Supplemental Material

Ambient PM$_{2.5}$-Exposure Up-regulates the Expression of Co-Stimulatory Receptors on Circulating Monocytes in Diabetic Individuals

Alexandra Schneider1,*, Neil E Alexis2,*, David Diaz-Sanchez3, Lucas M. Neas3, Shirley Harder3, Margaret C. Herbst2, Wayne E. Cascio4, John B. Buse2, Annette Peters1,5, Robert B. Devlin3

*Shared first authorship

1Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, Germany

2University of North Carolina, School of Medicine, Chapel Hill, North Carolina

3Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, RTP, North Carolina

4Brody School of Medicine, and the East Carolina Heart Institute at East Carolina University, Greenville, North Carolina

5Focus Network Nanoparticles and Health (NanoHealth), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
Table of Contents for Supplemental Material

Online Supplement Table 1. Cell surface marker function.
Page 4

Online Supplement Table 2. Description of the study population clinical characteristics: current non-smoking subjects with type 2 diabetes mellitus.
Page 5

Online Supplement Table 3. Description of PM$_{2.5}$ and of meteorology parameters throughout the study period (19 Nov 2004 to 09 December 2005).
Page 6

Online Supplement Table 4. Description of inflammation and cell surface markers (descriptive statistics were calculated from patient means).
Page 7-8

Online Supplement Table 5. Absolute changes of analyzed cell surface markers with 95%-confidence intervals based on a 1µg/m3 increase in PM$_{2.5}$.
Page 9-10

Online Supplement Table 6. Pearson correlation coefficients between cell surface markers on monocytes (%-data) and inflammatory markers IL-6 and TNFα.
Page 11

Online Supplement Table 7. Pearson correlation coefficients between cell surface markers on monocytes (MFI-data) and inflammatory markers IL-6 and TNFα.
Page 12

Online Supplement Table 8. Pearson correlation coefficients between cell surface markers on neutrophils (%-data) and inflammatory markers IL-6 and TNFα.
Page 13

Online Supplement Table 9. Pearson correlation coefficients between cell surface markers on neutrophils (MFI-data) and inflammatory markers IL-6 and TNFα.
Page 14

Online Supplement Figure 1. Subject-specific associations (random slopes) with a 10µg/m3 increment in PM$_{2.5}$ (lag of 2 and 3 days) for CD40 monocytes (MFI). Subjects 2 and 7 had to be excluded from the analysis as one declined venipuncture and for one the withdrawn blood amount was not enough for flow-cytometry analysis.
Page 15
Online Supplement Figure 2. Subject-specific associations (random slopes) with a 10µg/m³ increment in PM$_{2.5}$ (lag of 2 and 3 days) for CD80 monocytes (MFI). Individuals 2 and 7 had to be excluded from the analysis as one declined venipuncture and for one the withdrawn blood amount was not enough for flow-cytometry analysis.

Online Supplement Figure 3. Subject-specific associations (random slopes) with a 10µg/m³ increment in PM$_{2.5}$ (lag of 4 days) for CD23 monocytes (MFI). Individuals 2 and 7 had to be excluded from the analysis as one declined venipuncture and for one the withdrawn blood amount was not enough for flow-cytometry analysis.

