.
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