• article

    Home Characteristics as Predictors of Bacterial and Fungal Microbial Biomarkers in House Dust

    Abstract

    Background

    Measurement of fungal and bacterial biomarkers can be costly, but it is not clear whether home characteristics can be used as a proxy of these markers, particularly if the purpose is to differentiate specific classes of biologic exposures that have similar sources but may have different effects on allergic disease risk.

    Objective

    We evaluated home characteristics as predictors of multiple microbial biomarkers, with a focus on common and unique determinants and with attention to the extent of their explanatory ability.

    Methods

    In 376 Boston-area homes enrolled in a cohort study of home exposures and childhood asthma, we assessed the relationship between home characteristics gathered by questionnaire and measured gram-negative bacteria (GNB) (endotoxin and C10:0, C12:0, and C14:0 3-hydroxy fatty acids), gram-positive bacteria (GPB) (N-acetyl muramic acid), and fungal biomarkers [ergosterol and (1→6) branched, (1→3) β-d glucans] in bed and family room dust.

    Results

    Home characteristics related to dampness were significant predictors of all microbial exposures; water damage or visible mold/mildew in the home was associated with a 20–66% increase in GNB levels. Report of cleaning the bedroom at least once a week was associated with reduced GNB, GPB, and fungi. Presence of dogs or cats predicted increases in home bacteria or fungi. The proportion of variance in microbial biomarkers explained by home characteristics ranged from 4.2% to 19.0%.

    Conclusions

    Despite their associations with multiple microbial flora, home characteristics only partially explain the variability in microbial biomarker levels and cannot substitute for specific microbial measurements in studies concerned with distinguishing effects of specific classes of microbes.

  • article

    Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence

    Abstract

    Objectives

    Many studies have shown consistent associations between evident indoor dampness or mold and respiratory or allergic health effects, but causal links remain unclear. Findings on measured microbiologic factors have received little review. We conducted an updated, comprehensive review on these topics.

    Data sources

    We reviewed eligible peer-reviewed epidemiologic studies or quantitative meta-analyses, up to late 2009, on dampness, mold, or other microbiologic agents and respiratory or allergic effects.

    Data extraction

    We evaluated evidence for causation or association between qualitative/subjective assessments of dampness or mold (considered together) and specific health outcomes. We separately considered evidence for associations between specific quantitative measurements of microbiologic factors and each health outcome.

    Data synthesis

    Evidence from epidemiologic studies and meta-analyses showed indoor dampness or mold to be associated consistently with increased asthma development and exacerbation, current and ever diagnosis of asthma, dyspnea, wheeze, cough, respiratory infections, bronchitis, allergic rhinitis, eczema, and upper respiratory tract symptoms. Associations were found in allergic and nonallergic individuals. Evidence strongly suggested causation of asthma exacerbation in children. Suggestive evidence was available for only a few specific measured microbiologic factors and was in part equivocal, suggesting both adverse and protective associations with health.

    Conclusions

    Evident dampness or mold had consistent positive associations with multiple allergic and respiratory effects. Measured microbiologic agents in dust had limited suggestive associations, including both positive and negative associations for some agents. Thus, prevention and remediation of indoor dampness and mold are likely to reduce health risks, but current evidence does not support measuring specific indoor microbiologic factors to guide health-protective actions.

  • article

    Fungal Levels in the Home and Allergic Rhinitis by 5 Years of Age

    Abstract

    Studies have repeatedly demonstrated that sensitization to fungi, such as Alternaria, is strongly associated with allergic rhinitis and asthma in children. However, the role of exposure to fungi in the development of childhood allergic rhinitis is poorly understood. In a prospective birth cohort of 405 children of asthmatic/allergic parents from metropolitan Boston, Massachusetts, we examined in-home high fungal concentrations (> 90th percentile) measured once within the first 3 months of life as predictors of doctor-diagnosed allergic rhinitis in the first 5 years of life. In multivariate Cox regression analyses, predictors of allergic rhinitis included high levels of dust-borne Aspergillus [hazard ratio (HR) = 3.27; 95% confidence interval (CI), 1.50–7.14], Aureobasidium (HR = 3.04; 95% CI, 1.33–6.93), and yeasts (HR = 2.67; 95% CI, 1.26–5.66). The factors controlled for in these analyses included water damage or mild or mildew in the building during the first year of the child’s life, any lower respiratory tract infection in the first year, male sex, African-American race, fall date of birth, and maternal IgE to Alternaria > 0.35 U/mL. Dust-borne Alternaria and non-sporulating and total fungi were also predictors of allergic rhinitis in models excluding other fungi but adjusting for all of the potential confounders listed above. High measured fungal concentrations and reports of water damage, mold, or mildew in homes may predispose children with a family history of asthma or allergy to the development of allergic rhinitis.

  • article

    Acute Effects of a Fungal Volatile Compound

    Abstract

    Objective: 3-Methylfuran (3-MF) is a common fungal volatile product with active biologic properties, and previous studies have indicated a contribution to airway disease. The aim of the present study was to assess the acute health effects of this compound in humans.

    Design: Acute effects were assessed via chamber exposure to (1 mg/m) 3-MF.

    Participants and measurements: Twenty-nine volunteers provided symptom reports, ocular electromyograms, measurement of eye tear film break-up time, vital staining of the eye, nasal lavage, acoustic rhinometry, transfer tests, and dynamic spirometry.

    Results: No subjective ratings were significantly increased during exposure. Blinking frequency and the lavage biomarkers myeloperoxidase and lysozyme were significantly increased, and forced vital capacity was significantly decreased during exposure to 3-MF compared with air control.

    Conclusions and relevance to clinical practice: Acute effects in the eyes, nose, and airways were detected and might be the result of the biologically active properties of 3-MF. Thus, 3-MF may contribute to building-related illness.

  • article

    Current State of the Science: Health Effects and Indoor Environmental Quality

    Abstract

    Our understanding of the relationship between human health and the indoor environment continues to evolve. Previous research on health and indoor environments has tended to concentrate on discrete pollutant sources and exposures and on specific disease processes. Recently, efforts have been made to characterize more fully the complex interactions between the health of occupants and the interior spaces they inhabit. In this article we review recent advances in source characterization, exposure assessment, health effects associated with indoor exposures, and intervention research related to indoor environments. Advances in source characterization include a better understanding of how chemicals are transported and processed within spaces and the role that other factors such as lighting and building design may play in determining health. Efforts are under way to improve our ability to measure exposures, but this remains a challenge, particularly for biological agents. Researchers are also examining the effects of multiple exposures as well as the effects of exposures on vulnerable populations such as children and the elderly. In addition, a number of investigators are also studying the effects of modifying building design, materials, and operations on occupant health. Identification of research priorities should include input from building designers, operators, and the public health community.

  • article

    Mold and Endotoxin Levels in the Aftermath of Hurricane Katrina: A Pilot Project of Homes in New Orleans Undergoing Renovation

    Abstract

    Background

    After Hurricane Katrina, many New Orleans homes remained flooded for weeks, promoting heavy microbial growth.

    Objectives

    A small demonstration project was conducted November 2005–January 2006 aiming to recommend safe remediation techniques and safe levels of worker protection, and to characterize airborne mold and endotoxin throughout cleanup.

    Methods

    Three houses with floodwater lines between 0.3 and 2 m underwent intervention, including disposal of damaged furnishings and drywall, cleaning surfaces, drying remaining structure, and treatment with a biostatic agent. We measured indoor and outdoor bioaerosols before, during, and after intervention. Samples were analyzed for fungi [culture, spore analysis, polymerase chain reaction (PCR)] and endotoxin. In one house, real-time particle counts were also assessed, and respirator-efficiency testing was performed to establish workplace protection factors (WPF).

    Results

    At baseline, culturable mold ranged from 22,000 to 515,000 colony-forming units/m, spore counts ranged from 82,000 to 630,000 spores/m, and endotoxin ranged from 17 to 139 endotoxin units/m. Culture, spore analysis, and PCR indicated that Penicillium, Aspergillus, and Paecilomyces predominated. After intervention, levels of mold and endotoxin were generally lower (sometimes, orders of magnitude). The average WPF against fungal spores for elastomeric respirators was higher than for the N-95 respirators.

    Conclusions

    During baseline and intervention, mold and endotoxin levels were similar to those found in agricultural environments. We strongly recommend that those entering, cleaning, and repairing flood-damaged homes wear respirators at least as protective as elastomeric respirators. Recommendations based on this demonstration will benefit those involved in the current cleanup activities and will inform efforts to respond to future disasters.