Online Supplement Figure 4. Effect estimates for IL-6 and TNFα with 95%-confidence intervals for immediate and delayed associations with PM$_{2.5}$ (Schneider et al. 2010).
<table>
<thead>
<tr>
<th>CD (cluster of differentiation) Marker</th>
<th>Major Cell Type Expressed</th>
<th>Receptor and Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD23</td>
<td>Mature B cells; activated Macrophages; Eosinophils</td>
<td>Low affinity IgE receptor; mediates IgE allergic responses</td>
</tr>
<tr>
<td>FceR1</td>
<td>Mast cells; Basophils; Monocytes; Eosinophils</td>
<td>High affinity IgE receptor; mediates IgE allergic responses</td>
</tr>
<tr>
<td>CD80</td>
<td>APCs: Dendritic cells; Macrophages</td>
<td>Co-stimulatory receptor; antigen presentation to T cells</td>
</tr>
<tr>
<td>CD86</td>
<td>APCs: Dendritic cells; Macrophages</td>
<td>Co-stimulatory receptor; antigen presentation to T cells</td>
</tr>
<tr>
<td>CD40</td>
<td>APCs: Dendritic cells; B cells; Macrophages</td>
<td>Co-stimulatory receptor; activation of APCs; antibody production</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>Macrophages; Dendritic cells; Monocytes</td>
<td>Major histocompatibility (MHC) class II receptor; antigen presentation</td>
</tr>
<tr>
<td>CD1a</td>
<td>APCs</td>
<td>Transmembrane glycoprotein receptor; presentation of lipid antigens to T cells</td>
</tr>
<tr>
<td>CD11b</td>
<td>Neutrophils; Macrophages; Monocytes</td>
<td>Complement receptor 3 for opsonised immune complexes; mediates complement mediated immune responses; phagocytosis; neutrophil migration</td>
</tr>
<tr>
<td>CD54/ICAM-1</td>
<td>Leukocytes; endothelial cells</td>
<td>Intercellular adhesion molecule; binds to leukocyte integrins/ligands and induces cell transmigration into tissue</td>
</tr>
<tr>
<td>mCD14</td>
<td>Monocytes; Macrophages</td>
<td>LPS receptor; mediates LPS-induced innate immune responses</td>
</tr>
<tr>
<td>CD16</td>
<td>Neutrophils; NK cells;</td>
<td>Fc gamma Receptor for IgG opsonized innate immune complexes; mediates innate immune responses</td>
</tr>
<tr>
<td>CD64</td>
<td>Macrophages; Monocytes</td>
<td>Fc gamma Receptor for IgG opsonised immune complexes; mediates innate immune responses; phagocytosis</td>
</tr>
</tbody>
</table>

APC = antigen presenting cells; ICAM-1 = intercellular adhesion molecule-1
Online Supplement Table 2. Description of the study population clinical characteristics: current non-smoking subjects with type 2 diabetes mellitus.

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>N=20 individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease history</td>
<td>Total number or mean</td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td>20</td>
</tr>
<tr>
<td>Time since diabetes diagnosis [yrs]</td>
<td>6.1</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>18</td>
</tr>
<tr>
<td>Hypertension</td>
<td>18</td>
</tr>
<tr>
<td>Past myocardial infarction</td>
<td>0</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>4</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>3</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>1</td>
</tr>
<tr>
<td>Diabetic retinopathy</td>
<td>1</td>
</tr>
<tr>
<td>Diabetic nephropathy*</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medication intake</th>
<th>Total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonylureas</td>
<td>9</td>
</tr>
<tr>
<td>Thiazolidinediones</td>
<td>6</td>
</tr>
<tr>
<td>Metformin</td>
<td>13</td>
</tr>
<tr>
<td>Statins</td>
<td>11</td>
</tr>
<tr>
<td>Aspirin</td>
<td>13</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>9</td>
</tr>
<tr>
<td>Angiotensin converting enzyme-inhibitors</td>
<td>11</td>
</tr>
<tr>
<td>Calcium-blockers</td>
<td>1</td>
</tr>
<tr>
<td>Diuretics</td>
<td>8</td>
</tr>
<tr>
<td>Angiotension II-receptor blocker</td>
<td>3</td>
</tr>
<tr>
<td>Estrogen</td>
<td>2</td>
</tr>
</tbody>
</table>

