Request Username
Can't sign in? Forgot your username?
Enter your email address below and we will send you your username
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Search Name | Searched On |
---|---|
Keyword: genetic polymorphism (5) | 30 November 2023 |
Background: The human CYP3A gene cluster codes for cytochrome P450 (CYP) subfamily enzymes that catalyze the metabolism of various exogenous and endogenous chemicals and is an obvious candidate for evolutionary and environmental genomic study. Functional variants in the CYP3A locus may have undergone a selective sweep in response to various environmental conditions.
Objective: The goal of this study was to profile the allelic structure across the human CYP3A locus and investigate natural selection on that locus.
Methods: From the CYP3A locus spanning 231 kb, we resequenced 54 genomic DNA fragments (a total of 43,675 bases) spanning four genes (CYP3A4, CYP3A5, CYP3A7, and CYP3A43) and two pseudogenes (CYP3AP1 and CYP3AP2), and randomly selected intergenic regions at the CYP3A locus in Africans (24 individuals), Caucasians (24 individuals), and Chinese (29 individuals). We comprehensively investigated the nucleotide diversity and haplotype structure and examined the possible role of natural selection in shaping the sequence variation throughout the gene cluster.
Results: Neutrality tests with Tajima’s D, Fu and Li’s D* and F*, and Fay and Wu’s H indicated possible roles of positive selection on the entire CYP3A locus in non-Africans. Sliding-window analyses of nucleotide diversity and frequency spectrum, as well as haplotype diversity and phylogenetically inferred haplotype structure, revealed that CYP3A4 and CYP3A7 had recently undergone or were undergoing a selective sweep in all three populations, whereas CYP3A43 and CYP3A5 were undergoing a selective sweep in non-Africans and Caucasians, respectively.
Conclusion: The refined allelic architecture and selection spectrum for the human CYP3A locus highlight that evolutionary dynamics of molecular adaptation may underlie the phenotypic variation of the xenobiotic disposition system and varied predisposition to complex disorders in which xenobiotics play a role.
Background: Trichloroethylene (TCE) is used extensively as an industrial solvent and has been recognized as one of the major environmental pollutants. To date, > 200 cases of TCE-induced hypersensitivity dermatitis among exposed workers have been reported worldwide, and TCE exposure has become one of the critical occupational health issues in Asia.
Objectives: The study aimed to identify genetic susceptible biomarkers associated with the TCE-induced hypersensitivity dermatitis in genes located in the human leukocyte antigen (HLA) region.
Methods: From 1998 to 2006, 121 cases with TCE-induced hypersensitivity dermatitis and 142 tolerant controls were recruited into the population-based case–control study. We determined HLA alleles B, DRB1, DQA1, and DQB1, by sequence-based typing. p-Values were corrected for comparisons of multiple HLA alleles. In addition, we compared and analyzed the structure character of amino acid residues of HLA molecules found in participants.
Results: We obtained complete genotyping data of 113 cases and 142 controls. The allele HLA-B*1301 was present in 83 (73.5%) of 113 patients compared with 13 (9.2%) of 142 tolerant workers (odds ratio = 27.5; 95% confidence interval, 13.5–55.7; corrected p = 1.48 × 10). In addition, the HLA-B*44 alleles were present in 6.2% (7/113) of patients, but were absent in TCE-tolerant workers. Residue 95 shared by HLA-B*1301 and HLA-B*44 molecules formed a different pocket F than other residues.
Conclusions: The allele HLA-B*1301 is strongly associated with TCE-induced hypersensitivity dermatitis among exposed workers and might be used as a biomarker to predict high risk individuals to TCE.
Background: Previous studies have suggested that diabetes mellitus (DM) is an outcome of exposure to air pollution, and metabolic detoxification genes affect air pollution–related outcomes.
Objectives: We evaluated associations between air pollutants and markers of insulin resistance (IR), an underlying mechanism of type 2 DM, and effect modification by GSTM1, GSTT1, and GSTP1 genotypes among elderly participants in the Korean Elderly Environmental Panel (KEEP) study.
Methods: We recruited 560 people ≥ 60 years of age and obtained blood samples from them up to three times between 2008 and 2010. For air pollution exposure, we used ambient air pollutant [i.e., particulate matter ≤ 10 µm in diameter (PM10), sulfur dioxide (SO2), ozone (O3), and nitrogen dioxide (NO2)] monitoring data. We measured levels of fasting glucose and insulin and derived the homeostatic model assessment (HOMA) index to assess IR. Mixed-effect models were used to estimate associations between air pollutants and IR indices on the same day or lagged up to 10 days prior, and effect modification by GSTM1, GSTT1, and GSTP1 genotypes.
Results: Interquartile range increases in PM10, O3, and NO2 were significantly associated with IR indices, depending on the lag period. Associations were stronger among participants with a history of DM and among those with GSTM1-null, GSTT1-null, and GSTP1 AG or GG genotypes.
Conclusions: Our results suggest that PM10, O3, and NO2 may increase IR in the elderly, and that GSTM1-null, GSTT1-null, and GSTP1 AG or GG genotypes may increase susceptibility to potential effects of ambient air pollutants on IR.
Background: The frequency of chromosomal aberrations (CA) in peripheral blood lymphocytes of healthy individuals has been associated with cancer risk. It is presently unclear whether this association is influenced by individual susceptibility factors such as genetic polymorphisms of xenobiotic-metabolizing enzymes.
Objectives: To evaluate the role of polymorphisms in glutathione S-transferase (GST) M1 (GSTM1) and theta 1 (GSTT1) as effect modifiers of the association between CA and cancer risk.
Methods: A case–control study was performed pooling data from cytogenetic studies carried out in 1974–1995 in three laboratories in Italy, Norway, and Denmark. A total of 107 cancer cases were retrieved from national registries and matched to 291 controls. The subjects were classified as low, medium, and high by tertile of CA frequency. The data were analyzed by setting up a Bayesian model that included prior information about cancer risk by CA frequency.
Results: The association between CA frequency and cancer risk was confirmed [ORmedium (odds ratio)medium = 1.5, 95% credibility interval (CrI), 0.9–2.5; ORhigh = 2.8, 95% CrI, 1.6–4.6], whereas no effect of the genetic polymorphism was observed. A much stronger association was seen in the Italian subset (ORhigh= 9.4, 95% CrI, 2.6–28.0), which was characterized by a lower technical variability of the cytogenetic analysis. CA level was particularly associated with cancer of the respiratory tract (ORhigh= 6.2, 95% CrI, 1.5–20.0), the genitourinary tract (ORhigh = 4.0, 95% CrI, 1.4–10.0), and the digestive tract (ORhigh = 2.8, 95% CrI, 1.2–5.8).
Conclusions: Despite the small size of the study groups, our results substantiate the cancer risk predictivity of CA frequency, ruling against a strong modifying effect of GSTM1 and GSTT1 polymorphisms.
Background: The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function.
Objectives: This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1.
Methods: We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants.
Results: We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate.
Conclusions: This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase.