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BACKGROUND: Polymorphisms in the proinflammatory cytokine genes tumor necrosis factor-o
(TNPF and lymphotoxin-a. (LTA, also called 7NF-) have been associated with asthma and atopy
in some studies. Parental smoking is a consistent risk factor for childhood asthma. Secondhand
smoke and ozone both stimulate TNF production.

OBJECTIVES: Our goal was to investigate whether genetic variation in 7NF and LTA is associated
with asthma and atopy and whether the association is modified by parental smoking in a Mexican
population with high ozone exposure.

METHODS: We genotyped six tagging single nucleotide polymorphisms (SNPs) in 7NF and LTA,
including functional variants, in 596 nuclear families consisting of asthmatics 4-17 years of age and
their parents in Mexico City. Atopy was determined by skin prick tests.

RESULTS: The A allele of the 7NF-308 SNP was associated with increased risk of asthma [relative
risk (RR) = 1.54; 95% confidence interval (CI), 1.04-2.28], especially among children of non-
smoking parents (RR = 2.06; 95% CI, 1.19-3.55; p for interaction = 0.09). Similarly, the A allele
of the TNF-238 SNP was associated with increased asthma risk among children of nonsmoking
parents (RR = 2.21; 95% CI, 1.14-4.30; p for interaction = 0.01). L7A SNPs were not associated
with asthma. Haplotype analyses reflected the single SNP findings in magnitude and direction.
TNF and LTA SNPs were not associated with the degree of atopy.

CONCLUSIONS: Our results suggest that genetic variation in 7NF may contribute to childhood
asthma and that associations may be modified by parental smoking.
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disease, lymphotoxin-a (LTA), ozone, secondhand smoke, single nucleotide polymorphism
(SNP), tumor necrosis factor-o. (TNF). Environ Health Perspect 115:616—622 (2007).

doi:10.1289/ehp.9740 available via hetp://dx.doi.org/ [Online 16 January 2007]

Asthma is a complex disease characterized
by airway inflammation, bronchial hyper-
responsiveness, and airflow obstruction.
Tumor necrosis factor-o. (INF), the defining
member of the TNF family of cytokines, has
been directly implicated in asthmatic airway
inflammation and bronchial hyperresponsive-
ness (Babu et al. 2004; Thomas 2001).
Lymphotoxin-a (LTA), also called TNF-§,
shares receptors with TNF. The TNF
[GenBank accession no. X02910 (htep://
www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?
val=X02910)] and L7A [GenBank accession
no. X01393 (http://www.ncbi.nlm.nih.gov/
entrez/viewer.fcgi?val=X01393)] genes are
located consecutively in the class I1I region of
the human major histocompatibility complex
(MHC) on chromosome 6p21, which has
shown evidence of linkage to asthma, atopy,
and related phenotypes in multiple genome-
wide studies (Collaborative Study on the
Genetics of Asthma 1997; Daniels et al.
1996).

Single nucleotide polymorphisms (SNPs)
of both 7NF and LTA influence gene expres-
sion. (Knight et al. 2004; Kroeger et al. 1997;
Messer et al. 1991; Ozaki et al. 2002; Wilson
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etal. 1997). In particular, a SNP in the 7NF
promoter region (7NF-308) and a SNP
within the first intron of LTA (LTA Ncol)
affect the rate of gene transcription and pro-
tein production (Kroeger et al. 1997; Messer
et al. 1991; Ozaki et al. 2002; Wilson et al.
1997). Several studies have indicated an asso-
ciation of the 7NF-308 SNP with asthma
and atopy susceptibility (Albuquerque et al.
1998; Bilolikar et al. 2005; Chagani et al.
1999; Di Somma et al. 2003; Gao et al.
2006; Gupta et al. 2005; Li Kam Wa et al.
1999; Li YF et al. 2006; Moffatt and
Cookson 1997; Sandford et al. 2004; Sharma
et al. 2006; Shin et al. 2004; Wang et al.
2004; Winchester et al. 2000; Witte et al.
2002), although other studies do not (Beghe
et al. 2004; Buckova et al. 2002; El Bahlawan
et al. 2003; Lin et al. 2002; Louis et al. 2000;
Moffatt et al. 1999; Randolph et al. 2005;
Trabetti et al. 1999; Zhu et al. 2000). The
LTA Neol SNP was reported to be associated
with asthma (Albuquerque et al. 1998;
Bilolikar et al. 2005; Moffatt and Cookson
1997; Sharma et al. 2006); however, most
studies showed no association (Buckova et al.
2002; Cardaba et al. 2001; El Bahlawan et al.