*Based on the screening urine (>30 µg albumin/mg creatinine) on spot collection.
Online Supplement Table 3. Description of PM$_{2.5}$ and of meteorology parameters throughout the study period (19 Nov 2004 to 09 December 2005).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N</th>
<th>Mean</th>
<th>SDa</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Public Health Division Rooftop PM$_{2.5}^{b}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM$_{2.5}^{c}$ [μg/m3], imputed</td>
<td>383</td>
<td>14.2</td>
<td>7.2</td>
<td>1.5</td>
<td>42.8</td>
</tr>
<tr>
<td>PM$_{2.5}^{c}$ [μg/m3]</td>
<td>302</td>
<td>14.3</td>
<td>7.5</td>
<td>1.5</td>
<td>42.8</td>
</tr>
<tr>
<td>Environmental Public Health Division Rooftop Meteorology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air temperature [°C]</td>
<td>385</td>
<td>15.9</td>
<td>8.5</td>
<td>-6.5</td>
<td>31.5</td>
</tr>
<tr>
<td>Relative humidity [%]</td>
<td>385</td>
<td>62.5</td>
<td>16.6</td>
<td>25.1</td>
<td>97.7</td>
</tr>
<tr>
<td>Barometric pressure [hPa]</td>
<td>386</td>
<td>1001.2</td>
<td>6.5</td>
<td>981.4</td>
<td>1021.9</td>
</tr>
</tbody>
</table>

aSD: standard deviation
bPM$_{2.5}$: particulate matter with a diameter <2.5μm (study period: 386 days)
Online Supplement Table 4. Description of inflammation and cell surface markers (descriptive statistics were calculated from patient means).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N*</th>
<th>Mean</th>
<th>SD^a</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin (IL)-6 [pg/ml]</td>
<td>79</td>
<td>3.5</td>
<td>2.2</td>
<td>1.3</td>
<td>9.0</td>
</tr>
<tr>
<td>Tumor necrosis factor (TNF) α [pg/ml]</td>
<td>79</td>
<td>1.7</td>
<td>0.9</td>
<td>0.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD23</td>
<td>75</td>
<td>6.0</td>
<td>6.6</td>
<td>0.7</td>
<td>27.5</td>
</tr>
<tr>
<td>FceR1</td>
<td>75</td>
<td>18.8</td>
<td>12.6</td>
<td>2.7</td>
<td>50.9</td>
</tr>
<tr>
<td>CD80</td>
<td>75</td>
<td>4.4</td>
<td>6.2</td>
<td>0.4</td>
<td>22.3</td>
</tr>
<tr>
<td>CD86</td>
<td>75</td>
<td>74.7</td>
<td>13.5</td>
<td>37.2</td>
<td>88.1</td>
</tr>
<tr>
<td>CD40</td>
<td>76</td>
<td>74.6</td>
<td>14.3</td>
<td>53.2</td>
<td>107.7</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>75</td>
<td>78.1</td>
<td>14.1</td>
<td>50.2</td>
<td>92.9</td>
</tr>
<tr>
<td>CD1a</td>
<td>73</td>
<td>7.4</td>
<td>9.0</td>
<td>0.0</td>
