Request Username
Can't sign in? Forgot your username?
Enter your email address below and we will send you your username
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Search Name | Searched On |
---|---|
Keyword: ADHD (9) | 11 December 2023 |
Background: Lead exposure has long been associated with deficits in IQ among children. However, few studies have assessed the impact of lead on specific domains of behavior and cognition.
Objective: We evaluated the associations between lead and different domains of neurobehavior and their relative sensitivity to lead.
Methods: We determined blood lead levels using a LeadCare instrument in 756 children 3–7 years of age attending pre- and elementary schools in Chennai, India. Anxiety, social problems, inattention, hyperactivity, and attention deficit hyperactivity disorder (ADHD), as well as executive function were assessed in children by their schoolteachers using Conners’ Teacher Rating Scales-39, Conners’ ADHD/Diagnostic and Statistical Manual for Mental Disorders, 4th Edition Scales (CADS), and the Behavior Rating Inventory of Executive Function questionnaires, with higher scores denoting worse behavior. Analyses were carried out using multivariate generalized estimating equations with comparisons of outcome Z-scores to assess the relative strengths of the associations between log-blood lead and the different domains of behavior.
Results: Mean blood lead level was 11.4 ± 5.3 μg/dL. Blood lead was associated with higher anxiety (β = 0.27, p = 0.01), social problems (β = 0.20, p = 0.02), and higher scores in the ADHD index (β = 0.17; p = 0.05). The effect estimate was highest for global executive function (β = 0.42; p< 0.001).
Conclusions: Higher blood lead levels in this population of young children is associated with increased risk of neurobehavioral deficits and ADHD, with executive function and attention being particularly vulnerable domains to the effects of lead.
Objectives: Attention deficit/hyperactivity disorder (ADHD) is the most frequently diagnosed neurobehavioral disorder of childhood, yet its etiology is not well understood. In this review we present evidence that environmental chemicals, particularly polychlorinated biphenyls (PCBs) and lead, are associated with deficits in many neurobehavioral functions that are also impaired in ADHD.
Data sources: Human and animal studies of developmental PCB or lead exposures that assessed specific functional domains shown to be impaired in ADHD children were identified via searches of PubMed using “lead” or “PCB exposure” in combination with key words, including “attention,” “working memory,” “response inhibition,” “executive function,” “cognitive function,” “behavior,” and “ADHD.”
Data synthesis: Children and laboratory animals exposed to lead or PCBs show deficits in many aspects of attention and executive function that have been shown to be impaired in children diagnosed with ADHD, including tests of working memory, response inhibition, vigilance, and alertness. Studies conducted to date suggest that lead may reduce both attention and response inhibition, whereas PCBs may impair response inhibition to a greater degree than attention. Low-level lead exposure has been associated with a clinical diagnosis of ADHD in several recent studies. Similar studies of PCBs have not been conducted.
Conclusions: We speculate that exposures to environmental contaminants, including lead and PCBs, may increase the prevalence of ADHD.
Background: Exposure to organophosphate (OP) pesticides, well-known neurotoxicants, has been associated with neurobehavioral deficits in children.
Objectives: We investigated whether OP exposure, as measured by urinary dialkyl phosphate (DAP) metabolites in pregnant women and their children, was associated with attention-related outcomes among Mexican-American children living in an agricultural region of California.
Methods: Children were assessed at ages 3.5 years (n = 331) and 5 years (n = 323). Mothers completed the Child Behavior Checklist (CBCL). We administered the NEPSY-II visual attention subtest to children at 3.5 years and Conners’ Kiddie Continuous Performance Test (K-CPT) at 5 years. The K-CPT yielded a standardized attention deficit/hyperactivity disorder (ADHD) Confidence Index score. Psychometricians scored behavior of the 5-year-olds during testing using the Hillside Behavior Rating Scale.
Results: Prenatal DAPs (nanomoles per liter) were nonsignificantly associated with maternal report of attention problems and ADHD at age 3.5 years but were significantly related at age 5 years [CBCL attention problems: β = 0.7 points; 95% confidence interval (CI), 0.2–1.2; ADHD: β = 1.3; 95% CI, 0.4–2.1]. Prenatal DAPs were associated with scores on the K-CPT ADHD Confidence Index > 70th percentile [odds ratio (OR) = 5.1; 95% CI, 1.7–15.7] and with a composite ADHD indicator of the various measures (OR = 3.5; 95% CI, 1.1–10.7). Some outcomes exhibited evidence of effect modification by sex, with associations found only among boys. There was also limited evidence of associations between child DAPs and attention.