2003; Immervoll et al. 2001; Izakovicova
Holla et al. 2001; Li Kam Wa et al. 1999;
Lin et al. 2002; Migita et al. 2005; Moffartt
et al. 1999; Noguchi et al. 2002; Randolph
et al. 2005; Sandford et al. 2004; Shin et al.
2004; Trabetti et al. 1999; Van Hage-
Hamsten et al. 2002; Wang et al. 2004;
Witte et al. 2002). The 7NF-857 and LTA-
753 SNPs in the promoter regions have also
been associated with asthma and atopy
(Migita et al. 2005; Noguchi et al. 2002).
The effects of TNF and LTA SNPs on
asthma and atopy remain unresolved due to
the conflicting results across studies.

The etiology of asthma and atopy
involves interactions between genetic suscep-
tibility and exposure to environmental trig-
gers, such as secondhand smoke, ozone,
particulate matter, allergens, and endotoxin
(Tatum and Shapiro 2005). 7/NF has been
identified as a candidate gene for ozone-
induced airway inflammation and hyperre-
sponsiveness (Kleeberger et al. 1997), and
genetic variation in 7NF and L7A has been
associated with respiratory effects of ozone in
humans (Yang et al. 2005). Parental smoking
has been consistently related to childhood
asthma [U.S. Department of Health and
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Human Services (DHHS) 2006] and TNF
may influence the lung inflammatory response
to tobacco smoke (Churg et al. 2003; Park
et al. 2003). Few studies have examined
whether exposure to parental smoking modifies
the relationship between 7NF and LTA poly-
morphisms and asthma risk. We used the
case—parent triad design to investigate the asso-
ciation of 7NF and LTA polymorphisms and
haplotypes with childhood asthma and atopy
in asthmatic children from Mexico City, an
area with the highest ozone exposure in North
America. We also examined possible effect
modification by exposure to parental smoking.

Methods

Study design and subject enrollment. We used
the case—parent triad design (Weinberg et al.
1998; Wilcox et al. 1998). The study popula-
tion included 536 case—parent triads and 60
case—parent pairs with adequate DNA sam-
ples for genotyping of at least one SNP for
the 7NF and LTA genes. The cases were chil-
dren 4-17 years of age with asthma diagnosed
by a pediatric allergist at the allergy referral
clinic of a large public pediatric hospital in
central Mexico City (Hospital Infantil de
Mexico Federico Gomez). Children and par-
ents provided blood samples as sources of
DNA. A parent, nearly always the mother,
completed a questionnaire on the child’s
symptoms and risk factors for asthma includ-
ing current parental smoking, parental smok-
ing during the first 2 years of the child’s life,
maternal smoking during pregnancy, and
residential history.

We obtained measurements of ambient
ozone from the Mexican government’s air
monitoring stations (http://www.ine.gob.mx/
dgicurg/calaire/tend/concentra.php). Ozone
levels were measured via ultraviolet pho-
tometry (analyzer model 400, Advanced
Pollution Instrumentation, San Diego, CA,
USA). The residence of each child who par-
ticipated in this study was located using a
map, and the closest monitoring station was
assigned to that residence (Romieu et al.
2002). The ozone exposure data were col-
lected for the year before the time of entry
into the study. The parameter we used was
the annual average of the daily maximum 8-
hr averages. We dichotomized this variable at
the median of 67 ppb for stratified analyses.

The protocol was reviewed and approved
by the institutional review boards of the
Mexican National Institute of Public Health,
the Hospital Infantil de Mexico Federico
Gomez, and the U.S. National Institute of
Environmental Health Sciences (NIEHS).
Parents provided the written informed con-
sent for the child’s participation. Children
also gave their informed assent.

Clinical evaluation. The diagnosis of
asthma was based on clinical symptoms and

response to treatment by a pediatric allergist
[British Thoracic Society/Scottish Inter-
collegiate Guidelines Network (BTS/SIGN)
2003]. The severity of asthma was rated by a
pediatric allergist for 571 cases according to
symptoms in the Global Initiative on Asthma
schema as mild (intermittent or persistent),
moderate, or severe [National Heart, Lung,
and Blood Institute (NHLBI) 1998]. At a
different point of time, for research purposes,
pulmonary function was measured using
the EasyOne spirometer (ndd Medical
Technologies, Andover, MA, USA) for 446
cases according to American Thoracic Society
(ATS) specifications (ATS 1995). The best
test of three technically acceptable tests was
selected. Spirometric prediction equations
from a Mexico City childhood population
were used to calculate the percent predicted
forced expiratory volume in 1 sec (FEV))
(Perez-Padilla et al. 2003). Children were
asked to hold asthma medications on the
morning of the test.

