Herbstman et al. (2010) reported an association between polybrominated diphenyl ether (PBDE) levels in cord blood and neurodevelopmental effects in the children at specific ages. As a basis for their work, the authors cited several animal studies that reported causal relationships between prenatal exposure to PBDEs and developmental neurotoxicity. We are concerned that Herbstman et al.’s research suffers from investigator bias based on the reasons that follow.

First, the U.S. Environmental Protection Agency (EPA) cosponsored an expert panel that reviewed the experimental design employed in most of the studies cited by Herbstman et al. (2010) as a basis for their work. The U.S. EPA expert panel concluded that the experimental design failed to control for litter effects (Holson et al. 2008).

Next, the potential for specific brominated flame retardants to cause developmental neurotoxicity has been evaluated under Good Laboratory Practice (GLP) standards and according to validated test guidelines. In each case, the claims of developmental neurotoxicity from non-GLP, non-guideline studies were not reproducible (reviewed by Williams and DeSesso 2010). This is significant because in Europe, data generated from studies performed under GLP and according to validated test guidelines are considered the highest quality and most reliable (European Chemicals Agency 2008). Further, regulatory agencies in Europe and the United States seem to have shifted their stance on the non-GLP, non-guideline studies that have reported brominated flame retardant–induced developmental neurotoxicity. For example, when the European Union issued their Risk Assessment Report on hexabromocyclododecane (HBCD), a brominated flame retardant (European Chemicals Bureau 2008), they stated that:

> … Eriksson et al. (2006) [i.e., the study reporting HBCD-induced developmental neurotoxicity] is not performed according to current guideline and GLP. … However, similar results on developmental neurotoxicity have been published for decabromodiphenyl ether by the same authors using the same method [e.g., Viberg et al. (2003), which was cited by Herbstman et al. (2010)]. For decabromodiphenyl ether it has been agreed to perform a new toxicokinetics/developmental neurotoxicity study according to a modified OECD guideline and GLP. The results from this new decabromodiphenyl ether study will serve as guidance on how to interpret the data from the Eriksson study, and may also serve as a basis on how to proceed with further testing of neurotoxicity.

For two of the studies cited by Herbstman et al. (2010), which were used by the U.S. EPA for deriving reference doses for PBDEs 153 and 209 (U.S. EPA 2008a, 2008b), the U.S. EPA was unable to obtain the raw data. However, when the raw data were obtained for the PBDE 209 study (i.e., Viberg et al. 2003) by a third party, who subsequently provided the data to the U.S. EPA, the agency acknowledged that the data were not suitable for use with human health assessment (U.S. EPA 2010).

We mention the above information because Herbstman et al. (2010) cited only animal studies that reported PBDE-induced developmental neurotoxicity as support for their work. Although the authors discussed one epidemiological study that reported findings inconsistent with their own, Herbstman et al. (2010) reverted back to the positive animal studies as support for their work. They did not discuss or cite any animal studies that reported contradictory findings. This is significant because it may have introduced a formidable source of bias when Herbstman et al. (2010) were interpreting their results. The exclusion may also mislead the readership of EHP.

M.B. has received a total of US$2,000 from the brominated flame retardant industry for his contribution to three publications in 2008–2009, but he received no form of remuneration for his work on this letter.

Marek Banasik
Institute of Public Health and Environmental Protection
Warsaw, Poland
E-mail: iphep.banasik@gmail.com

REFERENCES

over time could have altered any observed exposure–response associations. In addition, the authors did not indicate how assessments of individual children changed over time. If different children contributed to associations at different ages, the reported findings may not be indicative of a causal role for PBDEs. Notably, most associations were found at earlier ages, suggesting that even if PBDEs were causal, effects were reversible.

Herbstman et al. (2010) reported that all PBDEs were correlated with one another, as were repeated developmental scores. Yet associations varied both among PBDEs for the same tests and among repeated tests for the same PBDEs. If PBDEs are truly causal and acting via similar mechanisms of action, results should be repeatable across PBDEs and repeated tests. This is not the case, thus suggesting that chance or some other factor (e.g., alcohol, caffeine, poor diet, methylmercury, polychlorinated biphenyls) is a more likely explanation. In addition, all of the mothers in the study were pregnant and lived near the World Trade Center (WTC) on 11 September 2001. Given this proximity, there is no way of knowing whether other unmeasured exposures or other factors (e.g., psychological, behavioral) contributed to neurotoxic effects.

