EXPOSURE TO ENVIRONMENTAL LEAD AFFECTS LUNG AGING OF THE GENERAL POPULATION FROM A LARGE INDUSTRIAL COMPLEX

Pak Yun-Suk, Department of Occupational and Environmental Medicine, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, Korea
Oh Aeri, Department of Occupational and Environmental Medicine, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, Korea
Lim Kho Young, School of Human and Environmental Science, Eulji University, Seongnam, Korea
Paek Domyung, Department of Occupational and Environmental Medicine, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, Korea

Background and Aims: Lead effects, even from low level exposures, have been implicated in the aging process of several organs including brain. However, effects of lead on the lung aging of general population have not been studied. This study was to ascertain the risk factors of aging on the pulmonary function (PF; forced expiratory volume in 1 second [FEV1], forced vital capacity [FVC]) of those exposed to lead in the vicinity of industrial complex

Methods: In total, 263 men and women, aged over 30, were recruited from two cities during a 2-year follow-up. Spirometry testing was conducted at yearly cycles I and II. We estimated the change in FVC and FEV1 during the study period and analyzed the rate of change according to the height, baseline FVC, and FEV1, after controlling for sex, bronchial hyperresponsiveness, blood lead, urinary cotinine, and 1-hydroxyprene.

Results: The decline of PF progressed with age. More marked decline of FVC was noted for men than women (p < 0.05), but the decline of FEV1 was not. Biological factors, especially height (p < 0.05) and pulmonary status (p < 0.0001), were associated with the decline of both PFs. Exposure to environmental lead was also significantly associated with the decline of both PFs.

Conclusions: Even within a normal range of PF decline from aging, people with a smaller height, lower pulmonary status at baseline, and higher level of BPb were more vulnerable to the decline of PF. Lead accumulated in adult may contribute to rapid aging on pulmonary function.

References: