ALTERNATIVE EXPOSURE ASSESSMENT METHODS FOR RESIDENTS NEAR INCINERATORS: A SIMULATION STUDY

Anna Freni Sterrantino, Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, Modena, Italy; Department of Statistics, University of Bologna, Italy
Andrea Ranzi, Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, Modena, Italy
Michele Cordioli, Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, Modena, Italy
Silvia Candela, Epidemiology Unit, Local Health Authority of Reggio Emilia, Italy
Rossella Miglio, Department of Statistics, University of Bologna, Italy
Paolo Lauriola, Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, Modena, Italy
Francesco Forastiere, Department of Epidemiology, Regional Health Service, Lazio, Italy

Background and Aims: A multisite project on health effects of exposure to incinerators (Moniter Project) was undertaken in Emilia-Romagna region (Italy). A retrospective cohort of residents (period 1995-2006) was enrolled to study mortality and morbidity effects. Residential exposure to incinerators was estimated from a dispersion model using emission data at enrolment (1995). Individual residential exposure was assigned to the cohort (about 250,000 subjects). A successive categorization (quintiles) was made for epidemiological analyses. Cumulative exposure could not be calculated for all cohort members. We have conducted a simulation study, using a sub-sample of the cohort with complete cumulative exposure data, to evaluate the consequences of possible misclassification of this exposure assessment method.

Methods: For a sub-cohort (about 30,000 subjects), information about residential history from the start of the plant (1980) was available, and cumulative exposure (period 1980-1995) for each subject was calculated using two different dispersion maps over time, and residential mobility. A validation study was performed to estimate possible misclassification of exposure at enrolment, calculated as for the whole cohort. A simulation procedure was used with 1000 datasets with a mean incidence rate ratio (IRR)=1.5 between the highest and the lowest exposure class of cumulative exposure and a statistical significant trend.

Results: When we compared categories of prevalent exposure at baseline with cumulative exposure, 73.5% of subjects remained in the same class and 5.2% move to nonadjacent categories. Extreme classes (lowest and highest) showed higher concordance (81.7% and 84.50%). Overall weighted kappa was 85.3%. The simulation study provided a median value of 1.414 for the IRRs between extreme categories [range:1.06-2.04] with 29.2% of the simulations overestimating the IRR. The positive trend remain significant in 63.9% of simulations.

Conclusions: We found a moderate agreement between baseline and cumulative exposure. However, in case of nondifferential misclassification between nonadjacent categories, caution regarding estimation has to be considered.