<td>29.4</td>
</tr>
<tr>
<td>CD11b</td>
<td>76</td>
<td>87.7</td>
<td>4.7</td>
<td>77.5</td>
<td>93.4</td>
</tr>
<tr>
<td>CD54</td>
<td>75</td>
<td>69.4</td>
<td>17.7</td>
<td>30.6</td>
<td>91.3</td>
</tr>
<tr>
<td>CD14</td>
<td>76</td>
<td>73.5</td>
<td>9.1</td>
<td>59.6</td>
<td>87.8</td>
</tr>
<tr>
<td>CD16</td>
<td>75</td>
<td>25.3</td>
<td>6.2</td>
<td>12.6</td>
<td>37.4</td>
</tr>
<tr>
<td>CD64</td>
<td>75</td>
<td>76.1</td>
<td>9.1</td>
<td>61.3</td>
<td>89.6</td>
</tr>
<tr>
<td>Neutrophils (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD11b</td>
<td>76</td>
<td>95.5</td>
<td>5.8</td>
<td>76.1</td>
<td>99.5</td>
</tr>
<tr>
<td>CD14</td>
<td>76</td>
<td>23.2</td>
<td>11.9</td>
<td>3.1</td>
<td>53.7</td>
</tr>
<tr>
<td>CD16</td>
<td>78</td>
<td>102.0</td>
<td>25.3</td>
<td>90.4</td>
<td>209.1</td>
</tr>
<tr>
<td>CD64</td>
<td>77</td>
<td>11.3</td>
<td>13.6</td>
<td>0.7</td>
<td>55.9</td>
</tr>
<tr>
<td>Monocytes (MFI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD23</td>
<td>76</td>
<td>3.3</td>
<td>2.1</td>
<td>0.9</td>
<td>8.8</td>
</tr>
<tr>
<td>FceR1</td>
<td>76</td>
<td>19.4</td>
<td>14.2</td>
<td>3.3</td>
<td>56.2</td>
</tr>
<tr>
<td>CD80</td>
<td>76</td>
<td>6.0</td>
<td>8.6</td>
<td>0.2</td>
<td>29.7</td>
</tr>
<tr>
<td>CD86</td>
<td>75</td>
<td>53.9</td>
<td>26.2</td>
<td>15.7</td>
<td>105.9</td>
</tr>
<tr>
<td>CD40</td>
<td>76</td>
<td>105.3</td>
<td>78.8</td>
<td>20.0</td>
<td>346.8</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>76</td>
<td>121.4</td>
<td>57.4</td>
<td>32.8</td>
<td>215.2</td>
</tr>
<tr>
<td>CD1a</td>
<td>74</td>
<td>12.2</td>
<td>27.2</td>
<td>0.8</td>
<td>101.8</td>
</tr>
<tr>
<td>CD11b</td>
<td>76</td>
<td>131.4</td>
<td>85.6</td>
<td>50.4</td>
<td>417.8</td>
</tr>
<tr>
<td>CD54</td>
<td>76</td>
<td>19.7</td>
<td>9.0</td>
<td>9.0</td>
<td>40.1</td>
</tr>
<tr>
<td></td>
<td>CD14</td>
<td>CD16</td>
<td>CD64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>76</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD14</td>
<td>557.3</td>
<td>441.4</td>
<td>73.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD16</td>
<td>208.7</td>
<td>495.4</td>
<td>38.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD64</td>
<td>246.2</td>
<td>46.8</td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1005.1</td>
<td>1810.0</td>
<td>196.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neutrophils (MFI)

