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Progress over the past 30 years has revealed many strengths of the rainbow trout as an alterna-
tive model for environmental carcinogenesis research. These include low rearing costs, an early
life-stage ultrasensitive bioassay, sensitivity to many classes of carcinogen, a well-described
tumor pathology, responsiveness to tumor promoters and inhibitors, and a mechanistically
informative nonmammalian comparative status. Low-cost husbandry, for example, has permitted
statistically challenging tumor study designs with up to 10,000 trout to investigate the quantitative
interrelationships among carcinogen dose, anticarcinogen dose, DNA adduct formation, and final
tumor outcome. The basic elements of the trout carcinogen bioassay include multiple exposure

routes, carcinogen response, husbandry requirements, and pathology. The principal known
neoplasms occur in liver (mixed hepatocellular/cholangiocellular adenoma and carcinoma, hepato-
cellular carcinoma), kidney (nephroblastoma), swim bladder (adenopapilloma), and stomach
(adenopapilloma). Trout possess a complex but incompletely characterized array of cytochromes
P450, transferases, and other enzymic systems for phase and phase 11 procarcinogen metabo-
lism. In general, trout exhibit only limited capacity for DNA repair, especially for removal of bulky
DNA adducts. This factor, together with a high capacity for P450 bioactivation and negligible
glutathione transferase-mediated detoxication of the epoxide, accounts for the exceptional
sensitivity of trout to aflatoxin B1 carcinogenesis. At the gene level, all trout tumors except
nephroblastoma exhibit variable and often high incidences of oncogenic Ki-ras gene mutations.
Mutations in the trout p53 tumor suppressor gene have yet to be described. There are many

aspects of the trout model, especially the lack of complete organ homology, that limit its
application as a surrogate for human cancer research. Within these limitations, however, it is
apparent that trout and other fish models can serve as highly useful adjuncts to conventional
rodent models in the study of environmental carcinogenesis and its modulation. For some
problems, fish models can provide wholly unique approaches. Environ Health Perspect
104(Suppl 1):5-21 (1996)
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aflatoxin Ql; ANF, a-naphthoflavone; Ah, aryl hydrocarbon; B[alP, benzo[alpyrene; BeP, benzoyl peroxide; BNF,
f-naphthoflavone; CCC, cholangiocellular carcinoma; CYP, cytochrome P450; DBP, dibenzo[a,/lpyrene; DEN,
N-nitrosodiethylamine; DHEA, dehydroepiandrosterone; DMAB, dimethylaminoazobenzene; DMBA, 7,12-
dimethylbenz[alanthracene; DMN, N-nitrosodimethylamine; ER, ethoxyresorufin; GST, glutathione-S-trans-
ferase; HA, hepatic adenoma; HCC, hepatocellular carcinoma; HMBA, hydroxymethylbenz(a)anthracene; 13C,
indole-3-carbinol; 133', 3,3'diindolylmethane; K, kidney; LA, lauric acid; LV, liver; MAMA, methylazoxymethanol
acetate; MMA, 3'-primer mismatch polymerase chain reaction analysis; MNNG, N-methyl-N'-nitro-N-
nitrosoguanidine; MNU, N-methyinitrosourea; NM, N-nitrosomorpholine; P, progesterone; PAH, polycyclic
aromatic hydrocarbon; PCB, polychlorinated biphenyl; PCR, polymerase chain reaction; PFOA, perfluorooctanoic
acid; RB, rhabdomyosarcoma; RXM, 13C reaction mixture formed in vitro upon acid treatment; SB, swim
bladder; ST, glandular stomach; T, testosterone; tBuOOH, t-butyl hydroperoxide; TCDD, 2,3,7,8-tetra-
chlorodibenzo-p-dioxin; 3-MC, 3-methylcholanthrene.

Introduction
Fish have gained increasing attention over

the past three decades as valuable models
for environmental carcinogenesis research.
Various fish species have been investigated
as nonmammalian vertebrate models for
carcinogen testing, as surrogates for under-
standing mechanisms ofhuman cancer and
its prevention, as feral species indicators of
ecologic contamination, as indicators of
potential human exposure to carcinogens

in the water column or aquatic food chain,
and for application as in situ field monitors
of integrated carcinogenic hazard in
groundwaters near toxic waste sites. Interest
in the use of small aquarium fish species for
cancer research arose from the pioneering
work of Stanton (1), who in 1965 demon-
strated the hepatocarcinogenicity of
N-nitrosodiethylamine (DEN) to the zebra
danio. Table 1 presents a partial list of
species used and carcinogens examined
since that time. Exposures in these studies
have included continuous or acute water

bath treatment, dietary intake, or direct
injection of embryos or later life stages.

Additional species and carcinogens have
been explored (23-25), and comprehensive
testing of 30 National Toxicology Program
carcinogens in one species, the medaka, is
in progress at the Duluth laboratory of the
U.S. Environmental Protection Agency
(R Johnson, personal communication).

Through work with various aquarium
fish species, many attributes have been
identified: their low cost, portability, and
ease of laboratory culture; their potential
for in situ field monitoring; and their
potential for lifetime bioassay, short
reproductive cycle, and ease of genetic
studies. However, while aquarium fish
models have distinct appeal, knowledge of
mechanisms of carcinogenesis (e.g., pro-

carcinogen metabolism, DNA adduction
and repair, targeted oncogenes) and its
modulation (inhibition, promotion-pro-
gression) by environmental and dietary
factors is at present more advanced in the
rainbow trout (Oncorhynchus mykiss).
Attention was drawn to this species in the
early 1960s when epizootics of liver cancer

in Pacific Northwest trout hatcheries ulti-
mately led to the identification of aflatoxin
B1 (AFBI) as a potential human hepato-
carcinogen (26-28). This review focuses
on the use of the rainbow trout in envi-
ronmental carcinogenesis research. This
model shares some attributes with aquar-

ium species but also has unique features
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Table 1. Examples of small fish species used in carcinogen bioassays.

Species Carcinogen Neoplasms reported Reference

Danio rerio DMN HCC, CCC, esophageal (2)
(zebrafish) DEN HCC, CCC, esophageala (1,2)

NM HCC, CCC, esophageal8, intestinala (2)
Xiphophorus/Platypoecilus sp. MNU Melanoma, fibrosarcoma, (3,4)
(platyfish/swordtail) RB

Poecilia reticulata DMN HCC, CCC (Z5)
(guppy) DEN HCC, CCC, esophageala (2)

NM HCC, CCC, esophageala (2)
o-AAT HCC, CCC (6)
DMAB HCC, cholangioma (6)
MAMA Pancreatic ACC, AC (7)
AFB, Hepatic (5)
2-AAF Hepatic (5)
B[a]P HA, HCC (8)
DMBA HA, HCC, RB, renal AC, (9)

neurilemmoma, fibrosarcoma
Oryzias latipes B[a]P HA, HCC (8)
(medaka) DEN Hepatic tumors, HCC (10-12)

MAMA HCC, medulloepithelioma (12-14)
(medaka) o-AAT HA, HCC (12)

AFB, HA, HCC (12)
AFG1 HA, HCC (12)

Rivulus marmoratus DEN HCC, CCC, pancreatic AC, (15-17)
(rivulus) Hemangioma, pericytoma

Poeciliopsis sp. DMBA HCC, lymphosarcoma (18)
DEN HCC (19)

Fundulus grandis MNNG Pancreatic ACC (20)
Gambusia affinis MAMA HCC, CCC (21)
Cyprinodon variegatus DMBA HA, HCC (22)
Abbreviations: DMN, N-nitrosodimethylamine; DEN, N-nitrosodiethylamine; NM, N-nitrosomorpholine; MNU,
N-methylnitrosourea; o-AAT, ortho-aminoazotoluene; DMAB, dimethylaminoazobenzene; DMBA, 7,12-dimethyl-
benz[alanthracene; MAMA, methylazoxymethanol acetate; AFBj, aflatoxin B1; 2-AAF, 2-acetylaminofluorene;
B[a]P, benzo[a]pyrene; MNNG, N-methyl-N'-nitro-N-nitrosoguanidine; HCC, hepatocellular carcinoma; CCC,
cholangiocellular carcinoma; RB, rhabdomyosarcoma; ACC, acinar cell carcinoma; AC, adenocarcinoma; HA,
hepatic adenoma. 'Undefined neoplasms.

such as wide-ranging body size and target
organ tissue availability not applicable to
small fish models.