Conclusions: In utero DAPs and, to a lesser extent, postnatal DAPs were associated adversely with attention as assessed by maternal report, psychometrician observation, and direct assessment. These associations were somewhat stronger at 5 years than at 3.5 years and were stronger in boys.
Objectives: Attention deficit/hyperactivity disorder (ADHD) is the most frequently diagnosed childhood neurobehavioral disorder. Much research has been done to identify genetic, environmental, and social risk factors for ADHD; however, we are still far from fully understanding its etiology. In this review we provide an overview of diagnostic criteria for ADHD and what is known about its biological basis. We also review the neuropsychological functions that are affected in ADHD. The goal is to familiarize the reader with the behavioral deficits that are hallmarks of ADHD and to facilitate comparisons with neurobehavioral deficits associated with environmental chemical exposures.
Data sources: Relevant literature on ADHD is reviewed, focusing in particular on meta-analyses conducted between 2004 and the present that evaluated associations between measures of neuropsychological function and ADHD in children. Meta-analyses were obtained through searches of the PubMed electronic database using the terms “ADHD,” “meta-analysis,” “attention,” “executive,” and “neuropsychological functions.” Although meta-analyses are emphasized, nonquantitative reviews are included for particular neuropsychological functions where no meta-analyses were available.
Data synthesis: The meta-analyses indicate that vigilance (sustained attention), response inhibition, and working memory are impaired in children diagnosed with ADHD. Similar but somewhat less consistent meta-analytic findings have been reported for impairments in alertness, cognitive flexibility, and planning. Additionally, the literature suggests deficits in temporal information processing and altered responses to reinforcement in children diagnosed with ADHD. Findings from brain imagining and neurochemistry studies support the behavioral findings.
Conclusions: Behavioral, neuroanatomical, and neurochemical data indicate substantial differences in attention and executive functions between children diagnosed with ADHD and non-ADHD controls. Comparisons of the neurobehavioral deficits associated with ADHD and those associated with exposures to environmental chemicals may help to identify possible environmental risk factors for ADHD and/or reveal common underlying biological mechanisms.
Background: Prenatal exposure to methylmercury (MeHg) and polychlorinated biphenyls (PCBs) has been associated with impaired performance on attention tasks in previous studies, but the extent to which these cognitive deficits translate into behavioral problems in the classroom and attention deficit/hyperactivity disorder (ADHD) remains unknown. By contrast, lead (Pb) exposure in childhood has been associated with ADHD and disruptive behaviors in several studies.
Objectives: In this study we examined the relation of developmental exposure to MeHg, PCBs, and Pb to behavioral problems at school age in Inuit children exposed through their traditional diet.
Methods: In a prospective longitudinal study conducted in the Canadian Arctic, exposure to contaminants was measured at birth and at school age. An assessment of child behavior (n = 279; mean age = 11.3 years) was obtained from the child’s classroom teacher on the Teacher Report Form (TRF) from the Child Behavior Checklist, and the Disruptive Behavior Disorders Rating Scale (DBD).
Results: Cord blood mercury concentrations were associated with higher TRF symptom scores for attention problems and DBD scores consistent with ADHD. Current blood Pb concentrations were associated with higher TRF symptom scores for externalizing problems and with symptoms of ADHD (hyperactive-impulsive type) based on the DBD.
Conclusions: To our knowledge, this study is the first to identify an association between prenatal MeHg and ADHD symptomatology in childhood and the first to replicate previously reported associations between low-level childhood Pb exposure and ADHD in a population exposed to Pb primarily from dietary sources.
background: California children’s exposures to polybrominated diphenyl ether flame retardants (PBDEs) are among the highest worldwide. PBDEs are known endocrine disruptors and neurotoxicants in animals.
Objective: Here we investigate the relation of in utero and child PBDE exposure to neurobehavioral development among participants in CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas), a California birth cohort.
Methods: We measured PBDEs in maternal prenatal and child serum samples and examined the association of PBDE concentrations with children’s attention, motor functioning, and cognition at 5 (n = 310) and 7 years of age (n = 323).
Results: Maternal prenatal PBDE concentrations were associated with impaired attention as measured by a continuous performance task at 5 years and maternal report at 5 and 7 years of age, with poorer fine motor coordination—particularly in the nondominant—at both age points, and with decrements in Verbal and Full-Scale IQ at 7 years. PBDE concentrations in children 7 years of age were significantly or marginally associated with concurrent teacher reports of attention problems and decrements in Processing Speed, Perceptual Reasoning, Verbal Comprehension, and Full-Scale IQ. These associations were not altered by adjustment for birth weight, gestational age, or maternal thyroid hormone levels.
Conclusions: Both prenatal and childhood PBDE exposures were associated with poorer attention, fine motor coordination, and cognition in the CHAMACOS cohort of school-age children. This study, the largest to date, contributes to growing evidence suggesting that PBDEs have adverse impacts on child neurobehavioral development.
In this article I explore the possibility that contaminants contribute to the increasing prevalence of attention deficit hyperactivity disorder, autism, and associated neurodevelopmental and behavioral problems in developed countries. I discuss the exquisite sensitivity of the embryo and fetus to thyroid disturbance and provide evidence of human in utero exposure to contaminants that can interfere with the thyroid. Because it may never be possible to link prenatal exposure to a specific chemical with neurodevelopmental damage in humans, I also present alternate models where associations have been made between exposure to specific chemicals or chemical classes and developmental difficulties in laboratory animals, wildlife, and humans.
Objective: The purpose of this study was to examine the association of exposures to tobacco smoke and environmental lead with attention deficit hyperactivity disorder (ADHD).
Methods: Data were obtained from the National Health and Nutrition Examination Survey 1999–2002. Prenatal and postnatal tobacco exposure was based on parent report; lead exposure was measured using blood lead concentration. ADHD was defined as having current stimulant medication use and parent report of ADHD diagnosed by a doctor or health professional.
Results: Of 4,704 children 4–15 years of age, 4.2% were reported to have ADHD and stimulant medication use, equivalent to 1.8 million children in the United States. In multivariable analysis, prenatal tobacco exposure [odds ratio (OR) = 2.5; 95% confidence interval (CI), 1.2–5.2] and higher blood lead concentration (first vs. fifth quintile, OR = 4.1; 95% CI, 1.2–14.0) were significantly associated with ADHD. Postnatal tobacco smoke exposure was not associated with ADHD (OR = 0.6; 95% CI, 0.3–1.3; p = 0.22). If causally linked, these data suggest that prenatal tobacco exposure accounts for 270,000 excess cases of ADHD, and lead exposure accounts for 290,000 excess cases of ADHD in U.S. children.
Conclusions: We conclude that exposure to prenatal tobacco and environmental lead are risk factors for ADHD in U.S. children.
Background and objective: Attention deficit hyperactivity disorder (ADHD) is the most common psychiatric disorder in children and adolescents (6–12% affected). Treatment with methylphenidate (MPH) in the United States has increased to a current prescription rate of > 5 million per year. However, a 2005 study by El-Zein and co-workers [Cancer Lett 230:284–291] reporting a 3-fold increase in genomic damage in all 12 analyzed children after 3 months of therapy with MPH resulted in much concern about potential carcinogenic effects. Here we provide new information concerning the cytogenetic effect of MPH in children.
Design, participants, and methods: In a prospective study, we analyzed the genomic damage in children with ADHD (initial sample size 38 children) before and 1 (30 children), 3 (21 children), and 6 (8 children) months after initiation of MPH therapy. In addition, we investigated a group of 9 children receiving chronic MPH therapy. Patients were recruited within a study of our Clinical Research Group on ADHD in the Department of Child and Adolescent Psychiatry and Psychotherapy of the University of Würzburg. Assessment and treatment of patients were performed during inpatient or outpatient health care. The measure for genomic damage was the frequency of micronuclei, a subset of chromosomal aberrations, in peripheral lymphocytes.
Results: MPH treatment resulted in no significant alteration in the micronucleus frequency.
Conclusions: Because the findings published in 2005 by El-Zein and co-workers could not be replicated, the concern regarding a potential increase in the risk of developing cancer later in life after long-term MPH treatment is not supported.