<table>
<thead>
<tr>
<th></th>
<th>CD11b</th>
<th>CD14</th>
<th>CD16</th>
<th>CD64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>CD11b</td>
<td>101.0</td>
<td>10.1</td>
<td>4227.9</td>
<td>3.7</td>
</tr>
<tr>
<td>CD14</td>
<td>65.9</td>
<td>6.1</td>
<td>1660.7</td>
<td>3.7</td>
</tr>
<tr>
<td>CD16</td>
<td>45.7</td>
<td>3.4</td>
<td>2194.1</td>
<td>0.3</td>
</tr>
<tr>
<td>CD64</td>
<td>340.4</td>
<td>28.5</td>
<td>7774.63</td>
<td>17.2</td>
</tr>
</tbody>
</table>

*20 patients with a maximum of 4 measurements each; *SD: standard deviation
Online Supplement Table 5. Absolute changes of analyzed cell surface markers with 95%-confidence intervals based on a 1 µg/m³ increase in PM$_{2.5}$.

<table>
<thead>
<tr>
<th>Monocytes (%)</th>
<th>Lag 0</th>
<th>Lag 1</th>
<th>Lag 2</th>
<th>Lag 3</th>
<th>Lag 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD23</td>
<td>-0.21</td>
<td>-0.11</td>
<td>-0.22</td>
<td>-0.19</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>[-0.49;0.06]</td>
<td>[-0.41;0.20]</td>
<td>[-0.59;0.16]</td>
<td>[-0.61;0.23]</td>
<td>[-0.40;0.30]</td>
</tr>
<tr>
<td>CD86</td>
<td>0.07</td>
<td>0.39</td>
<td>-0.08</td>
<td>-1.04</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>[-0.51;0.65]</td>
<td>[-0.21;1.00]</td>
<td>[-0.85;0.69]</td>
<td>[-1.83;0.25]</td>
<td>[-0.61;0.75]</td>
</tr>
<tr>
<td>CD40</td>
<td>0.53</td>
<td>0.35</td>
<td>-0.36</td>
<td>-0.32</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>[-0.16;1.21]</td>
<td>[-0.36;1.05]</td>
<td>[-1.25;0.54]</td>
<td>[-1.27;0.63]</td>
<td>[-0.60;1.06]</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>-0.14</td>
<td>0.05</td>
<td>-0.45</td>
<td>-0.57</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>[-0.74;0.46]</td>
<td>[-0.58;0.68]</td>
<td>[-1.28;0.37]</td>
<td>[-1.41;0.27]</td>
<td>[-0.36;1.11]</td>
</tr>
<tr>
<td>CD80</td>
<td>0.23</td>
<td>0.27</td>
<td>0.35</td>
<td>0.27</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[-0.10;0.55]</td>
<td>[-0.08;0.63]</td>
<td>[-0.15;0.85]</td>
<td>[-0.29;0.84]</td>
<td>[-0.38;0.43]</td>
</tr>
<tr>
<td>CD1a</td>
<td>0.03</td>
<td>0.02</td>
<td>0.13</td>
<td>0.05</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>[-0.31;0.36]</td>
<td>[-0.37;0.40]</td>
<td>[-0.43;0.70]</td>
<td>[-0.51;0.61]</td>
<td>[-0.47;0.33]</td>
</tr>
<tr>
<td>CD11b</td>
<td>-0.19</td>
<td>-0.15</td>
<td>-0.35</td>
<td>-0.31</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>[-0.43;0.05]</td>
<td>[-0.40;0.11]</td>
<td>[-0.65;0.04]</td>
<td>[-0.64;0.03]</td>
<td>[-0.45;0.18]</td>
</tr>
<tr>
<td>CD54</td>
<td>-0.55</td>
<td>-0.19</td>
<td>-1.06</td>
<td>-1.44</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>[-1.26;0.16]</td>
<td>[-0.97;0.59]</td>
<td>[-2.04;0.08]</td>
<td>[-2.50;0.37]</td>
<td>[-0.83;1.04]</td>
</tr>
<tr>
<td>FcεRI</td>
<td>0.58</td>
<td>0.37</td>
<td>-0.19</td>
<td>-0.51</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>[0.14;1.01]</td>
<td>[-0.06;0.80]</td>
<td>[-0.78;0.40]</td>
<td>[-1.11;0.09]</td>
<td>[-0.59;0.43]</td>
</tr>
<tr>
<td>CD14</td>
<td>0.22</td>
<td>0.28</td>
<td>-0.06</td>
<td>-0.51</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>[-0.19;0.62]</td>
<td>[-0.14;0.69]</td>
<td>[-0.59;0.46]</td>
<td>[-1.06;0.05]</td>
<td>[-0.64;0.29]</td>
</tr>
<tr>
<td>CD16</td>
<td>0.14</td>
<td>-0.06</td>
<td>-0.31</td>
<td>-0.26</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>[-0.15;0.42]</td>
<td>[-0.36;0.24]</td>
<td>[-0.69;0.08]</td>
<td>[-0.67;0.14]</td>
<td>[-0.39;0.30]</td>
</tr>
<tr>
<td>CD64</td>
<td>-0.23</td>
<td>-0.11</td>
<td>-0.47</td>
<td>-0.33</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>[-0.65;0.20]</td>
<td>[-0.55;0.34]</td>
<td>[-1.01;0.06]</td>
<td>[-0.88;0.23]</td>
<td>[-0.36;0.58]</td>
</tr>
</tbody>
</table>

Monocytes (MFI)

<table>
<thead>
<tr>
<th>Monocytes (MFI)</th>
<th>Lag 0</th>
<th>Lag 1</th>
<th>Lag 2</th>
<th>Lag 3</th>
<th>Lag 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD23</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.03</td>
<td>-0.09</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>[-0.22;0.04]</td>
<td>[-0.22;0.04]</td>
<td>[-0.19;0.14]</td>
<td>[-0.29;0.10]</td>
<td>[0.03;0.33]</td>
</tr>
<tr>
<td>CD86</td>
<td>-0.33</td>
<td>0.01</td>
<td>0.03</td>
<td>-0.60</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>[-1.32;0.65]</td>
<td>[-0.93;0.95]</td>
<td>[-1.23;1.29]</td>
<td>[-1.96;0.76]</td>
<td>[0.01;2.26]</td>
</tr>
<tr>
<td>CD40</td>
<td>1.23</td>
<td>0.25</td>
<td>4.31</td>
<td>4.87</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td>[-1.71;4.16]</td>
<td>[2.67;3.17]</td>
<td>[0.56;8.06]</td>
<td>[1.00;8.75]</td>
<td>[-1.05;5.50]</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>0.79</td>
<td>0.18</td>
<td>-1.48</td>
<td>1.07</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td>[-1.20;2.78]</td>
<td>[-1.78;2.15]</td>
<td>[-4.01;1.05]</td>
<td>[-1.62;3.77]</td>
<td>[0.08;4.37]</td>
</tr>
<tr>
<td>CD80</td>
<td>0.37</td>
<td>-0.16</td>
<td>0.78</td>
<td>0.67</td>
<td>-0.29</td>
</tr>
<tr>
<td></td>
<td>[-0.15;0.88]</td>
<td>[-0.74;0.42]</td>
<td>[0.19;1.37]</td>
<td>[0.06;1.28]</td>
<td>[-0.84;0.25]</td>
</tr>
<tr>
<td>CD1a</td>
<td>0.59</td>
<td>-0.25</td>
<td>-0.07</td>
<td>-0.19</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>[-0.04;1.22]</td>
<td>[-0.77;0.27]</td>
<td>[-0.56;0.42]</td>
<td>[-0.61;0.23]</td>
<td>[-0.41;0.26]</td>
</tr>
<tr>
<td>CD11b</td>
<td>-1.49</td>
<td>-0.89</td>
<td>-2.81</td>
<td>-2.27</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>[-4.13;1.15]</td>
<td>[-3.45;1.67]</td>
<td>[-6.17;0.55]</td>
<td>[-5.98;1.43]</td>
<td>[-2.47;3.32]</td>
</tr>
<tr>
<td>CD54</td>
<td>-0.02</td>
<td>-0.21</td>
<td>-0.42</td>
<td>-0.31</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>[-0.33;0.28]</td>
<td>[-0.53;0.12]</td>
<td>[-0.86;0.01]</td>
<td>[-0.77;0.16]</td>
<td>[-0.21;0.56]</td>
</tr>
<tr>
<td>FcεRI</td>
<td>0.40</td>
<td>-0.11</td>
<td>-0.08</td>
<td>-0.41</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>[-0.18;0.97]</td>
<td>[-0.71;0.50]</td>
<td>[-0.85;0.69]</td>
<td>[-1.25;0.42]</td>
<td>[-0.85;0.47]</td>
</tr>
<tr>
<td>CD14</td>
<td>-0.68</td>
<td>0.52</td>
<td>-3.76</td>
<td>-2.61</td>
<td>2.29</td>
</tr>
<tr>
<td>CD16</td>
<td>-7.53</td>
<td>-3.70</td>
<td>-4.39</td>
<td>-2.31</td>
<td>-2.78</td>
</tr>
<tr>
<td>CD64</td>
<td>0.04</td>
<td>0.58</td>
<td>0.06</td>
<td>-0.70</td>
<td>-0.54</td>
</tr>
<tr>
<td></td>
<td>[-1.00;1.08]</td>
<td>[-0.36;1.52]</td>
<td>[-1.23;1.35]</td>
<td>[-2.04;0.64]</td>
<td>[-1.66;0.58]</td>
</tr>
<tr>
<td>Neutrophils (%)</td>
<td>CD14</td>
<td>CD16</td>
<td>CD64</td>
<td>CD11b</td>
<td>Neutrophils (MFI)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>0.25 [-0.24;0.73]</td>
<td>0.09 [-0.47;0.65]</td>
<td>-0.40 [-1.10;0.29]</td>
<td>-0.06 [-0.77;0.65]</td>
<td>-0.08 [-0.71;0.56]</td>
</tr>
<tr>
<td></td>
<td>0.04 [-0.18;0.25]</td>
<td>0.05 [-0.18;0.27]</td>
<td>0.15 [-0.14;0.44]</td>
<td>-0.05 [-0.38;0.27]</td>
<td>-0.08 [-0.35;0.18]</td>
</tr>
<tr>
<td></td>
<td>0.03 [-0.18;0.23]</td>
<td>-0.08 [-0.31;0.15]</td>
<td>-0.44 [-0.76;0.11]</td>
<td>-0.17 [-0.45;0.11]</td>
<td>0.02 [-0.24;0.28]</td>
</tr>
<tr>
<td></td>
<td>-1.14 [-3.43;1.15]</td>
<td>-0.73 [-3.02;1.56]</td>
<td>-2.67 [-5.68;0.35]</td>
<td>-1.13 [-4.27;2.02]</td>
<td>2.01 [-0.52;4.53]</td>
</tr>
</tbody>
</table>
Online Supplement Table 6. Pearson correlation coefficients between cell surface markers on monocytes (%-data) and inflammatory markers IL-6 and TNFα.

