Adverse Effects of Arsenic Exposure on Motor Function among Children in Bangladesh

Faruque Parvez, Vesna Slavkovich, Khalid Khan, Joseph H. Graziano
Columbia University Mailman School of Public Health, Department of Environmental Health Sciences

Gail A. Wasserman
New York State Psychiatric Institute, 1051 Riverside Drive, New York City, NY 10032

Pam Factor-Litvak, Jennie Kline
Columbia University Mailman School of Public Health, Department of Epidemiology

Xinhua Liu, Diane Levy
Columbia University Mailman School of Public Health, Department of Biostatistics

Abu B. Siddique, Rebeka Sultana, Rusana Sultana, Tariqul Islam
University of Chicago and Columbia University Arsenic Project Office, Mohakhali, Dhaka, Bangladesh

Jacob L. Mey, Alexander van Geen
Lamont-Doherty Earth Observatory of Columbia University

Habibul Ahsan
University of Chicago, Department of Health Studies, Chicago, IL 60637

ABSTRACT

Background and Aims: Several reports indicate that drinking water arsenic (WAs) and manganese (WMn) are associated with children's intellectual function. Very little is known, however, about possible associations with other neurological outcomes such as motor function.

Methods: We investigated the associations of WAs and WMn with motor function in 304 children in Bangladesh, aged 8-11 years. In addition to water, we measured arsenic and manganese concentrations in blood, urine and toenails. We assessed motor function with the Bruininks-Oseretsky Test (BOT-2), which can be summarized with a total score of overall motor proficiency (TMC) or in four subscales: fine manual control (FMC), manual coordination (MC), body coordination (BC) and strength and agility (SA).

Results: Log transformed blood As (BAs) was associated with decreases in TMC (β = -3.65, p<0.01), FMC (β = -1.70, p<0.05) and BC (β = -1.61, p<0.01), with adjustment for gender, school attendance, head circumference, mother's intelligence, plasma ferritin, blood Mn, Pb, and Se. Other measures of As exposure (water As, urinary As, and toenail As) demonstrated similar associations. We also have observed a strong positive association between square transformed blood selenium (BSe) and motor function, another novel finding. A significant association between BSe and TMC (β = 3.54, p<0.005), FMC (β = 1.55, p<0.005) and MC (β = 1.57, p<0.005) was found in the unadjusted models; the relationship between BSe and MC remained significant in the full model. Mn exposure was not associated with motor function.

Conclusion: Our research demonstrates an adverse association of As exposure and a protective association of Se on motor function in children.

References:


*Correspondence: Faruque Parvez, Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W. 168th St, 11th Floor New York, NY 10032; Phone (212) 305-4101; Fax (212) 305-4012; e-mail: mp844@columbia.edu