Atopy was determined using skin prick
tests. The following battery of 24 acroallergens
common in Mexico City was used: Aspergillus
ﬁmz;gatm, Alternaria, Mucor, Blattella german-
ica, Periplaneta americana, Penicillium, cat,
dog, horse, Dermatophagoides (pteronyssinus
and farina), Ambrosia, Artemisa ludoviciana,
Cynodon dactylon, Chenopodium album,
Quercus, Fraxinus, Helianthus, Ligustrum vul-
gare, Lolium perenne, Plantago lanceolata,
Rumex crispus, Schinus molle, Salsola, and
Phleum pratense. Histamine was used as a posi-
tive control and glycerin as a negative control.
Children were considered atopic if the diame-
ter of the skin reaction to at least one allergen
exceeded 4 mm. The test was considered valid
if the reaction to histamine was = 6 mm
according to the grading of skin prick test rec-
ommended by Aas and Belin (1973). Skin test
data on all 24 aeroallergens were available on
545 cases.

SNP selection. We had various data
sources available for selection of tagging SNPs.
These included resequencing data in individu-
als of African and European descent by Seattle
SNPs (http://pga.mbt.washington.edu) and
genotyping data on 10 Mexicans and 38
Mexican-Americans with four grandparents
born in Mexico for cosmopolitan haplotype
tagging SNPs identified by the NIEHS
Environmental Genome Project based on rese-
quencing a representative sample of the U.S.
population (http://egp.gs.washington.edu).
We identified the common haplotypes using
PHASE (Stephens et al. 2001) and then used
ldSelect (Carlson et al. 2004) to identify tag-
ging SNPs. We also analyzed the genotyping
data from seven Mexicans in SNP500Cancer
(Packer et al. 2004) (htep://snp500cancer.
nci.nih.gov). 7NF and LTA are small genes
located consecutively in a 6 kb region on
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chromosome 6, and linkage disequilibrium in
this region is high. We selected six tagging
SNPs— TNF-1031 (rs1799964), TNF-857
(rs1799724), TNF-308 (rs1800629), TNF-
238 (1s361525), LTA-379 (rs2239704), and
LTA Ncol (rs909253)—to cover the whole
region, including all the common SNPs in the
regulatory and coding regions of the genes
with known functional importance (Fong and
Mark 1995; Knight et al. 2004; Kroeger et al.
1997; Messer et al. 1991; Ozaki et al. 2002;
Wilson et al. 1997) or that had been associated
with asthma in the literature. As expected,
given the increasing documentation of the
portability of tagging SNPs across popula-
tions (Gonzalez-Neira et al. 2006), especially
in the less diverse non-African groups, the
tagging SNPs selected provide excellent cover-
age of common haplotypes in other popula-
tions. For example, the six tagging SNPs we
selected based on the Mexican data would
cover all six common haplotypes (> 5%) in
European and five of six common haplotypes
in African populations.

Genotyping. We extracted DNA from
peripheral blood lymphocyte using Gentra
Puregene kits (Gentra System, Minneapolis,
MN, USA). We obtained genotypes for
the 7NF-1031 and 7NF-857 SNPs using
TagMan SNP Genotyping Assay (Li H et al.
2006). Primers and probes were purchased
from Assay-on-Demand (Applied Biosystems,
Foster City, CA, USA). All PCR amplifications
were performed using 5" exonuclease assay on
GeneAmp PCR Systems 9700 (Applied
Biosystems). The fluorescence of PCR prod-
ucts was detected using ABI Prism 7900HT
sequence detection system. The TNF-308,
T'NF-238, and LTA Ncol SNPs were geno-
typed using a multiplex PCR and immobilized
probe linear array system (Barcellos et al.
2004), provided by Roche Molecular Systems
(Alameda, CA, USA). The L7A-379 SNP was
genotyped using MGB Eclipse Genotyping
Assay (Belousov et al. 2004). Primers and
Probes were purchased from MGB Eclipse by
Design (Epoch Biosciences, Bothell, WA,
USA). All genotyping assays were done by a
researcher who was blinded to parent or child
status of samples. Sixteen quality control sam-
ples were plated per 384-well plate along with
24 control samples with known genotype. An
additional six blind replicate samples were
included in the analyses. The quality controls
and the blind replicates were 100% concordant
for all genotyping methods.

Nonparentage was ascertained with a set
of short-tandem repeats (AmpFLSTR Profiler
Plus; Applied Biosystems) analyzed using
Pedcheck software (University of Pittsburgh,
Pittsburgh, PA, USA) (O’Connell and Weeks
1998). A total of 596 families had genotyping
data for at least one SNP, and 566 families
had genotyping data for all six SNPs.
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Statistical analysis. We used a log-linear
likelihood approach to analyze associations
between asthma and individual SNPs
(Weinberg et al. 1998). The log-linear likeli-
hood-ratio test is a powerful and more flexible
alternative to the transmission disequilibrium
test (TDT) and tests the same null hypothesis
of no within-family relationship between the
variant and the disease (Lake and Laird
2004). Similar to TDT-based methods for
the analysis of case—parent data, such as the
family-based association test (FBAT)
(Horvath et al. 2001), the log-linear model
achieves robustness against genetic population
structure through stratification on the possi-
ble parental mating types (Lake and Laird
2004). The log-linear method has the advan-
tage of providing estimates of the magnitude
of associations rather than simply tests of sig-
nificance (Weinberg et al. 1998). We calcu-
lated relative risks for individual SNPs
without restricting to a specific genetic model.
The log-linear models of case—parent data are
inherently immune to confounding by demo-
graphic or lifestyle factors such as parental
smoking. However, we examined effect modi-
fication by sex, asthma severity, parental
smoking, and level of ozone exposure. We
calculated tests of interactions for the joint
effects of genotype and current parental
smoking and parental smoking before the
child turned two using the method of
Umbach and Weinberg (2000). All analyses
were performed using SAS version 9.1
(SAS Institute Inc., Cary, NC, USA) and
STATA version 8.0 (StataCorp., College
Station, TX, USA).

To evaluate whether 7NF and LTA poly-
morphisms influenced the degree of atopy, as
assessed by the number of positive skin tests
out of 24 performed, we used the polytomous
logistic method of Kistner and Weinberg to
estimate the linkage and association between
TNF and LTA polymorphisms and atopy
(Kistner and Weinberg 2004). p-Values were

Table 1. Demographic and clinical characteristics
of the 596 asthmatic children.

Clinical characteristics Value
Age [years (mean + SD)] 90+24
Sex (male) 61.1
Asthma severity (n=571)
Mild 715
Moderate to severe 285
Asthma medication in the 98.3
preceding 12 months (n=590)
FEV, [percent predicted (mean + SD)] 96.7 +20.6
(n=446)
Skin test positivity (of 24 aeroallergens) (n = 545)
=1 allergen 91.9
= 5allergens 52.8
Parental smoking (n=591)
Mother smoked during pregnancy 58
In early childhood (< 2 years of age) 326
Current smoking parent 50.4

Values are expressed as percent except where noted.
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calculated from likelihood ratio tests. We also
used this method to analyze the relationship
between TINFand L7A SNPs and lung func-
tion, as assessed by percent predicted FEV/.
We used HAPLIN version 2.0 (htep://
www.uib.no/smis/gjessing/genetics/
software/haplin) to analyze associations
between asthma and 7NF and L7A haplo-
types. HAPLIN is an extension of the log-
linear model from a single locus to loci with
multiple haplotypes with unknown phase
(Gjessing and Lie 2005). The haplotypes of
individuals with unknown phase are con-
structed from the family information when-
ever possible, and the remaining haplotypes
are estimated by using the expectation-
maximization algorithm (Gjessing and Lie
2005). HAPLIN estimates single- and dou-
ble-dose effects of haplotypes rather than sim-
ply tests of significance using maximum
likelihood (Gjessing and Lie 2005). We set a
threshold of 1% for haplotype frequency,
leaving 582 families in the HAPLIN analyses.
We present the p-values computed using
the above methods. To address the potential
issue of multiple comparisons, we calculated
the false discovery rate for each p-value < 0.05
using the method of Storey (Storey and
Tibshirani 2003). The false discovery rate is
the expected proportion of false positives
incurred when a particular test is called signifi-
cant. However, these corrections will be overly
conservative when applied equally to all SNPs.
Our prior prediction of positive findings
would be greatest for SNPs with known func-
tional importance, such as 7NF-308, com-
pared with SNPs chosen only as haplotype
tagging SNPs where functional significance is
not well characterized. In addition, the false
discovery rate does not take into account the
correlation between SNPs in a gene.

Results
Clinical characteristics of the asthmatic chil-
dren with genotyping data are presented in
Table 1. The mean (+ SD) age of cases was
9.0 £ 2.4 years (range 4-17 years). Most had
mild (71.5%) as opposed to moderate or severe
asthma (28.5%). Nearly all cases (98.3%) had
used medication for asthma in the preceding
12 months. Wheezing in the preceding
12 months was reported by 89.8% and chronic
dry cough was reported by 65.4%. For 73.9%
of cases, asthma symptoms had interfered with
daily activities or school attendance in the pre-
ceding 12 months. Among cases with spirome-
try data, the mean FEV percent predicted was
96.7 = 20.6. Atopy was present in 91.9% of
cases. The highest rates of skin test positivity
were seen for dust mite (70.3%) and cockroach
(43.1%). Although only 5.8% of mothers
reported smoking during pregnancy, 32.6% of
cases lived with a smoking parent in early
childhood (before 2 years of age) and 50.4%
were currently exposed to parental smoking.
The minor allele frequency and genotype
frequency distributions of the six tagging
SNPs are shown in Table 2. The TNF-308
and 7NF-238 polymorphisms were relatively
rare in our Mexican population (minor allele
frequency = 5% for TNF-308 and 4%
for TNF-238). The frequency distributions
for all mating types for TNF and LTA poly-
morphisms are presented in Supplemental
Table 1 for all families, Supplemental Table 2
for families with smoking parents, and
Supplemental Table 3 for families with non-
smoking parents (Supplemental Material
online at http://www.chponline.org/docs/
2007/9740/suppl.pdf). Hardy-Weinberg
equilibrium (p > 0.1) was confirmed for all six
tagging SNPs in the parents. Pairwise linkage
disequilibrium coefficients, D, and 72,

Table 2. Genotype distributions for LTA and TNF polymorphisms.

No. of cases with No. of cases with Minor allele
Locus Genotype All cases smoking parents  nonsmoking parents frequency?
LTA-379 € 159 85 74 0.48
CA 299 147 148
AA 138 66 7
LTA Neol AA 251 121 128 0.34
AG 268 141 124
GG 65 32 33
TNF-1031 T 420 208 208 0.15
TC 146 74 Al
CE 18 9 9
TNF-857 cC 316 165 150 0.27
CT 221 106 M1
T 50 21 29
TNF-308 GG 513 268 240 0.05
GA 65 25 40
AA 0 0 0
TNF-238 GG 525 269 252 0.04
GA 50 22 28
AA 3 2 1

See the Supplemental Material (http://www.ehponline.org/docs/2007/9740/suppl.pdf) for the frequency distributions for all
mating types for TNFand LTA polymorphisms for all families and by parental smoking status.
aMinor allele frequency was calculated using parent genotyping data.
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between L7TA and TNF SNPs, calculated
using FBAT (Horvath et al. 2001) are shown
in Supplemental Table 4 in the online
Supplemental Material. There was moderate
linkage disequilibrium between the L74-379
and LTA Ncol polymorphisms (72 = 0.50),
and weak linkage disequilibrium between
the L7A-379 and TNF-857 polymorphisms
(r2 = 0.39), the TNF-1031 and TNF-238
polymorphisms (2 = 0.25), the LTA Ncol
and TINF-857 polymorphisms (7% = 0.20),
and the L74-379 and TNF-1031 polymor-
phisms (72 = 0.16). The 72 values for all other
SNP pairs were < 0.1.

Neither of the two SNPs in L7A was asso-
clated with asthma (Table 3). For 7NF; carry-
ing at least one copy of the 7/NF-308A allele
was associated with increased asthma risk
[relative risk (RR) = 1.54; 95% confidence
interval (CI), 1.04-2.28; p = 0.031; false
discovery rate = 0.12] relative to homozygotes
for the major G allele (Table 3). Only three
cases were homozygous for the minor allele
for TNF-238 and none for TINF-308, so we
were not able to evaluate the relative risks for
homozygotes. The TINF-238, TINF-857, and
TNF-1031 polymorphisms gave weaker, and
more unstable, evidence of association with
asthma (Table 3). Results for the six tagging
SNPs did not differ appreciably by sex,
asthma severity (mild versus moderate to
severe), or ozone level (data not shown). We
did not observe a clear pattern of associations
between the 7VF and LTA SNPs and percent
predicted FEV| (data not shown).

Because of the consistent association
between parental smoking and childhood
asthma (DHHS 2006) and the involvement
of TNF in cigarette smoke—induced inflam-
mation responses (Churg et al. 2003; Park
et al. 2003), we examined the association of
each LTA and TNF SNP with asthma strati-
fied by exposure to a smoking parent in the
home. Among cases without smoking parents
in the home, the 7NF-308A allele and
TNF-238A alleles showed increased risk of
asthma (RR = 2.06; 95% CI, 1.19-3.55; p =
0.0097; false discovery rate = 0.04 for
TNF-308A; RR = 2.21; 95% CI, 1.14-4.30;
p =0.019; false discovery rate = 0.04 for
TNF-238A) (Table 3). The p-values for inter-
action with living with smoking parents were
0.09 for TNF-308 and 0.01 for TNF-238.
For the other two 7NF SNPs, although the
results were not statistically significant, the
increased risk of asthma for carrying two
copies of the minor allele also appeared to be
limited to cases with nonsmoking parents
(RR = 2.36; 95% CI, 0.82-6.78 for
TNF-1031C; RR = 1.32; 95% CI, 0.76-2.29
for TNF-857T). Among cases with smoking
parents in the home, none of the six L7A4 and
TNF polymorphisms were associated with
asthma (Table 3).

Haplotype analyses results reflected the
single SNP findings in magnitude and direc-
tion (Table 4). Among all cases, individuals
carrying one copy of the ht5 (CGTCAG)
haplotype, containing the 7/NF-308A allele,
exhibited an increased risk of asthma of bor-
derline statistical significance (RR = 1.45;
95% CI, 0.97-2.19). Among cases with non-
smoking parents, carrying one copy of the ht6
(CACCGA) haplotype containing the
TNFE-238A allele or one copy of the ht5 hap-
lotype exhibited an increased risk of asthma
(RR = 2.15; 95% ClI, 1.21-3.82; p = 0.0082

for ht5; RR = 2.40; 95% CI, 1.18-4.81; p =
0.014 for ht6). The false discovery rate was
0.03 for the ht5 and ht6 findings. Among
cases with smoking parents, L7A and TNF
haplotypes were not associated with asthma
(Table 4).

We also examined the association of L7A
and 7NFindividual SNPs and haplotypes with
asthma stratified by exposure to a smoking
parent before child turned two because expo-
sure in early childhood has also been consis-
tently associated with childhood asthma risk
(DHHS 2006). The analysis results were

Table 3. LTA and TNF polymorphisms in relation to childhood asthma risk among all cases and stratified by

parental smoking status [RR (95% CI)].

Cases with Cases with

Locus Genotype All cases smoking parents nonsmoking parents
LTA-379 oo 1.0 1.0 1.0

CA 1.04(0.82-1.32) 0.95(0.68-1.31) 1.11(0.78-1.57)

AA 0.98(0.71-1.34) 0.93(0.59-1.45) 1.02 (0.65-1.62)
LTA Neol AA 1.0 1.0 1.0

AG 1.00 (0.80-1.24) 1.04(0.76-1.43) 0.94 (0.68-1.30)

GG 0.89(0.61-1.29) 1.00 (0.60-1.69) 0.79(0.46-1.35)
TNF-1031 T 1.0 1.0 1.0

TC 1.01(0.78-1.30) 0.89(0.61-1.30) 1.14(0.80-1.64)

to 1.22 (0.64-2.33) 0.87 (0.38-2.00) 2.36(0.82-6.78)
TNF-857 cC 1.0 1.0 1.0

CT 0.96 (0.77-1.19) 0.88(0.64-1.20) 0.99(0.73-1.35)

1T 1.13(0.75-1.70) 0.93(0.51-1.71) 1.32(0.76-2.29)
TNF-308 GG 1.0 1.0 1.0

GA 1.54 (1.04-2.28)* 1.09(0.61-1.94) 2.06 (1.19-3.55)**

AAE J— — J—
TNF-238 GG 1.0 1.0 1.0

GA 1.22(0.81-1.85) 0.81(0.46-1.42) 2.21(1.14-4.30)

AAZ — _ .

a0nly three cases were homozygous for the minor A allele for TNF-238 and none for TNVF-308, so we did not calculate
those relative risks. *p = 0.031; false discovery rate = 0.12. **p = 0.0097; false discovery rate = 0.04; p-value for interaction
=0.09. #p = 0.019; false discovery rate = 0.04; p-value for interaction = 0.01.

Table 4. TNVF and LTA haplotypes in relation to childhood asthma risk among all cases and stratified by

parental smoking status [RR (95% ClI)].