Carcinogen Bioassay,
Response, and Pathology
in Rainbow Trout
Rainbow trout occupy an important niche
in the history of carcinogenesis. It was in
this species that the carcinogenicity of the
aflatoxins was first recognized. Based on
this original discovery, two major and sev-
eral minor research efforts using rainbow
trout for cancer research were launched.
One of the major programs was centered at
the U.S. Fish and Wildlife Service's
Western Fish Nutrition Laboratory at
Cook, Washington, under the direction of
Dr. John Halver. This program started in
the late 1950s and was phased out in the
early 1970s. The other major program was
started in 1963 at Oregon State University
under the direction of Russell 0. Sinnhuber
and continues to date. Carcinogenesis
research with rainbow trout in this program

has followed multidisciplinary mechanistic
guidelines for many years, with an in vivo
whole-animal response to carcinogens as its
foundation. The remainder of this section
will discuss various aspects of this whole-
animal research, including routes of expo-
sure, experimental protocols, carcinogens
tested, and pathology.

Routes ofExposur
Dietary. The original discovery of the car-
cinogenicity of aflatoxins in rainbow trout
was the result of aflatoxin contamination of
dietary foodstuffs, primarily cottonseed
meal. Thus the route of exposure was
clearly dietary. All of the early experimental
work used the dietary route of exposure,
usually by incorporating aflatoxin into a
semipurified diet such as the Oregon Test
Diet developed at Oregon State University
(29,30). Doses in the low (1-20 pg/kg
parts per billion [ppb]) range fed continu-
ously for 9 to 18 months (28,31,32) or
higher doses (10-80 ppb) fed continuously
for shorter periods of time (1-30 days)
(33-35) were found to be carcinogenic.

The dietary route of exposure was, and
continues to be, a useful procedure for
certain desired end points and for specific
carcinogens, particularly those with low
or negligible water solubility. Its primary
weakness is that it is voluntary and inevi-
tably results in unequal exposures within
experimental groups of fish housed in the
same tank.

Embryo Waterbath. For this reason,
alternative and passive routes of exposure
have been developed. Wales et al. (36)
showed that a brief exposure (0.5-1.0 hr)
of trout embryos to a static solution (0.5
ppm or less) of AFB1 was an effective way
to initiate neoplasms. They also demon-
strated that embryo sensitivity was a func-
tion of age, being very low before liver
organogenesis but increasing steadily from
that time through and after hatching.
This exposure method is especially useful
for initiation/promotion protocols in
which a lengthy period of time between
initiation and subsequent dietary promo-
tion is desirable. Subsequent experiments
revealed that this method was effective for
a number of carcinogens and that the inci-
dences were dose responsive (Table 2). The
subject of embryo initiation of carcinogen-
esis in rainbow trout has been extensively
reviewed (37-39).

Fry Waterbath. Continuous or acute
waterbath exposures of free-swimming
fish to carcinogens have been used exten-
sively with aquarium fish. This exposure
method was not used for many years with
rainbow trout, but recently the acute or
short-term version of this method has been
used with much success (40-43,63-65).
Its greatest utility is for inhibition experi-
ments in which the protocol calls for a
pre-initiation dietary exposure to a poten-
tial inhibitor, followed by a short-term
pulse initiation. It works best with small
trout, which requires relatively less water
and less carcinogen and results in less
splashing, an inevitable occurrence with
larger fish. This route of exposure is more
effective (requiring lower doses to achieve
the same response) than embryo waterbath
because the protective chorion of the
egg is gone. It can also result in different
target organ specificity when compared to
embryo waterbath exposure. For example,
embryo exposure to N-methyl-N'-nitro-
N-nitrosoguanidine (MNNG) results in
the following organ tumor response
(liver > stomach > kidney), but fry water-
bath exposure produces a different response
(stomach>kidney>liver) UD Hendricks,
unpublished results (57)].
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Exposure route

Diet
Water, embryo
Water, fry
Microinjection, egg
Injection (ip)
Diet
Water, embryo
Diet
Microinjection, egg
Diet
Diet
Water, embryo
Microinjection, egg
Diet
Microinjection, egg
Water, embryo
Water, embryo
Diet
Water, embryo
Water, fry
Diet
Water, embryo
Diet
Water, embryo
Injection (ip)
Water, embryo
Water, embryo
Diet
Water, embryo
Water, fry
Microinjection, egg
Water, embryo
Water, embryo
Water, fry
Microinjection, egg
Diet
Injection (ip)
Microinjection, egg
Microinjection, sac-fry
Diet
Water, embryo
Water, fry
Microinjection, egg
Diet
Diet
Diet
Diet
Diet
Diet
Diet
Diet

Target organa

LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV
LV,ST,SB,K
LV
LV,K
LV,ST,SB
LV
LV
LV
LV
ST
LV,ST,K,SB
ST,K,SB,LV
LV,ST,K
LV,ST,SB,K
LV,ST,K,SB
SB,LV,ST,K
LV,ST,K,SB
LV
LV
LV
LV
ST,LV
LV,ST,K
ST,LV,SB,K
LV,ST
ST,LV,SB
ST, LV
LV
LV
LV
LV
LV
LV

Reference

(28,31,32)
(36-39)
(40-43)
(44-46)
(47)
(32)
(37)
(48)
Unpublished
(49)
(50,51)
(51)
Unpublished
Unpublished
Unpublished
(52)
(52)
(53)
Unpublished
Unpublished
(54,55)
Unpublished
(56)
Unpublished
Unpublished
Unpublished
Unpublished
(56)
(57)
Unpublished
Unpublished
Unpublished
Unpublished
Unpublished
Unpublished
(58)
(58)
Unpublished
(59)
Unpublished
(60)
Unpublished
Unpublished
Unpublished
(56)
(61), Unpublished
(31,62)
Unpublished
(61)
(61)
(61)

Abbreviations: LV, liver; ST, glandular stomach; K, kidney; SB, swim bladder. 'Organs are presented in order of
decreasing tumor incidence.

Embryo/Sac-fry Microinjection.
Microinjection of rainbow trout embryos
was first reported by Metcalfe and
Sonstegard (44). The technique was

improved by Black et al. (45) and semiau-
tomated at Oregon State University (46).
These improvements permit one person to
microinject up to 4000 embryos in an

8-hr day. Our current procedure uses a

Hamilton Microlab 900 pump (Hamilton

Company; Reno, Nevada) interfaced with
a computer. The computer is programmed
to automatically fill a microsyringe from a

reservoir of injectant and accurately dis-
pense 1-pl doses when a footswitch is
pressed. Fine teflon tubing connects the
microsyringe to a 31-gauge stainless steel
needle mounted on a micromanipulator.
The needle is inserted through the chorion
and into the yolk sac where the droplet is

released. We routinely use a carrier of 25%
acetone/75% vegetable oil for AFB1 and
experience a low mortality of 5 to 10%
from carrier-only injections. The following
is an example of results obtained with this
technique: AFB1 doses of 0.5, 1.0, 2.0, and
4.0 ng/pl/egg produced hepatic tumor inci-
dences of 26, 34, 45, and 48% nine
months later (GS Bailey, unpublished
results). The obvious advantages of this
procedure include the extremely small
doses required to initiate neoplasia and the
ability to expose embryos to highly water-
insoluble carcinogens.

Sac-fry microinjection was first reported
by Metcalfe et al. (66). The procedure is
similar to embryo microinjection except the
sac-fry are anesthetized in C02-saturated
water before injection. This allows for more
accurate placement of the injection droplet
within the yolk sac, less trauma to the
immobilized sac-fry, fewer injection-related
mortalities, and in general a greater sensitiv-
ity to carcinogens because the older organ-
isms may be more metabolically competent
than younger embryos.

Intraperitoneal Injection. Intraperi-
toneal injection (ip) is rarely used as an ini-
tiating protocol for trout, with only two
such studies known to be in the literature
(47,58). However, such injections are used
routinely for short-term metabolism exper-
iments or for DNA-binding studies.

Gavage. Gavaging or stomach tubing is
a problematic route of carcinogen exposure
for rainbow trout due to their strong ten-
dency to regurgitate anything that is irritat-
ing to the stomach. This reaction was
reported by Bauer et al. (67) and has been
personally observed repeatedly.

Carcinogens Tested
Table 2 is a compilation of all the carcino-
gens that have produced neoplasms in rain-
bow trout. Several interesting features of
carcinogenesis in rainbow trout emerge
from the data in this table. a) The trout
liver is the primary organ responding to
almost all carcinogens, regardless of
the route of exposure. Only the dietary
exposure of trout to MNNG, a direct-act-
ing carcinogen, failed to produce liver
tumors in all of the experiments where a
positive neoplastic response was seen. b) A
carcinogen that produces only pancreatic
neoplasms in Syrian golden hamsters, 2,2'-
dioxo-di-n-propylnitrosamine (68), pro-
duces only hepatocellular neoplasms in
rainbow trout. c) Only four target organs of
the trout have been shown to respond to the
carcinogenic stimulus of a wide variety of
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Table 2. Carcinogenic response of rainbow trout to chemicals.

Compound
Aflatoxin B1

Aflatoxin G,
Aflatoxin Ml
Aflatoxin Q,
Aflatoxicol

Aflatoxicol M1

Sterigmatocystin
Versicolorin A
Diethyinitrosamine

Dimethylnitrosamine

2,6-Dimethylnitrosomorpholine

2,2'-Dioxo-di-n-propyinitrosamine
Nitrosomorpholine
Nitrosopyrrolidine
N-Methyl-N'-nitro-N-nitrosoguanidine

Ethyinitrosourea
Methylazoxy-methanol acetate

Benzo[alpyrene

trans-7,8-Dihydrobenzo[a]pyrene-7,8-diol
7,12-Dimethylbenz[alanthracene

Dibenzo[a,/]pyrene
1,2-Dibromoethane
Dichlorodiphenyltrichloroethane
Cyclopropene fatty acids
Dehydroepiandro-sterone
2-Acetylaminofluorene
Aminoazotoluene
p-Dimethylaminoazobenzene
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chemical carcinogens: the liver, glandular
stomach, kidney, and swim bladder (SB);
and d) different routes of exposure may
change the primary target organ but usually
not the spectrum of responding organs.

Pathology of Neoplasms
in Rainbow Trout
Liver. The subject of the pathology of
hepatocellular neoplasms in rainbow trout
has been thoroughly described and
reviewed (69,70). Here we will only refer
to the types of tumors observed and pro-
vide corresponding illustrations. The pre-
dominant tumor, occurring in response to
all the carcinogens tested to date, is a
mixed hepatocellular/cholangiocellular car-
cinoma (59,60,71) (Figure 1). These
tumors consist of peripheral hepatic
tubules filled with basophilic hepatocytes
and centrally located biliary cells together
with their connective tissue stroma. The
biliary compartment can be either well dif-
ferentiated into ducts or poorly differenti-
ated and occur as broad sheets of cells.
Typically, over 60% of the tumors exam-
ined from a termination necropsy will be
of this general type. One variant of the
mixed carcinoma contains an additional
cellular component, pancreatic acinar cells,
usually in close association with the biliary
portion of the tumor (64) (Figure 2).
Another type of mixed carcinoma contains
just biliary and pancreatic components.

The second most abundant tumor type
(25-30%) is the pure hepatocellular carci-
noma (Figure 3). These tumors are com-
posed of broad tubules of basophilic
hepatocytes, with many cells between adja-
cent sinusoids and frequent mitotic figures.
Cholangiocellular carcinomas are rare, usu-
ally less than 1%, but consist of ducts or
sheets of cells, have minimal stroma, and
are invasive into surrounding liver tissue
(Figure 4). All these malignant tumor types
are capable of distant metastasis or direct
growth into surrounding visceral tissues,
but we rarely see this occur within the 9- to
12-months time frame of most of our
experiments. Metastases are rather common
if the fish are held for 2 years or longer.

Several nonmalignant tumors are also
observed. Hepatocellular adenomas tend to
be small and noninvasive, with cells that
are basophilic but occur within normal-
appearing hepatic tubules (Figure 5). This
is usually not an end-stage neoplasm but
appears to progress to hepatocellular carci-
noma. The prevalence varies depending
on the time of termination, but in most
cases, it is between 5 and 10%. Very rarely

we observe an adenoma that is composed
of eosinophilic hepatocytes, but the vast
majority are basophilic. Very small foci of
basophilic hepatocytes are interpreted to be
the beginning stages of either hepatocellu-
lar adenomas or carcinomas and not a sep-
arate preneoplastic lesion. Cholangioma is
an infrequent tumor type consisting of
mostly normal-appearing bile ducts and
abundant stroma that usually encapsulate
the structure (Figure 6). Usually 1 to 2%
of the total incidence are cholangiomas.
Mixed hepatocellular/cholangiocellular
adenomas are tumors having the cellular
features of adenomas and cholangiomas
together in the same cellular mass (Figure
7). These tumor types are seldom seen.
A final tumor type that has been

observed only twice in over 30 years of
histopathologic examinations of tens of
thousands of liver sections is what we inter-
pret to be a hepatoblastoma. These two
tumors consist of deeply basophilic, highly
undifferentiated cells with an extremely
high rate of mitosis (Figure 8). The cells
palisade around vascular channels and out-
strip the vascular supply to the rapidly
expanding cellular mass. This leads to
extensive necrosis that extends into veins
and causes serious hemorrhaging (Figure 9).

Kidney. The nephroblastoma is an
almost exclusive chemically inducible neo-
plasm of trout kidneys. It consists of
deeply basophilic, highly mitotic blastema
cells; abortive, poorly differentiated
glomerular structures; incompletely differ-
entiated tubules; and abundant connective
tissue stroma (Figure 10). Six carcinogens,
listed in Table 2, have produced nephrob-
lastomas, but the treatment of choice for
producing a high incidence of these
tumors is a static waterbath exposure of
rainbow trout fry to a solution of 50 ppm
MNNG for 30 min. This will result in
about 50% of the fish having one or more
large nephroblastomas 6 to 9 months
later. These tumors grow rapidly, become
very large, and kill the fish through
destruction of normal kidney tissue and
obstruction of urine flow. To our knowl-
edge, the rainbow trout is the only animal
model in which nephroblastoma can be
routinely initiated in a high incidence by
a chemical carcinogen (72).

Stomach. All the stomach tumors that
we have observed in rainbow trout have
been benign papillary adenomas of the
mucosal lining of the glandular stomach.
Typically, they grow upward into the lumi-
nal space. Some tumors produced by dietary
exposure to MNNG (56) also exhibited

downward growth but never penetrated the
basement membrane (Figure 11).

Swim Bladder. As with the stomach
tumors described above, the swim bladder
adenomas are benign papillary overgrowths
of epithelial cells that protrude into the
lumen of the swim bladder. The unique fea-
ture of the cells of this lesion is the marked
increase in size of the tumor cells compared
with the normal mucosal cells. The colum-
nar height of these cells is often several times
greater than the normal cells (Figure 12).

This brief review of the procedures
involved in the initiation and identification
of neoplasms in rainbow trout is intended
to portray this model as a viable alternative
for many aspects of cancer research. The
fish are easy and economical to rear, and
they respond to classical carcinogens in a
predictable, dose-responsive manner.

Pathways of Procarcinogen
Metabolism, DNA Adduction,
and Repair
Cytochromes P450
As is the case in humans (73), trout
cytochromes P450 (CYPs) play a crucial
role in the bioactivation of procarcinogens
to electrophilic metabolites capable of
covalently binding to DNA. The study of
properties of the trout CYP-dependent
mixed-function oxidase system, response to
inducers, and metabolism of xenobiotics
was pioneered by a number of laboratories
including DR Buhler (Oregon State
University), J Lech (Medical College of
Wisconsin), and L Forlin and T Andersson
(University of Goteborg) [reviewed in
(74-79)]. Although relatively few trout
CYPs have been sequenced and assigned to
a CYP subfamily, a number of trout CYPs
have been purified and partially character-
ized with respect to bioactivation of pro-
carcinogens (Table 3). Much of this work
has been performed by the laboratory of
D.R. Buhler; the reader is referred to an
excellent recent review (97) for more
detailed information. Table 3 does not
include information on the trout CYPs
responsible for steroid synthesis, P450SCC
(CYP1 lAI), P450c17 (CYP17) or P450.om
(CYP19), as these display little or no activity
toward procarcinogens.

Role ofTrout CYPs in the
Bioactivation ofProcarcinogens
Aflatoxin B1. AFB1 is metabolized by CYP
to a number of monohydroxylated metabo-
lites including aflatoxins M1, Ql, and P1
[see (98) for an excellent recent review], all
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Figure 1. A small mixed carcinoma in a rainbow trout initiated by 20 ppb AFB1 in the Figure 4. The advancing invasive edge of a cholangiocellular carcinoma initiated by
diet for 1 month. Note the deeply basophilic peripheral hepatocellular portion and the dietary exposure of rainbow trout to 800 ppm N-nitrosodimethylamine for 12 months.
central biliary ducts. H & E; x 14. The tumor is composed of neoplastic bile ducts and minimal connective tissue stroma.

H & E; x 56.

Figure 2. A mixed carcinoma in a rainbow trout initiated by embryo exposure to a 0.05
ppm solution of AFB, for 1 hr. The tumor is composed of centrally located biliary ducts
(right), adjacent pancreatic acinar units (middle), and peripheral hepatocellular tubules.
On the far left is normal liver tissue. H & E; x 56.

