Environmental lead exposure, Catechol-O-methyltransferase (COMT) Gene, and Systolic Blood Pressure in Children.

Aimin Zhang, Howard Hu, Brisa N. Sánchez, Adrienne S. Ettinger, Sung Kyun Park, David Cantonwine, Lourdes Schnaas, Robert O. Wright, Hector Lamadrid-Figueroa, Martha Maria Tellez-Rojo

Objective: Environmental lead exposure and a COMT polymorphic variant, Val108/158Met (rs4680), have both been shown to be associated with increased risks of hypertension in adults. We hypothesized that low-level lead exposure influences blood pressure in children and that the COMT mutation modifies this effect. We tested these hypotheses in 309 children at 7–15 years of age from a sub-study of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) project, an environmental birth cohort study.

Materials and Methods:

We used a mercury sphygmomanometer with appropriate-size cuffs to measure systolic and diastolic blood pressure (SBP and DBP), and Inductively coupled plasma mass spectrometry (ICPMS) to measure blood lead levels (BLLs); all measurements were taken concurrently. Multiple linear regression models were used to estimate the association between blood pressure and BLL, and effect modification by COMT genotype.

Results: Of the 309 children, 126 (42.4%), 136 (45.8%) and 35 (11.8%) were COMT Val/Val, Val/Met and Met/Met genotype, respectively. The median [interquartile-range (IQR)] concurrent BLL was 3.4 (1.83) μg/dl. After adjusting for child’s age, height, body mass index, gestational age, weight at birth, and maternal education blood pressure, smoking during pregnancy, an interquartile range increase in BLL (1.83 μg/dl) was associated with 2.98 mm Hg (95% CI 0.42-5.54 mm Hg) increase in SBP among Val/Val wild-type children, while no significant effects were found for DBP. Compared with children having Val/Met or Met/Met genotype, BLL was significantly associated with steeper increases in SBP in children having Val/Val wild-type (p for interaction = 0.02).

Conclusion: These results indicate that concurrent low environmental lead exposure (less than 10 μg/dl) was associated with increased SBP in children, and that genetic polymorphisms in COMT may modify lead’s toxicity, suggesting a gene-environment interaction.