NONLINEAR ASSOCIATION OF DIURNAL TEMPERATURE RANGE WITH OXIDATIVE AND PHYSIOLOGIC STRESS MARKERS IN THE KOREAN ELDERLY ENVIRONMENTAL PANEL STUDY (KEEPS)

Youn-Hee Lim, Department of Epidemiology and Biostatistics, School of Public Health, Seoul National University, Republic of Korea
Ho Kim, Department of Epidemiology and Biostatistics, School of Public Health, Seoul National University, Republic of Korea
Jin Hee Kim, Institute of Environmental Medicine, Seoul National University Medical Research Center, Republic of Korea
Sang-Hyuk Bae, Environmental Health Center, Seoul National University College of Medicine, Republic of Korea
Yun-Chul Hong, Institute of Environmental Medicine, Seoul National University Medical Research Center; Department of Preventive Medicine, Seoul National University College of Medicine, Republic of Korea

Background and Aims: While diurnal temperature range (DTR) has been found to be a risk factor for mortality in a previous study with an assumption of linearity, some disease mortality, such as that associated with rheumatic heart disease (RHD), showed a threshold effect for DTR. To define the nonlinear relationship pathway between DTR and health effects, we investigated how physiologic and oxidative stress markers responded to DTR.

Methods: This study was part of the Korean Elderly Environmental Panel Study (KEEPS). Data was obtained from 569 participants who regularly attended a community elderly care center located in Seoul, Korea. The study was conducted a total of five times over a three year period beginning in August, 2008. We examined physiologic stress markers including heart rate variability (HRV) and indices such as mean heart rate, standard deviation of normal-to-normal (SDNN), normalized low frequency (LF) and high frequency (HF), and low/high frequency ratio (LF:HF). Urinary malondialdehyde (MDA) was evaluated as an oxidative stress marker. Effects of DTR below or above the median level were estimated using a generalized linear mixed model.

Results: Significant differences in effects of DTR above and below the median level indicated the presence of a threshold effect or a nonlinear association between DTR and HRV markers. Estimated effects for log-transformed SDNN were 0.211 (standard error [SE] 0.069, \textit{p} = 0.0021) below and -0.093 (SE 0.038, \textit{p} = 0.0129) above the median DTR. While the mean heart rate slope above median DTR was significant, slopes of normalized HF and LF:HF ratio below median DTR were statistically significant. In addition, log-transformed MDA showed a pattern similar to HRV indices.

Conclusions: The study demonstrated that physiologic and oxidative stress increased at low and high DTR with minimal stress levels around the median level of DTR indicating a physiologic comfort point.

Tam WW, Wong TW, Chair SY, Wong AH. Diurnal temperature range and daily cardiovascular mortalities among the elderly in Hong Kong. Arch Environ Occup Health 2009;64(3):202-6.