Figure 3. A portion of a large hepatocellular carcinoma in a rainbow trout initiated by
dietary exposure to 20 ppb AFB1 for 1 month. Note the broad tubules of basophilic hepato-
cytes between adjacent sinusoids and the numerous mitotic figures. H & E; x 140.

Figure 5. A hepatocellular carcinoma (left) growing within a hepatocellular adenoma
(middle), with normal rainbow trout liver tissue on the far right. Contrast the deeply
basophilic broad tubules of the carcinoma with the less basophilic two-cell-wide
tubules of the adenoma. This occurrence supports the hypothesis that carcinomas
develop from adenomas. The tumor was initiated by embryo exposure to aqueous AFB,
(0.5 ppm) for 1 hr. H & E; x 90.

Figure 6. A small cholangioma in a rainbow trout initiated by 20 ppb dietary AFB1 for 1
month. Note the mostly normal appearance of the ducts and encapsulation by connec-
tive tissue stroma. H & E; x 140.
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IN~~~~~
Figure 7. A small mixed adenoma initiated by a 2-week feeding of 800 ppb Figure 10. A large nephroblastoma initiated by exposure of rainbow trout embryos to
aflatoxicol-M, to rainbow trout. The neoplasm consists of basophilic hepatocytes simi- aqueous 10 ppm methylazoxymethanol acetate (MAMA) for 24 hr. Note the deeply
lar to those observed in hepatocellular adenomas and a beginning proliferation of bile basophilic undifferentiated mass of blastema cells (upper right); incompletely differen-
ducts in the central region. H & E; x 224. tiated tubules with numerous mitotic figures; abortive, poorly formed glomerularlike

structures (lower left); and abundant connective tissue stroma. H & E; x 90.
~ 40 i '- }

Figure 8. A portion of a presumptive hepatoblastoma initiated by continuous dietary
exposure of rainbow trout to 20 ppb AFB. Note the poorly differentiated nature of the
cells, scanty cytoplasm, numerous mitotic figures, and palisading of cells around a
large vein. H & E; x 224.

~ '.7. -., .. : .,, ..{ * s .< ^ s * *> > + w or .A ..

Figure 11. A papillary adenoma of the glandular stomach of a rainbow trout initiated
by 500 ppm dietary MNNG for 18 months. Primary proliferation of mucosa cells is
upward into the lumen of the stomach, although some neoplastic cells occur in the gas-
tric pits as well. H & E; x 56.

LAMAst ............ P.. .

Figure 9. A portion of a presumptive hepatoblastoma initiated by continuous dietary Figure 12. A papillary adenoma in the swim bladder of a rainbow trout initiated by
exposure of rainbow trout to 20 ppb AFB, (the same tumor shown in Figure 8). embryo exposure to aqueous, methylazoxymethanol acetate (MAMA) 10 ppm for 24 hr.
Extensive necrosis in the broad bands of cells (upper right) has progressed into a large Note the tremendous proliferation of cells and their increased size compared to normal
vein causing hemorrhaging. H & E; x 358. swim bladder mucosal epithelium at the right. H & E; x 56.
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Table 3. Cytochromes P450 in trout.

Trivial name Gene nomenclature Substrates Expression References

LM4a- BP (80)
LM4b CYPlA 1 ER, BP, AFB, Induced by DMBA, 3-MC, (80-84)

BNF, PCBs, TCDD
CYP1A2 (84)

LMC1 CYP2M1 LA (o-6) High in juvenile female kidney (85-88)
LMC2, LM2 CYP2K1 AFB1, High in mature male kidney (80)

LA (o-1) High in mature male kidney (85-87,89-94)
LMC3 DMBA (85,86)
LMC4 DMBA (85,86)
LMC5, P450conb T,P (6() High in mature male liver; (85,94,95)

induced by steroids
P450KM1 c (96)
P450KM2 High in mature male kidney; (96)

induced by androgens

Abbreviations: BaP, benzo[a]pyrene; ER, ethoxyresorufin; AFB1, aflatoxin B1; 3-MC, 3-methylcholanthrene; BNF,
)-naphthoflavone; PCBs, polychlorinated biphenyls; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; LA, lauric acid;
DMBA, 7,12-dimethylbenz[a]anthracene; T, testosterone; P, progesterone. 'LM4a was purified from liver micro-
somes of BNF-treated trout (80). The properties of LM4a were similar to the major isoform purified, LM4b
(CYPlA 1). We do not yet know if LM4a corresponds to the protein encoded by the recently cloned trout CYP1A2
(84). bLMC5 and P450Con were purified independently by two different laboratories, both of which have preliminary
evidence that this trout P450 has many properties in common with mammalian CYP3A (85,94,95). cTrout P450s
KM1 and KM2 were purified from kidney microsomes. Trout P450 KM1 is probably identical to CYP2K1.

of which are less mutagenic and carcino-
genic than AFBI and therefore represent
detoxication reactions. These monohy-
droxylated metabolites are substrates for
conjugation by uridine diphosphate-(UDP)
glucuronosyltransferase and can be elimi-
nated in the bile. CYP epoxygenation at the
8,9-position results in production of the
electrophilic ultimate carcinogen AFBI-8,9-
epoxide. The major human CYPs involved
in the bioactivation of AFBI to AFBI-8,9-
epoxide are IA2 and 3A4 (98-101). The
relative contribution of these two isoen-
zymes toward bioactivation ofAFB1 proba-
bly varies markedly between individuals due
to large interindividual variations caused by
genetic and environmental factors
(102-104), which along with interindivid-
ual differences in DNA repair rates may
account for some of the variation between
humans with respect to susceptibility to
some cancers (105). In trout, the majority
of AFBI 8,9-epoxygenation is catalyzed by
CYP2K1 (89). The covalent adduct pro-
duced is the same as in mammals, 8,9-dihy-
dro-8-(N7-guanyl)-9-hydroxyaflatoxin B1
(AFB1-N7-GUA) (106,107).

As is the case in mammals, trout
CYPIA is active in the hydroxylation at the
10 position to produce AFMI (108). The
induction of CYPIA by compounds such
as 0-naphthoflavone (BNF), indole-3-
carbinol (W3C), and polychlorinated
biphenyls (PCBs) was thought to be the
mechanism by which these modulators
acted as chemopreventors of AFBI-initiated
hepatocarcinogenesis in trout (109,110).

However, recently our laboratory has
determined that inhibition of CYP activity
may be a more important mechanism of
action than CYPlA induction, especially
with I3C (111-114). In studies examining
the time course and dose response of
dietary I3C, trout responded only weakly
and transiently to this compound as an
CYPIA inducer, and the degree of reduc-
tion in covalent binding of AFB1 to DNA
in vivo did not correlate to CYPIA induc-
tion (111,112). Similarly, BNF was found
to significantly reduce AFB1 covalent bind-
ing to DNA at dietary doses too low for
CYPIA induction (114). In the course of
these studies, we found that both BNF and
various acid condensation products of I3C
were potent inhibitors of a number of trout
and mammalian CYPs, with inhibition
contents well below the levels known to be
attained in liver after administration of
anticarcinogenic doses (112-115).

In addition to possessing a CYP (2K1)
with high activity toward bioactivation of
AFBI, the remarkable sensitivity of trout
toward AFBI-initiated carcinogenesis can
be explained by their lack of a constitutive
or inducible glutathione S-transferase
(GST) with appreciable activity toward
AFB,-8,9-epoxide (116). The high activity
displayed by constitutive mouse Yc GST,
compared to rat, is thought to be the major
factor for the remarkable resistance of mice
(98,117-121). The importance of this
enhanced phase II reaction is confirmed by
the observation that mice are actually more
prolific at production of AFBI-8,9-epoxide

than rats. Administration of 13C to rats
induces a form of GST (Yc2) with high
activity toward conjugation of the exo-
AFB,-8,9-epoxide and presumably con-
tributes to chemoprevention in this animal
model (122). Trout, however, appear
refractory toward induction of this type of
GST (116).

Polycyclic Aromatic Hydrocarbons.
Environmental exposures to polycyclic
aromatic hydrocarbons (PAHs) (possibly in
conjunction with PCBs, dioxins, and
dibenzofurans) are thought to be related to
epizootic outbreaks of liver neoplasia in
feral fish from various regions of the coun-
try (123-127). Benzo[a]pyrene (B[a]P) is
hepatocarcinogenic in rainbow trout, but
long-term exposures through the diet or
intraperitoneally are required (58). The
racemic (±)-trans-B[a]P-7,8-dihydrodiol is
a much more potent carcinogen in trout
(59). As is the case in mammalian models,
the (-) enantiomer is roughly an order of
magnitude more potent that the (+) enan-
tiomer (59). Reconstitution studies with
purified enzyme and liver microsomes from
BNF-treated trout indicate that CYPIA is
the predominant subfamily involved in
B[a]P and B[a]P-7,8-dihydrodiol bioacti-
vation to the ultimate carcinogen 7S-trans-
7,8-dihydrobenzo[a]pyrene-7,8-diol-anti-9,
10-epoxide (59,80,128).

