AIR POLLUTION EXPOSURE AND TELOMERE LENGTH IN HIGHLY EXPOSED SUBJECTS IN BEIJING, CHINA

Lifang Hou,1 Chang Dou,2 Umakanth Avula,1 Sheng Wang,2 Yue Yu,1 Xiao Zhang,1 Mirjam Hoxha,3 John P. McCracken,4 Francesco Barretta,3 Barbara Marinelli,3 Pier Alberto Bertazzi,3 Joel Schwartz,4 Andrea Baccarelli4

1Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
2Department of Occupational and Environmental Health, Peking University Health Science Center, Beijing, China.
3Department of Occupational and Environmental Health, University of Milan, Milano and Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy.
4Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.

PRESENTING AUTHOR

Lifang Hou, M.D., Ph.D
Department of Preventive Medicine
Feinberg School of Medicine
Northwestern University
680 N Lake Shore Drive, Suite 1400
Chicago, IL 60611
Phone: +1 (312) 503-4798
E-mail: l-hou@northwestern.edu

Background and Aims. Shortened leukocyte telomere length (LTL) is a marker of cardiovascular risk that has been recently associated with long-term exposure to ambient particulate matter (PM). However, LTL is increased during acute inflammation, allowing for rapid proliferation of inflammatory cells. Whether short-term ambient PM exposure increases LTL has not been evaluated.

Methods. The Beijing Truck-Driver Air Pollution Study was conducted shortly before the 2008 Olympic Games (June 15-July 27, 2008) and included 60 truck drivers and 60 office workers. Personal PM_{2.5} and Black Carbon (BC, a tracer of traffic particles) measured during work hours using portable monitors, and post-work blood samples were obtained on two different days separated by 1-2 weeks. Blood LTL was measured by real-time PCR and expressed in relative units. Ambient PM_{10} was averaged from 27 monitoring stations operating in Beijing. We have regressed log-transformed LTL over exposure variables (occupational group, personal PM_{2.5}, personal BC, or ambient PM_{10}) in mixed-effect models adjusted for age, gender, BMI, day of week, cigarettes/day, central heating, commuting time/day, outdoor temperature, and dew point.
Results. Mean personal PM$_{2.5}$ was 126.8 µg/m3 (inter-quartile range[IQR]:73.9-160.5) in drivers and 94.6 µg/m3 (IQR:48.5-126.6) in office workers (p<0.001). Covariate-adjusted LTL means were higher in drivers (0.87, 95%CI:0.74-1.03) relative to office workers (0.79, 95%CI:0.67-0.93; p=0.001). In all subjects combined, we estimated a 5.2% (95%CI:1.5-9.1, p=0.007) increase in LTL per an IQR increase in personal PM$_{2.5}$. LTL was also positively correlated with personal BC (+4.9%, 95%CI:1.2-8.8, p=0.01), and with average ambient PM$_{10}$ on the study day (+7.7%, 95%CI:3.7-11.9, p=0.001) and over the two days before (+8.1%, 95%CI:3.1-13.3, p=0.002). Longer PM$_{10}$ averages (e.g., 5-day) were not associated with LTL.

Conclusions. Our study showed that short-term exposure to ambient PM is associated with increased LTL. LTL may favor leukocyte proliferation and sustain the inflammatory mechanisms associated with PM health effects.

Word Count. 300