• article

    Short-Term Effects of Carbon Monoxide on Mortality: An Analysis within the APHEA Project

    Abstract

    Objectives

    We investigated the short-term effects of carbon monoxide on total and cardiovascular mortality in 19 European cities participating in the APHEA-2 (Air Pollution and Health: A European Approach) project.

    Methods

    We examined the association using hierarchical models implemented in two stages. In the first stage, data from each city were analyzed separately, whereas in the second stage the city-specific air pollution estimates were regressed on city-specific covariates to obtain overall estimates and to explore sources of possible heterogeneity. We evaluated the sensitivity of our results by applying different degrees of smoothing for seasonality control in the city-specific analysis.

    Results

    We found significant associations of CO with total and cardiovascular mortality. A 1-mg/m increase in the 2-day mean of CO levels was associated with a 1.20% [95% confidence interval (CI), 0.63–1.77%] increase in total deaths and a 1.25% (95% CI, 0.30–2.21%) increase in cardiovascular deaths. There was indication of confounding with black smoke and nitrogen dioxide, but the pollutant-adjusted effect of CO on mortality remained at least marginally statistically significant. The effect of CO on total and cardiovascular mortality was observed mainly in western and southern European cities and was larger when the standardized mortality rate was lower.

    Conclusions

    The results of this large study are consistent with an independent effect of CO on mortality. The heterogeneity found in the effect estimates among cities may be explained partly by specific city characteristics.

  • article

    Acute Effects of Ambient Particulate Matter on Mortality in Europe and North America: Results from the APHENA Study

    Abstract

    Background

    The APHENA (Air Pollution and Health: A Combined European and North American Approach) study is a collaborative analysis of multicity time-series data on the effect of air pollution on population health, bringing together data from the European APHEA (Air Pollution and Health: A European Approach) and U.S. NMMAPS (National Morbidity, Mortality and Air Pollution Study) projects, along with Canadian data.

    Objectives

    The main objective of APHENA was to assess the coherence of the findings of the multicity studies carried out in Europe and North America, when analyzed with a common protocol, and to explore sources of possible heterogeneity. We present APHENA results on the effects of particulate matter (PM) ≤ 10 μm in aerodynamic diameter (PM10) on the daily number of deaths for all ages and for those < 75 and ≥ 75 years of age. We explored the impact of potential environmental and socioeconomic factors that may modify this association.

    Methods

    In the first stage of a two-stage analysis, we used Poisson regression models, with natural and penalized splines, to adjust for seasonality, with various degrees of freedom. In the second stage, we used meta-regression approaches to combine time-series results across cites and to assess effect modification by selected ecologic covariates.

    Results

    Air pollution risk estimates were relatively robust to different modeling approaches. Risk estimates from Europe and United States were similar, but those from Canada were substantially higher. The combined effect of PM10 on all-cause mortality across all ages for cities with daily air pollution data ranged from 0.2% to 0.6% for a 10-μg/m increase in ambient PM10 concentration. Effect modification by other pollutants and climatic variables differed in Europe and the United States. In both of these regions, a higher proportion of older people and higher unemployment were associated with increased air pollution risk.

    Conclusions

    Estimates of the increased mortality associated with PM air pollution based on the APHENA study were generally comparable with results of previous reports. Overall, risk estimates were similar in Europe and in the United States but higher in Canada. However, PM10 effect modification patterns were somewhat different in Europe and the United States.

  • article

    Mortality in the Medicare Population and Chronic Exposure to Fine Particulate Air Pollution in Urban Centers (2000–2005)

    Abstract

    Background

    Prospective cohort studies constitute the major source of evidence about the mortality effects of chronic exposure to particulate air pollution. Additional studies are needed to provide evidence on the health effects of chronic exposure to particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) because few studies have been carried out and the cohorts have not been representative.

    Objectives

    This study was designed to estimate the relative risk of death associated with long-term exposure to PM2.5 by region and age groups in a U.S. population of elderly, for the period 2000–2005.

    Methods

    By linking PM2.5 monitoring data to the Medicare billing claims by ZIP code of residence of the enrollees, we have developed a new retrospective cohort study, the Medicare Cohort Air Pollution Study. The study population comprises 13.2 million participants living in 4,568 ZIP codes having centroids within 6 miles of a PM2.5 monitor. We estimated relative risks adjusted by socioeconomic status and smoking by fitting log-linear regression models.

    Results

    In the eastern and central regions, a 10-μg/m increase in 6-year average of PM2.5 is associated with 6.8% [95% confidence interval (CI), 4.9–8.7%] and 13.2% (95% CI, 9.5–16.9) increases in mortality, respectively. We found no evidence of an association in the western region or for persons ≥ 85 years of age.

    Conclusions

    We established a cohort of Medicare participants for investigating air pollution and mortality on longer-term time frames. Chronic exposure to PM2.5 was associated with mortality in the eastern and central regions, but not in the western United States.

  • article

    Maternal Exposure to Particulate Air Pollution and Term Birth Weight: A Multi-Country Evaluation of Effect and Heterogeneity

    Abstract

    Background: A growing body of evidence has associated maternal exposure to air pollution with adverse effects on fetal growth; however, the existing literature is inconsistent.

    Objectives: We aimed to quantify the association between maternal exposure to particulate air pollution and term birth weight and low birth weight (LBW) across 14 centers from 9 countries, and to explore the influence of site characteristics and exposure assessment methods on between-center heterogeneity in this association.

    Methods: Using a common analytical protocol, International Collaboration on Air Pollution and Pregnancy Outcomes (ICAPPO) centers generated effect estimates for term LBW and continuous birth weight associated with PM10 and PM2.5 (particulate matter ≤ 10 and 2.5 µm). We used meta-analysis to combine the estimates of effect across centers (~ 3 million births) and used meta-regression to evaluate the influence of center characteristics and exposure assessment methods on between-center heterogeneity in reported effect estimates.

    Results: In random-effects meta-analyses, term LBW was positively associated with a 10-μg/m increase in PM10 [odds ratio (OR) = 1.03; 95% CI: 1.01, 1.05] and PM2.5 (OR = 1.10; 95% CI: 1.03, 1.18) exposure during the entire pregnancy, adjusted for maternal socioeconomic status. A 10-μg/m increase in PM10 exposure was also negatively associated with term birth weight as a continuous outcome in the fully adjusted random-effects meta-analyses (–8.9 g; 95% CI: –13.2, –4.6 g). Meta-regressions revealed that centers with higher median PM2.5 levels and PM2.5:PM10 ratios, and centers that used a temporal exposure assessment (compared with spatiotemporal), tended to report stronger associations.

    Conclusion: Maternal exposure to particulate pollution was associated with LBW at term across study populations. We detected three site characteristics and aspects of exposure assessment methodology that appeared to contribute to the variation in associations reported by centers.

  • article

    Estimating the Exposure–Response Relationships between Particulate Matter and Mortality within the APHEA Multicity Project

    Abstract

    Several studies have reported significant health effects of air pollution even at low levels of air pollutants, but in most of theses studies linear nonthreshold relations were assumed. We investigated the exposure–response association between ambient particles and mortality in the 22 European cities participating in the APHEA (Air Pollution and Health—A European Approach) project, which is the largest available European database. We estimated the exposure–response curves using regression spline models with two knots and then combined the individual city estimates of the spline to get an overall exposure–response relationship. To further explore the heterogeneity in the observed city-specific exposure–response associations, we investigated several city descriptive variables as potential effect modifiers that could alter the shape of the curve. We conclude that the association between ambient particles and mortality in the cities included in the present analysis, and in the range of the pollutant common in all analyzed cities, could be adequately estimated using the linear model. Our results confirm those previously reported in Europe and the United States. The heterogeneity found in the different city-specific relations reflects real effect modification, which can be explained partly by factors characterizing the air pollution mix, climate, and the health of the population.