• article

    A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences


    Background: Indoor air pollutants (IAPs) cause multiple health impacts. Prioritizing mitigation options that differentially affect individual pollutants and comparing IAPs with other environmental health hazards require a common metric of harm.

    Objectives: Our objective was to demonstrate a methodology to quantify and compare health impacts from IAPs. The methodology is needed to assess population health impacts of large-scale initiatives—including energy efficiency upgrades and ventilation standards—that affect indoor air quality (IAQ).

    Methods: Available disease incidence and disease impact models for specific pollutant–disease combinations were synthesized with data on measured concentrations to estimate the chronic heath impact, in disability-adjusted life-years (DALYs) lost, due to inhalation of a subset of IAPs in U.S. residences. Model results were compared with independent estimates of DALYs lost due to disease.

    Results: Particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), acrolein, and formaldehyde accounted for the vast majority of DALY losses caused by IAPs considered in this analysis, with impacts on par or greater than estimates for secondhand tobacco smoke and radon. Confidence intervals of DALYs lost derived from epidemiology-based response functions are tighter than those derived from toxicology-based, interspecies extrapolations. Statistics on disease incidence in the United States indicate that the upper-bound confidence interval for aggregate IAP harm is implausibly high.

    Conclusions: The approach demonstrated in this study may be used to assess regional and national initiatives that affect IAQ at the population level. Cumulative health impacts from inhalation in U.S. residences of the IAPs assessed in this study are estimated at 400–1,100 DALYs lost annually per 100,000 persons.

  • article

    Indoor Air Pollutants and Health in the United Arab Emirates


    Background: Comprehensive global data on the health effects of indoor air pollutants are lacking. There are few large population-based multi–air pollutant health assessments. Further, little is known about indoor air health risks in the Middle East, especially in countries undergoing rapid economic development.

    Objectives: To provide multifactorial indoor air exposure and health data, we conducted a population-based study of indoor air pollution and health in the United Arab Emirates (UAE).

    Methods: We conducted a cross-sectional study in a population-based sample of 628 households in the UAE. Indoor air pollutants [sulfur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulfide (H2S), formaldehyde (HCHO), carbon monoxide (CO), and particulate matter] were measured using passive samplers over a 7-day period. Health information was collected from 1,590 household members via in-person interviews.

    Results: Participants in households with quantified SO2, NO2, and H2S (i.e., with measured concentrations above the limit of quantification) were twice as likely to report doctor-diagnosed asthma. Participants in homes with quantified SO2 were more likely to report wheezing symptoms {ever wheezing, prevalence odds ratio [POR] 1.79 [95% confidence interval (CI) 1.05, 3.05]; speech-limiting wheeze, POR 3.53 (95% CI: 1.06, 11.74)}. NO2 and H2S were similarly associated with wheezing symptoms. Quantified HCHO was associated with neurologic symptoms (difficulty concentrating POR 1.47; 95% CI: 1.02, 2.13). Burning incense daily was associated with increased headaches (POR 1.87; 95% CI: 1.09, 3.21), difficulty concentrating (POR 3.08; 95% CI: 1.70, 5.58), and forgetfulness (POR 2.68: 95% CI: 1.47, 4.89).

    Conclusions: This study provides new information regarding potential health risks from pollutants commonly found in indoor environments in the UAE and other countries. Multipollutant exposure and health assessments in cohort studies are needed to better characterize health effects of indoor air pollutants.