7,1 2-Dimethylbenz[a] anthracene
(DMBA) is a much more potent hepatocar-
cinogen in trout than B[a]P and produces
tumors in kidney, swim bladder, and stom-
ach as well (Table 2) (60). Trout embryos
metabolize DMBA to 12-hydroxy-
methymethyl-7-methylbenz[a] anthracene
(12-HMBA) and 3,4-dihydroxy-3,4-dihy-
dro-DMBA (DMBA-3,4-diol) (60). In
addition to these metabolites, juvenile and
adult trout metabolize DMBA to the 8,9-
dihydrodiol, 7-HMBA, and 2- and 3-
hydroxy-DMBA (DR Buhler et al., unpub-
lished data). DMBA is metabolized by
both constitutive and induced CYPs (Table
3). Pretreatment of trout with inducers of
CYPlA markedly enhances the metabo-
lism, covalent binding, and carcinogenic
potency of DMBA, suggesting that this
subfamily is very efficient at bioactivation
of this PAH (Hendricks et al., unpublished
observations). The phenolic and dihydro-
diol metabolites ofDMBA are substrates for
phase II conjugation reactions by UDP-glu-
curonosyltransferases and perhaps sulfotrans-
ferases (129). The ultimate carcinogenic
metabolite of DMBA has previously been
identified as the bay region DMBA-3,4-diol-
1,2-epoxide (130), although recent evidence
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suggests the possible contribution of other
metabolites (131-133). The DMBA-DNA
adducts produced and the resulting muta-
tional spectrum may be different in trout
than in mammals. A high percentage of
liver tumors in trout treated with DMBA
carried activated Ki-ras, mostly G->A
transitions and G -+T transversions in the
first and second G, respectively, of the 12th
codon, as opposed to the major mutation
seen in mouse hepatic tumors (G ->C trans-
version in the first G of codon 13) (60).

We are currently investigating the poten-
tial for dibenzo(a,l)pyrene (DBP) as a model
PAH carcinogen in trout. The advantage of
DBP replacing DMBA in studies on PAH
carcinogenesis lies mainly in the fact that
DBA is a potent environmental contaminant
whereas DMBA is not (134). Preliminary
evidence indicates that DBP resembles
DMBA with respect to trout target tissues
but is a more potent carcinogen, especially
for liver and swim bladder (GS Bailey et al.,
unpublished observations).

N-Nitrosodiethylamine (DEN). DEN
is a potent hepatocarcinogen in trout
(53,63,135,136). The major adducts
produced are 7-ethylguanine and 06-ethyl-
guanine (63,136), indicating that, as in
mammals, metabolic activation occurs
through N-deethylation. In rats, mice and
humans, the major CYP catalzying 0-
deethylation ofDEN is CYP2E1, with some
contribution from CYP2A6 (137-139).
Little information (140) is available on
which trout CYPs may be responsible for
N-dealkylation of DEN or other dialkylni-
trosamines. To our knowledge, no ortho-
log of CYP2E1 has been identified in
any fish. Pretreatment of trout with BNF
enhances the hepatocarcinogenesis of
DEN, suggesting a role for CYPIA (63).

DNAAdduction and Repair
As discussed above, the major initial
covalent AFB1-DNA adduct produced is
the same in trout and mammals, trans-8,9-
dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin
B1, which is spontaneously converted to
the more persistant ring-opened form-
aminopyrimidine. A dose-dependent linear
increase in liver AFBI-covalent adduction
is observed upon feeding trout dietary
carcinogenic doses of AFB1 over a period
of 2 to 4 weeks (141). A similar dose-
dependent, steady-state linear increase in
AFB1-DNA adduction has been observed
with chronic dosing in the rat model
(142). The doses used in the trout study
(141) were relevant to human AFB1 con-
sumption and, importantly, provided no

evidence of a threshold dose below which
AFB1 was not genotoxic. The rate of repair
of AFB1-DNA adducts in trout is much
slower than in mammals. The pseudo half-
life for loss of the initial adduct is 7.5 hr in
rats. In contrast, the pseudo half-life for
AFB1-DNA adducts in trout is on the
order of 21 days (107). (Note that neither
of these values is a true half-life since loss is
due to chemical conversion, depurination,
and enzymatic removal and is not a first-
order process.) The remarkable sensitivity
of rainbow trout to AFB1 hepatocarcino-
genesis may be due in large part to this
reduced ability to repair bulky DNA
adducts. Linear regression analysis of the
relative tumor risk versus steady state
AFB1-DNA adducts yields the identical line
for both rat and trout (143), indicating that
those adducts that form and persist lead to
tumors with equivalent efficiency in the two
species (51,144-146). These results
strengthen the reliance on the molecular
dosimetry concept for risk assessment for
AFB1 exposure to humans (147,148).

Relative to AFB1, little information is
available on the identity, kinetics of forma-
tion and repair, and relationship to final
tumor response for PAHs in trout. Induc-
tion of trout CYPIA enhances the covalent
adduction of either B[a]P or B[a]P-diol to
liver DNA (128,149). Consistent with
tumor data, trout are relatively resistant to
the formation of appreciable levels of DNA
adduction following exposure to B[a]P
(150). 32P-Postlabeling analysis indicates
that the major adduct in trout liver DNA
following administration of (+) 7S-trans-
7,8-dihydrobenzo[a]pyrene-7,8-diol is (+)-
syn-7S-trans-7,8-dihydrobenzo[a]pyrene-7,
8-diol-9,10 epoxide-dG (128). Bath expo-
sure of trout embryos or embryo-derived
cells with DMBA produces a concentration-
dependent increase in DNA adduction, but
the adducts have yet to be identified.
Interestingly, a high percentage of liver
tumors from trout treated with DMBA as
embryos carry activated Ki-ras with alleles
distinctly different from DMBA-induced
liver tumors in mice (60,151). Thus in
species as different as trout and mice, bio-
chemical differences in procarcinogen
metabolism and adduction can exist, which
nonetheless lead to similar oncogenic path-
ways involving prevalent ras activation.

Treatment of trout with DEN produces
dose-dependent increases in DNA adduc-
tion, primarily 7-ethylguanine and 06_
ethylguanine (63,136). The formation of
the latter adduct correlates with tumor inci-
dence and is consistent with the dominance

of a G-A transition mutation in Ki-ras
isolated from these tumors (53,63). This
mutagenic specificity probably derives
from ineffective alkyltransferase removal
of 06-ethylguanine in these animals
(53,63). Based on total tumorigenic dosage
required, however, Shasta trout and F344
rats show comparable sensitivity to hepato-
carcinogenesis by DEN (53).

Protooncogene Activation
in Trout Tumors
An understanding of the molecular basis for
cancer initiation, promotion, and progres-
sion is necessary to more readily relate can-
cer studies in fish to those in mammals
including humans. Mutational inactivation
of the p53 tumor suppressor gene (152)
and activation of the ras protooncogene
(153) represent two of the most frequently
observed and thoroughly studied molecular
events in human cancer. Initial studies in
our laboratory have not detected p53 codon
248 or 249 mutations as common events in
AFB,-initiated hepatic tumors in trout
(GS Bailey, unpublished results); however,
we have yet to determine if mutations may
occur at other p53 sites or with other car-
cinogens or protocols, including chronic
treatment that may more closely resemble
human AFB1 exposure. In this regard,
mutations in p53 have been observed rela-
tively infrequently in rats and mice. By
comparison, we have provided partial
sequences for several ras genes in rainbow
trout (154) and have shown that muta-
tional activation of an expressed Ki-ras gene
is a frequent occurrence in hepatic tumors
initiated by the prototypical mycotoxin
AFB1 (155), the polycyclic aromatic
hydrocarbon DMBA (60), and the N-
nitroso compound DEN (53). Table 4
summarizes current knowledge regarding
Ki-ras mutational activation among the
various tumor types elicited by these and
additional carcinogens in trout. Overall,
the data demonstrate that Ki-ras mutagenic
activation can be a frequent event in the
initiation of liver, stomach, and swim blad-
der neoplasms in the trout model. We have
yet to establish full trout sequences for N-
and Ha-ras homologues and to determine
if mutations may also occur in these genes.

