
Ji-ae Lim, Dankook University, Korea., Ho Jang Kwon, Dankook University, Korea., Ho Kim, Seoul National University, Korea., Mi Na Ha, Dankook University Korea., Se Young Oh, Kyung Hee University, Korea., Jeong Seon Kim, National Cancer Center, Korea., Sang a Lee, KangWon National University, Korea., Jung Duck Park, Chung-Ang University, Korea., Seup Yeong Hong, Dong-A University, Korea., Seok Jun Son, ChonNam national University, Korea., Hee Soo Pyo, Korea Institute of Science And Technology, Korea., Kyung Su Park, Korea Institute of Science And Technology, Korea., Gwang Geun Lee, DongGuk University, Korea., Ki Kyung Jung, National institute of Food and Drug Safety Evaluation, Korea.

Background and Aims: "Korean Research Project on the Integrated Exposure assessment to Hazardous Materials for Food Safety (KRIEFS)" is established by National institute of Food and Drug Safety Evaluation(NFDS) in March 2010, this project has been operating for three years(2010-2012). This is a representative and nationwide bio-monitoring project for environmental exposure and human health in Korea, particularly focused on the exposure from foods and health supplements and herbal medicines. This project is collecting integrated data of exposure to hazardous materials (1st year: Cadmium, Lead, Mercury, Methyl Mercury, 2nd year : Phthalate, Allatone, Bisphenol A, 3rd year: integrated analysis, survey High-risk groups) through simultaneous inspection of food and bio samples(blood, 12hours and spot urine) against representative population - adults, infants, children and teenager, total 4000 people-and identifying hazardous materials exposure history in more comprehensive method, in order to protect public from exposure to hazardous materials through food, herbal medicine and health supplements.

Methods: Sample design-This project is a nationwide population survey. Selected sample groups are representative with regard to age, gender, region (urban/rural); Samples were selected from the whole nation in 6 provinces (do), except Jeju-do. (Include Seoul, Gyeongg, Gangwon, Chungcheong, Gyeongsang). Sample group's ages are from infant(include mother), schoolchild (elementary, junior, high) to adult. The total number of samples is more than 4000 over 2 years. Survey-This Project has 4 categories of survey; first, Investigating concentration of hazardous metrials in foods, health supplements and herbal medicines; second, dietary intake survey, third, human biomonitoring of exposure and health effect/questionnaires, clinical test, blood, 12hours and spot urine); fourth, analyzing of hazardous chemicals in food, herbal medicine and health supplements food. And residual components among the chemicals in body.

Results: In 2010 survey, we investigated concentration of heveymetals (Cadmium, Lead, Mercury, Methyl Mercury) in foods (total 3,820 samples from 7 metropolis in the nationwide), health supplements and herbal medicines (total 679 samples from survey targeted groups), and surveied dietary intake survey and human biomonitoring of exposure and health effect. (total 2032 samples, infant, 6 month's mother 271, schoolchild 488, and adult 1966) and analyzing of lead in food and residual components in body.

The average blood lead levels of adult is 1.29 μg/dL, according to sex, age, region can see that men(women 1.15 μg/dL, men 1.55 μg/dL), older age groups (18-29: 0.79 μg/dL, 60+: 1.7 μg/dL), smaller towns (1.45 μg/dL, metropolis 1.12 μg/dL) trend to have greater level in lead.

Conclusions: This project is a representative and nationwide bio-monitoring project for environmental exposure and human health in Korea, particularly focused on the exposure from foods and health supplements and herbal medicines. In 2010 survey, we investigated concentration of heavy metals (Cadmium, Lead, Mercury, Methyl Mercury) in foods, health supplements and herbal medicines and surveied dietary intake survey, human biomonitoring of exposure and health effect. and analyzed lead in food and residual components in body.

The average blood lead levels of adult can see that man, older age groups, and smaller town’s trend to have greater level in lead.

References:
U.S. Agency for Toxic Substances and Diseases (ATSDR): Toxicological Profile for Arsenic. ATSDR, 2005
U.S. Toxicity and Exposure Assessment for Children’s Health http://www.epa.gov/teach/
FSA. Laboratory of the Government Chmist, The measurement of metals and other elements in samples form the 2000 UK Total Diet Study, Final report to the FSA, 2003
FSANZ, the 21th Australian Total Diet Survey. January 2003
Gilian Ysart et al. 1997 UK total diet study- dietary exposures to aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc. Food additives and Cintaminants 2000;17: 775-786
Wilhelm, M., Schulz, C. and Schwenk, M. Revised and new reference value for arsenic, cadmium, lead and mercury in blood or urine of children: Basis for validation of human biomonitoring data in environmental medicine. International Journal of Hygiene and Environmental Health2006; 209: 301-305