Metals, arsenic and selenium and risk of pancreatic cancer

André FS Amaral, Genetic & Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Spain
Miquel Porta, Clinical & Molecular Epidemiology of Cancer Group, Institut Municipal d’Investigació Mèdica (IMIM), Spain
Debra T Silverman, Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA
Roger L Milne, Genetic & Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Spain
Manolis Kogevinas, Centre de Recerca en Epidemiologia Ambiental (CREAL), Spain
Nathaniel Rothman, Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA
Kenneth P Cantor, Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA
Tomàs López, Clinical & Molecular Epidemiology of Cancer Group, Institut Municipal d’Investigació Mèdica (IMIM), Spain
Francisco X Real, Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Spain
Núria Malats, Genetic & Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Spain

Background and Aims: Limitations in knowledge on the etiology of exocrine pancreatic cancer (EPC) hamper primary prevention interventions. Although scarce, there is some evidence supporting associations between trace elements and EPC. The aim was to evaluate the association between concentrations of twelve trace elements in toenails and EPC risk.

Methods: We studied 118 EPC cases and 399 hospital controls with available toenail samples. Levels of trace elements were determined by inductively coupled plasma - mass spectrometry. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated using logistic regression, adjusting for potential confounders.

Results: Significantly increased risks of EPC were observed among subjects presenting the highest concentrations of arsenic (OR_upper quartile = 1.90, 95%CI 1.02-3.53; P-trend = 0.015), cadmium (OR_upper quartile = 3.43, 95%CI 1.79-6.57; P-trend = 6x10^-6) and lead (OR_upper quartile = 6.17, 95%CI 2.67-14.27; P-trend = 5x10^-5). Higher concentrations of selenium (OR_upper quartile = 0.05, 95%CI 0.02-0.14; P-trend = 3x10^-11) and nickel (OR_upper quartile = 0.26, 95%CI 0.12-0.56; P-trend = 2x10^-4) were inversely associated with EPC risk.

Conclusions: These novel findings, if replicated in independent studies, suggest an important role of trace elements in EPC risk and pancreas carcinogenesis, and the potential benefits of policies aimed at decreasing population exposure to arsenic, cadmium and lead.