The Ki-ras mutational data have been
accumulated by allele-specific hybridiza-
tion, 3'-primer mismatch polymerase
chain reaction analysis (MMA) and direct
sequencing of polymerase chain reaction
(PCR) products. Though sequencing
provides a more direct identification of
any mutant that may exist within the PCR
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Table 4. Ki-ras codon 12 (GGA), 13 (GGT), and 61 (CAG) oncogenic mutations in tumors elicited by various carcinogens in the rainbow trout.

Carcinogen Tumor Mutation [frequency] Overall incidence Reference

DMBAa Livere 12(1)G-+A[2/9], 12(1)G-+C[1/9], 13(1)G-4C[1/9] 44% Unpublished
Stomachex 12(1)G-C[1/9], 13(1)G-+C[4/9], 61(2)A--T[4/9 100% Unpublished
Swim bladdere 12(1)G-+C[1/9I, 13(1)G-+C[3/91, 61(2)A->T[2/9] 67% Unpublished

DMBAb Livere 12(1)G-A[5/27], 12(2)G-+T[11/271 59% Unpublished
Stomache 12(1)G-+A[1/9I 11% Unpublished

DMBAC Liverf 12(1)G--A[4/11], 12(2)G-+T[4/11], 61(2)A-4T[1/111 82% (60)
DMBAb Liverg 12(1)G-A[6/161, 12(2)G-+T[1/16] 43% Unpublished

Stomachg No mutation [0/16] 0% Unpublished
DBPb LiverhO 12(1)G-A[10/24], 12(2)G-*T[9/24] 88% Unpublished

12(1 )G--T and 12(2)G--T[2/24J
12(1)G-+A and 12(2)G-+T[1/24]

Stomachh 12(1)G-A[1/1 61, 13(1)G->C[2/16] 19% Unpublished
AFBjd Liver' 12(1)G-+A[1/141, 12(2)G-4T[7/14], 13(2)G-*T[2/14] 71% (155)
AFB1a Liveri 12(1)G-+A[2/321, 12(2)G-+T[22/32], 13(2)G-+T[3/32] 84% Unpublished
AFB1a Liverk 12(1)G-A[1/291, 12(2)G-4T[17/29I, 13(2)G-*T[7/29] 86% Unpublished
DHEAa Liver/ 12(12)G-A[8/25] 32% Unpublished
DENa Liverm 12(1)G-*A[6/7] 86% (53)
MNNGa Liver 12(1)G-*A[3/30], 12(2)G-4A[25/30] 93% Unpublished
Controla Spontaneous No mutation [0/11] 0% Unpublished

aDetected by mismatch PCR and some confirmed by direct sequencing. bDetected by direct sequencing only. cDetected by mismatch PCR and confirmed by cloning and
sequencing. dDetected by allele hybridization and confirmed by cloning and sequencing. 'DMBA fry bath exposure/Aroclor 1254 promoter. fDMBA embryo bath exposure.
9DMBA dietary. 1DBP dietary. 'AFB, dietary. 'AFB, fry bath exposure. kAFB, fry bath exposure/DHEA promoter. 'DHEA promoter only. 'DEN bath exposure. 'One double
mutation 12(1()G-C and 13(1()G-C. 'Two double mutations at 12(1()G-T and 12(2)G-+T.

product, it has one disadvantage: it fails to
detect mutants carried by less than 10 to
20% of the cells in the tumor isolate.
Thus, data generated by this method pro-
vide only a minimal estimate of the percent
of trout tumors bearing Ki-ras mutations.
For example, MMA detected mutant Ki-
ras alleles in 100% of stomach tumors
elicited by DMBA fry bath exposure,
whereas direct sequencing detected only
11% incidence (Table 4). As seen in the
table, each carcinogen appears to generate a
specific spectrum of Ki-ras mutant alleles.
AFBI-initiated liver tumors contain pri-
marily Ki-ras codon 12 GGA->GTA and
codon 13 GGT-+GTT transversions,
whereas MNNG elicits entirely GGA->
GAA and GGA-+AGA transitions. These
are compatible with the well-known muta-
genic properties of the major DNA adducts
elicited by these carcinogens in bacterial
systems. Spontaneous liver tumors occur
only rarely in trout and few have been
available for analysis; of the limited num-
ber examined to date (Table 4), we have
been unable to detect mutant Ki-ras alleles
by MMA. These data taken together pro-
vide evidence that the mutant alleles that
we have observed in carcinogen-treated fish
occur as a direct result of carcinogen-DNA
adduction in the ras gene in vivo rather
than from amplification of background
mutational events in this model.

Most of the data we have generated to
date involve liver tumors. The hepatocar-
cinogens listed here all induce primarily

mixed cholangiocellular/hepatocellular
carcinomas, with relatively few pure hepa-
tocellular carcinomas induced. AFB1,
MNNG, DEN, and DBP induce hepatic
tumors with a high incidence (71-100%)
of activated Ki-ras alleles. An interesting
exception is dehydroepiandrosterone
(DHEA), an endogenous steroid that is also
hepatocarcinogenic in the rat but not previ-
ously known to be genotoxic. The mutant
ras incidence of 32% (8/25) is low, but the
12(1)G-A mutation observed is not com-
patible with indirect damage such as 8-
hydroxydeoxyguanosine. The precise origin
of the observed ras mutations remains to be
established. For DMBA, the incidence of
Ki-ras mutations in liver tumors varied from
44% (7/16) to 100% (9/9) among the vari-
ous experiments. The number of mutant
alleles observed is too small at present to
know if the DMBA mutational spectrum is
protocol dependent. Among the liver
tumors examined, codon 61 A-*T trans-
versions have been rarely detected, with
codon 12 and 13 guanine-based mutations
(G-4A, G-*T, G-4C) more frequently
observed. Of 24 liver tumors elicited by the
environmental PAH DBP, comparable
numbers of codon 12 G-*A and G-4T
mutations were observed and three tumors
showed evidence of double Ki-ras muta-
tions. Experiments are in progress to estab-
lish if these mutations reside on the same or
separate ras sequences and to establish the
specific DBP-DNA adducts that give rise
to ras mutations in the trout model.

Hepatic tumors from AFBI-treated
trout (Table 4) and rats (156) show fre-
quent ras mutation, yet this has not been
reported to occur in hepatocellular carci-
noma from AFB1-exposed humans.
Mutant Ha-ras alleles have, however, been
reported in human cholangiocellular car-
cinoma (157). We are attempting to
establish if ras mutation in the trout may
also be restricted to neoplasms having
cholangiocellular involvement. An alter-
native hypothesis is that the-trout and rat
laboratory models do not completely
mimic AFBI -related human hepatocar-
cinogenesis, which may frequently involve
tumor progression under the combined
influence of chronic carcinogen intake
and hepatitis infection.

Tumor Promotion and
Inhibition in Trout
Use of the trout tumor model to study
modulation of carcinogenesis has been
reviewed elsewhere (158-160). The histor-
ically low spontaneous liver tumor inci-
dence (0.1%) is a significant advantage in
the statistical design of multidose tumor
inhibition and promotion experiments. In
this overview, we will summarize some past
results and also present some recent
unpublished findings.

The majority of studies on anticarcino-
genesis has focused on inhibition of AFB1-
initiation of hepatocarcinogenesis (Table
5), but we are currently investigating mul-
tiple target tissues and combinations of
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Table 5. Inhibition of cancer in the trout model.

Carcinogen/exposure Inhibitor/exposure Incidence Mechanism Reference

AFBj/20 ppb diet BNF/500 ppm diet 1.85% TCYP1A (109)
(days 57-66) (days 1-114) CYPZK1 inhibition

13C/1,000 ppm diet Jk90% CYPZK1 inhibition
(days 1-1 14)

AFBi/l0 ppb diet BNF/500 ppm diet 193% CYPZK1 inhibition (108)
(weeks 4-8) (weeks 0-8)
AFB1/1-8 ppb diet Aroclor 1254/50 ppm .110-45% TCYP1A (161)
(12 months)
AFB1/10-320 ppb 13C/0-4,000 ppm diet l,a TCYP1A (35)
diet (weeks 4-6) (weeks 0-6)
AFB1/1 ng embryo 13C/5 pg (microinjection) >117% TCYP1A (46)
(microinjection) 133'/8.6 pg 172%

RXM/1 3.5 pg >143
AFB1/1 0-160 ppb Chlorophyllin/ lb Tight complex (162)
diet (weeks 0-2) 0-4,000 ppm diet

(weeks 0-2 with AFBj1
DEN/250 ppm bath 13C/2,000 ppm diet J166% Inhibition of (63)
(24 hr-fry) (6 weeks prior to DEN) CYP-dependent

N-demethylation?
DMBA/0.5-4 ppm 13C/0-2,000 ppm diet -IC CYP inhibition? Unpublished
bath (6 hr-fry) (.1 week prior to DMBA)

Abbreviations: AFB1, aflatoxin B1; BNF, 3-naphthoflavone; CYP, cytochrome P450; 13C, indole-3-carbinol; 133',
3,3'diindolylmethane; RXM, 13C reaction mixture formed in vitro upon acid treatment; DEN, N-nitrosodiethylamine;
DMBA, 7,12-dimethylbenz[alanthracene. 'This 9,600-animal experiment used five different doses of 13C, each of
which also had four different AFB1 doses. Liner increases in DNA adduct formation with AFB1 dosage were
observed at each level of 13C. Plots of tumor response (as % logit) versus the log AFB1 dose resulted in a series of
parallel lines with increasing 13C resulting in displacement to the right (greater AFB, dose required to reach TD50
(dose at 50% incidence). The IC50 (median-inhibiting concentration) was estimated at 1,400 ppm 13C. hA 9500-ani-
mal experiment similar to the one above was performed with four different dietary levels of chlorophyllin at six dif-
ferent doses of AFB1. Again, plots of % logit tumor response versus log AFB1 dose gave parallel lines increasingly
displaced to the right with increasing doses of chlorophyllin. A 70 to 80% protection was achieved at dietary lev-
els of 1,500 ppm chlorophyllin. cThis was a recently completed 9,600-animal experiment with multiple doses of
both 13C and DMBA. 13C was able to completely block tumors in the swim bladder and inhibited tumor formation in
the liver and stomach by 60 to 75%.

inhibitors. For example, we recently con-
ducted a preliminary experiment examin-
ing the chemoprevention potential of two
anticarcinogenic chemicals that have differ-
ent mechanisms of action. Dietary 13C at
1,500 ppm reduced AFBI-initiated hepato-
carcinogenesis from 31% to 16%, 1,500
ppm chlorophyllin gave 24% incidence
(not significant), and the combination of
I3C plus chlorophyllin was synergistic
(4.5% incidence).

In another recent preliminary collabora-
tive study with Gary Stoner of Ohio State
University, postinitiation feeding with
ellagic acid suppressed DMBA-dependent
stomach carcinogenesis, which represents
the first example of postinitiation suppres-
sion by any agent in the trout model. By
comparison, postinitiation chlorophyllin
was without effect. Compounds that have
proven negative to date as anticarcinogens
in the trout model include BHA, BHT,
D-limonene, Oltipraz, menthol, green tea
extract, vitamin E, freeze-dried onion or
garlic, and mint oil.

A number of environmental agents have
been demonstrated to function as postiniti-
ation tumor promoters or enhancers in the
trout model (Table 6). Compounds proven
ineffective at promotion to date include
transitions metals (with or without H202
as prooxidant) and the peroxisome prolifer-
ators clofibrate and WY14,643. In addi-
tion, some promoters appear to have
initiator or tissue specificity. For example,
postinitiation dietary Aroclor 1254 pro-
motes hepatocarcinogenesis with DMBA as
initiator but not with AFB1 (160). Post-
initiation I3C and BNF enhance carcino-
genesis intitiated by AFB1, DMBA, or
MNNG in liver but not in other target
organs such as kidney and, in fact, they
usually reduce the incidence in stomach.
We have also tested a number of com-
pounds including vitamin E, green tea
extract, nicotinic acid, D-limonene,
chlorophyllin, and menthol as potential
antipromoters with no success except for
one compound, ellagic acid, which was
discussed earlier.

Very little is known about the mecha-
nism of action of tumor promoters. In
trout, prooxidants such as peroxides, CCl4,
and choline deficiency are effective pro-
moters (Table 6), yet to date, co-treatment
with antioxidants has not provided any
protection. Our laboratory is currently
studying the mechanism of 13C dietary
modulation of cancer using trout and
murine models. If given before and during
initiator exposure, I3C functions in trout
as an anticarcinogen, but chronic postiniti-
ation exposure enhances tumorigenesis.
These opposing actions have similar poten-
cies (EC50 [median effective concentration]
= 1,000-1,500 ppm) in trout (42). The
mechanism of I3C inhibition in trout
appears to be largely due to inhibition of
CYP bioactivation by I3C acid condensa-
tion products rather than aryl hydrocarbon
(Ah) receptor-dependent induction of
CYPlA (111-113).
We are currently investigating the role

of the Ah receptor in tumor promotion.
Previous studies have documented that a
number of I3C acid condensation products
have high affinity for the mammalian Ah
receptor (167). Inititial attempts to block
trout Ah receptor-dependent promotion
with a-naphthoflavone (ANF) were unsuc-
cessful. In fact, ANF alone in trout was a
promoter of hepatocarcinogenesis, and the
combination ofANF and BNF was addi-
tive (Table 6). Further work has docu-
mented that ANF is an Ah receptor agonist
in trout. We had hoped to use congenic
mice to directly address the role of the
Ah receptor in I3C promotion; however,
preliminary studies indicated that I3C
fails to promote hepatocarcinogenesis in
mice (DEN) as it does in rats (AFB1) (DE
Williams, unpublished observations).

Our laboratory has recently found
DHEA to be a potent promoter in the
trout model (Table 6), and in fact it is a
complete carcinogen (165). DHEA has
received much attention recently with
respect to its chemopreventive properties in
humans and animal models with respect to
a number of diseases including athero-
sclerosis, diabetes, obesity, lupus, trauma
injury, AIDS, and in aging (168). Cur-
rently, a number of clincial trials are being
conducted with DHEA, an agent that is
also being marketed in health food stores.
DHEA is hepatocarcinogenic in rats
under protocols requiring high doses
(.4,500 ppm) over long exposure periods
(2 1 year). The carcinogenicity of DHEA
in rodents is thought to be caused by its
actions as a peroxisome proliferator (169).
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Humans are relatively insensitive to peroxi-
some proliferators; therefore, the rodent
findings are thought not applicable to
human risk assessment (170). Our findings
with the trout model are the first to docu-
ment the carcinogenicity of DHEA in the
absence of peroxisome proliferation.
Significant promotion in trout is observed
in as little as 8 weeks of feeding (5 days per
week) at levels that approximate doses pre-
viously used in some human clinical trials.
The mechanism of DHEA promotion in
trout may be hormonal. DHEA is a pre-
cursor for both estrogens (already known
to promote hepatocarcinogenesis in trout)
and androgens, and the plasma levels of
both steroids increase markedly in trout
fed DHEA. The estrogenic potency of
DHEA in trout can be observed by follow-
ing vitellogenin levels in plasma. The
DHEA analog (171) developed by Arthur
Schwartz (Temple University), 16a-fluoro-
5-androsten-17-one (8354), was much
weaker as a precursor for androgens and
estrogens in trout, was not a complete car-
cinogen, and did not significantly promote
AFB1 hepatocarcinogenesis at a dietary
level (444 ppm) for which DHEA was
very effective (165). The 8354 analogue is
currently undergoing human clinical trials.
Based on the findings in rodents and
trout, it may be prudent to proceed cau-
tiously with high DHEA supplementation
over prolonged periods and to continue
developing safer analogues.

Strengths and Limitations of
Environmental Carcinogenesis
Research in the Trout Model
There should be no expectation that trout
will supplant traditional rodent models in
carcinogen bioassays or as surrogates for
human cancer research. A most evident
limitation common to all lower vertebrates
is the lack of complete organ homology
needed to study cancers of the lung, colon,
breast, and prostate, the leading cancers in
the United States. While carcinogens that
initiate these tumors in rodents can be car-
cinogenic in trout, organospecificity is lost
and liver is the most common target organ.
An additional limitation is that trout have
late sexual maturity (2-3 years) and a long
life span during which the animal contin-
ues somatic growth. These limit the poten-
tial for genetic studies and preclude
lifetime bioassay protocols in carcinogen
testing. Under the latter limitation, a nega-
tive carcinogen bioassay result would not
be considered definitive. (This species

Table 6. Tumor enhancers and promoters in trout.

Carcinogen/Exposure Enhancer/Exposure Incidence Mechanism Reference

AFBJ/20 ppb diet BNF/500 ppm diet t 3-fold Ah receptor? (163)
(weeks 1-4) (weeks 5-16)

1I3C/2,000 ppm diet t 6-fold Ah receptor? (163)
(weeks 5-16)

AFB1/120 ppb Temperature,l 1. 4% Not growth (43)
(fry bath) 14.5e 35% related

18' 61%

AFB1/10 ppb H202/1,000, 3,000 ppm I 1.6-fold Oxidative (164)
(fry bath) BeP/500, 1,500 ppm 1' 1.5-fold,1.6-fold stress?

t-BuOOH/500, 1,500 ppm T 1.6-fold,1.9-fold
diet (10 months) 1' Multiplicity
Choline-deficient diets 1 1.5-fold Oxidative Unpublished
CC.4/500 ppm diet T 1.8-fold stress?