Herbstman et al. (2010) used the Bayley Scales of Infant Development, Second Edition (BSID-II) to measure developmental impairment, which is based on a mean ± SD of 100 ± 15 to define normal development (Bayley 1993). This means that in 68% of the standard population, scores ranged from 85 to 115. The authors reported that through univariate analysis, the change in the BSID-II score from the 25th percentile of PBDE level to the 75th percentile was ∼5.57. This degree of change is well within the SD of the test, which makes it impossible to determine whether the relationship observed was due to PBDEs or simply the interindividual variability inherent to the test. Because the authors did not assess the association between PBDE levels and those scoring outside the SD of the test (compared with those scoring within), it is impossible to determine whether a clinically significant association between PBDE cord blood levels and developmental impairment exists. Changes in IQ scores are not very meaningful unless they are put directly into context with the scoring ranges in the test design; Herbstman et al. did not provide much information as to the scores that were actually produced, though they implied that those from mothers with higher PBDE levels were somehow impaired when they may well have been normal.

Taken together, these factors prevent an accurate assessment of whether prenatal exposure to PBDEs is associated with adverse neurodevelopmental effects.

The views and opinions expressed in this article are those of the authors and not necessarily those of their respective employers.

J.E.G. received an honorarium from Albemarle Corporation (Baton Rouge LA) for incidental expenses related to her contribution in drafting and reviewing this correspondence. M.H. and T.S. are employed by specialty chemical manufacturers whose product lines include brominated flame retardants. The other authors declare they have no actual or potential competing financial interests.

Julie E. Goodman
Gradient
Cambridge, Massachusetts
E-mail: jgoodman@gradientcorp.com

Giff T. Johnson
Raymond D. Harbison
University of South Florida
Tampa, Florida

Richard V. Lee
State University of New York
Buffalo, New York

Milo F. Pulde
Harvard University
Boston Massachusetts

Marcia Hardy
Todd Stedeford
Albemarle Corporation
Baton Rouge, Louisiana

REFERENCES

Prenatal PBDEs and Neurodevelopment: Herbstman et al. Respond to Goodman et al. and to Banasik and Strosznajder
doi:10.1289/ehp.1002748R

In our article (Herbstman et al. 2010), we reported evidence showing that children who had higher cord blood concentrations of polybrominated diphenyl ethers (PBDEs) scored lower on tests of mental and motor development at 1–4 and 6 years of age. We initiated this work based on a large body of experimental research indicating that prenatal PBDE exposure has the potential to disrupt neurodevelopment. In their letter, Banasik and Strosznajder comment that the basis for our work may be biased because of experimental design flaws in the animal studies we cited. In the introduction of our paper, we cited an extensive review article in which Costa and Giordano (2007) carefully outlined a wide variety of toxicological evidence exploring the association between prenatal PBDE exposure and neurotoxicity. The authors cited both positive and negative animal studies and also reviewed in vitro studies and reports outlining endocrine-disrupting effects associated with PBDE exposure. We believe that we directed EHP readers to sufficient evidence that provides an adequate basis for our research question. Since our manuscript was accepted for publication, an additional in vitro study was published; that study (Schreiber et al. 2010) demonstrated that primary fetal human neural progenitor cells exposed to BDEs 47 and 99 had decreased migration distance and reduced differentiation into neurons and oligodendrocytes. Taken together, the scientific literature provides adequate biological plausibility and raises substantial concern about the potential for PBDE-related developmental neurotoxicity in humans.

Additional comments from Goodman et al. in their letter raise the possibility that the number of samples below the limit of detection (LOD) in our study sample could be higher than in the full study population and could thereby effect the results. We explored this possibility and found that the number of study samples with PBDE levels < LOD ranged from 14% to 19% for BDE-47, 40% to 50% for BDE-99, 27% to 34% for BDE-100 and 38% to 43% for BDE-153, depending on the testing age. These are not significantly different from the proportions of samples < LOD in the full study population. Goodman et al. also point out that PBDE concentrations in our study were measured at one point in time and were likely to change over the course of pregnancy and postnatally. It is true that little is known about changes in PBDE levels within individuals over time or the half-lives of lower brominated PBDEs in human serum. One study (Geyer et al. 2004) estimated that the half-lives of BDEs 47, 99, 100, and 153 range from 1.8 to 6.5 years. We estimated prenatal PBDE exposure based on cord blood levels at delivery. If these estimated half-lives are accurate and we assume that PBDE exposure is chronic, it is unlikely that there are substantial changes in concentrations over an approximately 9-month pregnancy. Although cord blood is adequate for assessing PBDE exposure during the prenatal and early postnatal periods, which are critical periods for neuronal differentiation and migration, we concur that it is possible that there are other windows of susceptibility that are not adequately represented by cord blood PBDE concentrations (Rice and Barone 2000). In the “Discussion” of our article, we noted the limitation that we were not able to control for postnatal PBDE exposure in our analyses.

Goodman and al. ask whether different children contribute to the observed associations at different ages and assert that most associations were found at earlier ages, suggesting that observed effects are reversible. We reported that repeated developmental