<table>
<thead>
<tr>
<th>Cell surface marker</th>
<th>CD23</th>
<th>FceR1</th>
<th>CD64</th>
<th>CD16</th>
<th>CD54</th>
<th>CD1a</th>
<th>CD11b</th>
<th>CD14</th>
<th>CD80</th>
<th>CD40</th>
<th>HLA-DR</th>
<th>CD86</th>
<th>IL-6</th>
<th>TNFα</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD23</td>
<td>1</td>
<td>0.18</td>
<td>0.05</td>
<td>0.06</td>
<td>0.25</td>
<td>0.15</td>
<td>-0.13</td>
<td>-0.03</td>
<td>0.40</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>FceR1</td>
<td>1</td>
<td>0.11</td>
<td>0.15</td>
<td>0.10</td>
<td>0.74</td>
<td>-0.14</td>
<td>0.22</td>
<td>0.15</td>
<td>0.28</td>
<td>0.12</td>
<td>0.14</td>
<td>-0.13</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>CD64</td>
<td>1</td>
<td>-0.18</td>
<td>0.67</td>
<td>-0.04</td>
<td>0.75</td>
<td>0.70</td>
<td>0.00</td>
<td>0.44</td>
<td>0.38</td>
<td>0.49</td>
<td>-0.13</td>
<td>-0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD16</td>
<td>1</td>
<td>0.11</td>
<td>0.29</td>
<td>-0.14</td>
<td>0.01</td>
<td>0.02</td>
<td>0.28</td>
<td>0.00</td>
<td>0.22</td>
<td>0.16</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD54</td>
<td>1</td>
<td>-0.07</td>
<td>0.54</td>
<td>0.37</td>
<td>0.01</td>
<td>0.32</td>
<td>0.50</td>
<td>0.55</td>
<td>-0.01</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD1a</td>
<td>1</td>
<td>-0.17</td>
<td>0.20</td>
<td>0.20</td>
<td>0.34</td>
<td>0.05</td>
<td>0.16</td>
<td>0.15</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD11b</td>
<td>1</td>
<td>0.65</td>
<td>-0.08</td>
<td>0.28</td>
<td>0.23</td>
<td>0.40</td>
<td>-0.18</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD14</td>
<td>1</td>
<td>-0.08</td>
<td>0.45</td>
<td>0.22</td>
<td>0.54</td>
<td>-0.23</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD80</td>
<td>1</td>
<td>0.12</td>
<td>-0.26</td>
<td>-0.24</td>
<td>-0.02</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>1</td>
<td>0.34</td>
<td>0.56</td>
<td>-0.06</td>
<td>-0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLA-DR</td>
<td>1</td>
<td>0.61</td>
<td>0.15</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>CD86</td>
<td>1</td>
<td>-0.11</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>1</td>
<td></td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>TNFα</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Online Supplement Table 7. Pearson correlation coefficients between cell surface markers on monocytes (MFI-data) and inflammatory markers IL-6 and TNFα.