AFB1/50 ppb H202 d Unpublished
(embryo bath) ,B-estradiol

estradiolI+ H202

MNNG/25 ppm H202/0, 600, 1.6-fold, 3-fold (liver) (166)
(embryo bath) and 3,000 ppm diet

(8 months)

MNNG/35 ppm DHEA/0, 55, 11 l, 1 Liver and kidney c (165)
(fry bath) 222,444, and 888 ppm 4 Stomach and swim

diet (6 months) bladder

DMBA/1.5 ppm BNF/200 ppm diet I Liver 3.4-fold Unpublished
(fry bath) ANF/200 ppm diet 1' Liver 2.3-fold

ANF+BNF/200 ppm each I' Liver 4.7-fold
4 Stomach (all groups)

Abbreviations: AFBI, aflatoxin B1; BNF, )-naphthoflavone; 13C, indole-3-carbinol; BeP, benzoyl peroxide; t-BuOOH,
t-butyl hydroperoxide; PFOA, perfluorooctanoic acid; DHEA, dehydroepiandrosterone; MNNG, N-methyl-N'-
nitrosoguanidine; DMBA, 7,12-dimethylbenz[a]anthracene. 'This study examined the effect of timing, duration and
dose on 13C-enhancing potency. A linear dose-response relationship between tumor incidence and length of expo-
sure to 2000 ppm dietary 13C was observed. Promotional potency was still effective if feeding was delayed post-
initiation and if fed alternate months, weeks, or days. A tumor study employing three diffent doses of dietary 13C
and three different doses of AFB, demonstrated a linear relationship between % logit tumor incidence and log
AFB1 with increasing doses of 13C displacing the line to the left. The calculated P50 (dose producing 50% promo-
tion) for 13C promotion of AFB1 hepatocarcinogenesis was 1000 ppm. We are currently repeating this study with
more AFB, and 13C doses to determine if a threshold exists for 13C promotion. bp-Estradiol also enhanced tumor
multiplicity and tumor size. cDietary DHEA produced marked hypertrophy and cell proliferation in trout. In addition,
we have evidence that DHEA may disrupt control of the cell cycle as evidenced by alterations of p53 and PCNA.
DHEA also dramatically enhances blood levels of vitellogenin in these sexually immature fish. dTrout were fed
diets containing 1800 or 2500 ppm H202 alone, 5 or 10 ppm P-estradiol alone, or combinations of these two doses.
Both compounds promoted AFB, hepatocarcinogenesis. The combination diets were less that additive. °H202 also
enhanced tumor multiplicity. The degree of enhancement of tumor incidence significantly correlated to oxidative
damage to DNA, as evidenced by liver DNA levels of 8-hydroxy-2'-deoxyguanosine. fin liver, DHEA produced a
dose-dependent enhancement of tumor incidence from 1% at 0 ppm to 99% at 888 ppm. Tumor multiplicity and
size were also significantly increased in a dose-dependent manner. Kidney tumors were also significantly enhanced
at 111 and 888 ppm DHEA. In contrast, DHEA significantly inhibited MNNG-initiated tumors of the stomach and
swim bladder.
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instead assesses cancer risk through the
embryonic and juvenile lifestages, which are
not unimportant. Moreover, any chemical
that is positive in a trout carcinogen bioas-
say should reasonably be considered a
potential human carcinogen, barring mech-
anism information to the contrary.) A final
limitation of the trout model is the contin-
uing lack of knowledge in this species of
fundamentals in the genetics and cell biol-
ogy of cancer; owing to the relatively few
investigators involved in its development,
this is likely to remain a chronic problem.

Even with these limitations, there are
many attributes of trout and other fish
models that afford unique approaches in
the study of cancer. Where mechanistically
reasonable, the use of trout and other
fish models can substantially reduce our
dependence on small mammals for health
research. Cost is a considerable advantage,
especially for investigating statistically chal-
lenging issues that can be addressed only
with large numbers of animals. Our molec-
ular dosimetry studies using 8,000 to
10,000 animals to quantify the interrela-
tionships among carcinogen dose, anticar-
cinogen dose, DNA adduct formation,
and final tumor outcome exemplify this
(35,162). Similarly, the low husbandry
costs for fish permit tumor studies designed
to define the shape of cancer dose-response
curves down to 0.1% incidence. The design
of any such experiment requires at least
31,000 animals to provide adequate statisti-
cal power, given the expectation of only 10
tumors among 10,000 animals at the tar-
geted lowest dose. One such experiment is
in progress testing DEN in the medaka
model. DBP and DEN will be similarly
tested in the next 2 years in the trout
model, together with biochemical studies
of metabolism, DNA adduction and repair,
Ki-ras activation, target organ toxicity, and
proliferation that aim to define mecha-
nisms accompanying any departure from
linearity. An advantage of trout inherent in
this study is its historically zero back-
ground tumor rate in two of the target
organs, which assures that all observed

tumors in these organs can be ascribed to
carcinogen treatment. In the third organ,
liver, the historic background tumor rate of
0.1% will become important at the lowest
carcinogen dose only. Even here, given the
high incidence of activated Ki-ras in car-
cinogen-initiated tumors only, it may be
possible to separate almost all carcinogen-
related and spontaneous tumors. The
entire tumor study, including in-house
pathology as well as the proposed mecha-
nism studies, is to be carried out with trout
for a total budget that is only 5 to 10% of
the per-diem costs alone for a comparable
40-week single-sex, single species rat or
mouse experiment. Given current bud-
getary restrictions, it seems unlikely that
the 24,000-animal megamouse study of
2-acetylaminofluorene dose-response will
be extended to additional carcinogens;
the more affordable fish models can help
in addressing at least some important
mechanistic questions in dose-response.

Sensitivity of fish models can be an
important attribute. Trout embryos, which
are readily available in the thousands at any
specified stage of development, provide a
highly sensitive early life stage model
enabling nanogram to microgram bioassay
of scarce materials (e.g., high-performance
liquid chromatography [HPLC] fractions).
For example, we have been able to bioassay
scarce HPLC-purified metabolites of the
phytochemical indole-3-carbinol to iden-
tify the anticarcinogenic intermediates by
co-injection with AFB1 (46), and we have
generated entire tumor dose-response
curves with 2,000 individuals, requiring less
than 100 pg total of AFM1 and related
aflatoxins (GS Bailey, unpublished data).
We have determined that a measured dose
of 0.5 ng AFB1 per trout embryo will
induce 26% incidence of hepatic tumors
9 months after embryo injection; this is
nine orders of magnitude lower than the
dose of AFB1 required to elicit a similar
response in monkeys. No other established
cancer model offers this sensitivity.

Finally, the nonmammalian status of
trout also has its inherent advantages in

that a comparative approach in cancer
research is no less useful than in other
fields of biology. Thus the establishment of
ras activation as a common oncogenic
pathway in trout strongly supports a com-
monality in molecular mechanisms of
cancer in lower and higher vertebrates. The
fact that trout are more humanlike than rats
in their resistance to the phenomenon of
hepatic peroxisome proliferation makes
them an attractive species in which to estab-
lish if peroxisome proliferators might pose
carcinogenic risk by mechanisms other than
peroxisome proliferation itself-as dis-
cussed above, we now know that some of
these compounds are complete carcinogens
and are possible genotoxins in trout. AFB1
hepatocarcinogenesis can be blocked in rats
by co-treating animals with the antioxidant
ethoxyquin (172) or the antischistosomal
drug Oltipraz (173), apparently through
induction of GST Yc2 with high specificity
for AFB1-8,9-oxide. The importance of this
mechanism to planned human intervention
trials in China with Oltipraz is underscored
by our determination that neither Oltipraz
nor antioxidants induce AFBI-glutathione
detoxication in the trout model, and hence
both fail to provide protection against AFB1
hepatocarcinogenesis [GS Bailey, unpub-
lished results; (108)]. There is notable
uncertainty that such an enzyme is inducible
in human liver in vivo. The demonstration,
first in trout (34) and later confirmed in
rats (174), that the candidate anticarcino-
gen indole-3-carbinol can behave as a potent
tumor promoter under some exposure pro-
tocols has raised as yet unresolved safety
concerns over its proposed use in human
breast cancer chemoprevention.

In summary, it is evident that there
are many experimental situations in which
trout and other fish models are inadequately
developed or inappropriate to address certain
issues in cancer research. It is equally appar-
ent that these species can serve as highly
useful adjuncts to the traditional rodent
models in the study of human environ-
mental cancer risks and in some situations
can provide wholly unique approaches.
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