Haplotype? Frequency Single copy Double copy
All cases
ht1 (CGTCGG) 0.305 0.94(0.75-1.18) 0.80(0.53-1.21)
ht2 (AATTGG) 0.271 0.92(0.72-1.15) 1.11(0.73-1.67)
ht3 (AATCGG) 0.208 1.00(0.79-1.26) 1.00 (0.60-1.66)
ht4 (CACCGG) 0.112 0.87(0.65-1.16) 1.04(0.47-2.33)
ht5 (CGTCAG) 0.040 1.45(0.97-2.19) —b
ht6 (CACCGA) 0.035 1.31(0.85-2.03) —
ht7 (CATCGG) 0.027 1.03(0.62-1.73) —
Cases with smoking parents
ht1 (CGTCGG) 0.298 1.18(0.86-1.63) 1.02 (0.57-1.81)
ht2 (AATTGG) 0.271 0.86 (0.62-1.21) 0.89 (0.49-1.66)
ht3 (AATCGG) 0.198 1.09(0.78-1.54) 1.30(0.65-2.63)
ht4 (CACCGG) 0.117 0.88(0.58-1.31) 0.98(0.32-3.03)
ht5 (CGTCAG) 0.042 0.90 (0.49-1.67) —
ht6 (CACCGA) 0.047 0.84 (0.46-1.52) —
ht7 (CATCGG) 0.022 1.50 (0.72-3.15) —
Cases with nonsmoking parents
ht1 (CGTCGG) 0.310 0.74(0.54-1.02) 0.64 (0.36-1.16)
ht2 (AATTGG) 0.274 0.92 (0.66-1.27) 1.29(0.72-2.22)
ht3 (AATCGG) 0.212 0.94 (0.66-1.31) 0.81(0.38-1.73)
ht4 (CACCGG) 0.107 0.86 (0.57-1.31) 1.16(0.37-3.53)
ht5 (CGTCAG) 0.038 2.15(1.21-3.82)* —
ht6 (CACCGA) 0.022 2.40(1.18-4.81)** —
ht7 (CATCGG) 0.032 0.71(0.34-1.49) —

aThe haplotypes formed by LTA-379C > A, LTA NcolA > G, TNF-1031T > C, TNF-857C > T, TNF-308G > A, and TNF-238G > A
in order. b0nly three cases were homozygous for the ht6 haplotype and none for the ht5 and ht7 haplotypes, so we did not
calculate those relative risks. *p = 0.0082; false discovery rate = 0.03. **p = 0.014; false discovery rate = 0.03.
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consistent with findings for stratifying by
current exposure to a smoking parent in the
home (data not shown).

We examined the association between
individual L7A4 and TNF SNPs and the
degree of atopy to aeroallergens, assessed by
the number of positive skin tests out of a bat-
tery of 24 tests. No significant associations
were detected with the number of positive
skin tests for the six L7A and TNF SNPs
(data not shown).

Discussion

In this case—parent triad study in a Mexico
City population with high lifetime exposure
to ozone, we found that the A allele of the
functionally relevant 7NF-308 polymorphism
was significantly associated with an increased
risk of childhood asthma, especially among
children with nonsmoking parents. The
TNF-238A allele and the haplotypes contain-
ing the 7NF-308A allele or the 7NF-238A
allele were associated with an increased child-
hood asthma risk predominantly in children
with nonsmoking parents.

TNF is a potent proinflammation
cytokine and has been consistently implicated
in asthmatic inflammation and bronchial
hyperresponsiveness in a variety of subcellular,
in vitro, ex vivo, in vivo, and genetic studies
(Thomas 2001). For example, TNF expres-
sion is markedly increased in asthmatic
airways compared with normal airways
(Bradding et al. 1994). TNF appears to have
an important amplifying effect on asthmatic
inflammation (Babu et al. 2004) and has also
been shown to induce airway hyperresponsive-
ness in rats and humans (Kips et al. 1992;
Thomas et al. 1995). Therefore, genetic poly-
morphisms that affect gene expression or TNF
activity in the airways might be expected to
influence asthma risk.

The TNF-308 polymorphism has been fre-
quently studied in asthma and atopy association
studies because it has direct functional effects
on TNF gene regulation. The 7NF-308A allele
is a much stronger transcriptional activator than
the more common G allele (Wilson et al. 1997)
and is associated with higher TNF production
(Louis et al. 1998). The TNF-308A allele leads
to high binding affinity of nuclear factors to the
TNF promoter and gives a high level of gene
transcription (Kroeger et al. 1997). Thus,
observations from functional studies suggest
that the 7NF-308A allele is of biological signifi-
cance. Despite the known effects of tobacco
smoke on TNF expression and the well-
documented association between parental
smoking and childhood asthma, few studies
have evaluated whether exposure to a smoking
parent modifies effects of genetic variation in
TNF on childhood asthma. In our study, the
association was greater among children without
smoking parents in the home.
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We also found an association between the
TINF-238A allele and asthma risk among chil-
dren with nonsmoking parents in the home.
The TNF-238 polymorphism was not in link-
age disequilibrium with the 7NF-308 poly-
morphism (72 < 0.01) in our Mexican
population, although they are only 70 bp
apart from each other within the class I1I
region of the MHC on chromosome 6p.
There is no strong evidence showing that the
TNF-238 polymorphism has a direct effect
on gene expression, although studies suggest
that this region contains a strong repressor
site (=280 to —172) (Fong and Mark 1995).
However, the 7NF-238 polymorphism may
be in linkage disequilibrium with a functional
polymorphism that impacts TNF production,
either within the 7NF gene or another gene
within the MHC.

Because the etiology of asthma involves
numerous environmental triggers, heteroge-
neous exposure to environmental stimuli
among different populations may cause con-
flicting results across studies. The influence of
genotypes on phenotypes may be different
and even opposite at different levels of expo-
sure (Martinez 2005). Therefore, incorporat-
ing environmental exposures, such as parental
smoking, into association studies is impor-
tant. Parental smoking, a reasonably valid
approach to estimate long-term secondhand
smoke exposure in infants and children, is
one of the most consistent risk factors for
childhood asthma (DHHS 2006).

It is not unexpected to find differing asso-
ciations between genetic polymorphisms and
asthma susceptibility based on parental smok-
ing exposure. We previously reported that the
protective effect for the NQO1 Ser allele in
GSTM1-null children was limited to those
with nonsmoking parents (David et al. 2003).
A recent genome-wide linkage study found
different regions of linkage to childhood
asthma by parental smoking exposure (Colilla
et al. 2003). Of note, the chromosome 6p
region, containing the 7/NF gene, was more
strongly linked to asthma among subjects
who did not live with a smoker during
infancy compared with those who lived with
smokers (Colilla et al. 2003).

A recent study showed that the 7NF-308
polymorphism modified the effect of home
exposure to smokers on respiratory illness-
related school absence among children mostly
without asthma (Wenten et al. 2005). Another
study in the same population showed that the
TNF-308A allele was associated with an
increased risk of wheezing, especially among
children living in low ozone communities (Li
YF et al. 2006). In the present study, we
found that 7NF polymorphisms and haplo-
types were associated with childhood asthma
susceptibility predominantly among children
who did not live with smoking parents.

Because TNF is a candidate gene for
ozone-induced airway inflammation and
hyperresponsiveness (Kleeberger et al. 1997),
we stratified on the ozone level. It is not sur-
prising that we did not observe effect modifi-
cation by ozone because our population in
central Mexico City was exposed to high life-
time levels of ozone compared with U.S.
populations. The median level of the annual
average of the daily maximum 8-hr averages
for our population was 67 ppb, with an
interquartile range of only 12 ppb.

A possible explanation for our finding of
an association of 7/NF polymorphisms with
asthma predominantly for children without
smoking parents is that the combination of
exposure to secondhand smoke and ozone,
which both increase TNF production, over-
whelms the smaller impact of TNF poly-
morphisms on TNF expression. Indeed,
expression levels of TNF are significantly
increased in mice and humans exposed to
tobacco smoke (Churg et al. 2003; Park et al.
2003). TNF has been identified as a potential
candidate gene for ozone susceptibility
(Kleeberger et al. 1997; Yang et al. 2005) and
ozone exposure can stimulate TNF secretion
from lung cells (Arsalane et al. 1995). Tobacco
smoke and ozone are both strong oxidants
(Tatum and Shapiro 2005) and potent con-
trollers of TNF production (Arsalane et al.
1995; Churg et al. 2003; Park et al. 2003). In
combination, these environmental triggers
may have synergistic effects and overcome the
smaller effects of TNF polymorphisms.
Conversely, in the absence of secondhand
smoke exposure, the influence of 7NF func-
tional polymorphisms on TNF expression
may be greater, which could explain our find-
ing of stronger associations at lower levels of
exposure. Of note, for CD14, a pattern recog-
nition receptor in the endotoxin-induced
immune response, associations between the
CD14-159 polymorphism and asthma and
atopy differ at high versus low levels of endo-
toxin exposure (Martinez 2005).

In summary, we found that 7NF poly-
morphisms and haplotypes were associated
with childhood asthma susceptibility, espe-
cially among children without smoking par-
ents. These results suggest that the effects of
genetic variation in 7/VF may be more appar-
ent at lower levels of exposure to substances
such as secondhand smoke, which strongly
influence TNF expression.
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