IN UTERO EXPOSURE TO ARSENIC IS ASSOCIATED WITH ALTERED DNA METHYLATION IN UMBILICAL CORD BLOOD LEUKOCYTES

Molly L. Kile, Harvard School of Public Health, 665 Huntington Avenue, Boston, USA
Andrea Baccarelli, Harvard School of Public Health, 665 Huntington Avenue, Boston, USA
Elaine Hoffman, Harvard School of Public Health, 665 Huntington Avenue, Boston, USA
Letizia Tarantini, Department of Environmental and Occupational Health, Università degli Studi di Milano & IRCCS Ca’ Granda Policlinico Maggiore Hospital Foundation, Milan, Italy
Quazi Quamruzzaman, Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, 1217, Dhaka, Bangladesh
Mahmuder Rahman, Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, 1217, Dhaka, Bangladesh
Golam Mahiuddin, Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, 1217, Dhaka, Bangladesh
Robert Wright, Harvard School of Public Health, 665 Huntington Avenue, Boston, USA
David C. Christiani, Harvard School of Public Health, 665 Huntington Avenue, Boston, USA

Background: Arsenic (As) can cross the placenta and is a suspected epigenetic toxicant.

Objectives: Investigate the effect of prenatal As exposure at LINE-1, Alu, p16 and p53 using data from a prospective birth cohort recruited in Bangladesh.

Methods: Women whose gestational age was ≤28 weeks were recruited. At enrollment, water samples were collected from the tubewell the participant identified as her primary source of drinking water and analyzed for As using inductively-coupled plasma mass spectrometry (ICP-MS). DNA was extracted from fresh whole umbilical cord blood (N=114). DNA methylation was quantified using pyrosequencing at LINE-1, Alu, and seven and four CpG positions in the promoter region of p16 and p53, respectively.

Results: Infants were categorized as exposed (53.1%) or unexposed (46.9%) using maternal water As concentrations. General linear regression models were used to compare DNA methylation between exposed (As ≥ 1 µg/L) versus unexposed (As < 1 µg/L) infants. In adjusted models, DNA methylation in exposed infants was significantly higher at LINE-1 (81.5% vs 80.6%, p-value=0.01) and at p16 position 2 (3.1% vs 2.4%, p-value=0.009) position 5 (2.3% vs 1.9%, p-value=0.01) position 6 (1.4% vs 1.1%, p-value=0.02) and position 7 (2.6% vs 2.1%, p-value 0.02) compared to unexposed infants. No difference was observed at Alu or p53.

Conclusions: These results suggest that in utero exposure to As was associated with DNA hypermethylation in umbilical cord leukocytes at both global and loci specific markers. Additional studies are needed to confirm these results and determine whether changes in DNA methylation of umbilical cord leukocytes are associated with health outcomes.