<table>
<thead>
<tr>
<th>Cell surface marker</th>
<th>CD23</th>
<th>FceR1</th>
<th>CD64</th>
<th>CD16</th>
<th>CD54</th>
<th>CD1a</th>
<th>CD80</th>
<th>CD40</th>
<th>HLA-DR</th>
<th>CD86</th>
<th>CD11b</th>
<th>CD14</th>
<th>IL-6</th>
<th>TNFα</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD23</td>
<td>1</td>
<td>0.54</td>
<td>0.22</td>
<td>-0.05</td>
<td>0.29</td>
<td>-0.05</td>
<td>0.11</td>
<td>0.11</td>
<td>0.25</td>
<td>0.26</td>
<td>0.17</td>
<td>0.06</td>
<td>0.23</td>
<td>-0.06</td>
</tr>
<tr>
<td>FceR1</td>
<td>1</td>
<td>0.21</td>
<td>-0.08</td>
<td>0.24</td>
<td>0.83</td>
<td>0.07</td>
<td>0.15</td>
<td>0.33</td>
<td>0.44</td>
<td>0.26</td>
<td>0.36</td>
<td>0.18</td>
<td>0.10</td>
<td>-0.10</td>
</tr>
<tr>
<td>CD64</td>
<td>1</td>
<td>-0.02</td>
<td>0.58</td>
<td>0.14</td>
<td>-0.14</td>
<td>0.53</td>
<td>0.57</td>
<td>0.40</td>
<td>0.35</td>
<td>0.39</td>
<td>0.05</td>
<td>0.09</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>CD16</td>
<td>1</td>
<td>-0.10</td>
<td>-0.04</td>
<td>-0.11</td>
<td>0.11</td>
<td>-0.26</td>
<td>-0.23</td>
<td>-0.01</td>
<td>0.08</td>
<td>-0.23</td>
<td>-0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD54</td>
<td>1</td>
<td>0.43</td>
<td>-0.15</td>
<td>0.29</td>
<td>0.33</td>
<td>0.41</td>
<td>0.33</td>
<td>0.12</td>
<td>0.07</td>
<td>-0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD1a</td>
<td>1</td>
<td>0.25</td>
<td>0.19</td>
<td>0.29</td>
<td>0.35</td>
<td>0.14</td>
<td>0.05</td>
<td>0.56</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD80</td>
<td>1</td>
<td>0.49</td>
<td>0.04</td>
<td>-0.06</td>
<td>-0.18</td>
<td>-0.42</td>
<td>0.41</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>1</td>
<td>0.33</td>
<td>0.43</td>
<td>0.06</td>
<td>0.08</td>
<td>0.04</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLA-DR</td>
<td>1</td>
<td>0.45</td>
<td>0.15</td>
<td>0.37</td>
<td>0.23</td>
<td>-0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD86</td>
<td>1</td>
<td>0.47</td>
<td>0.55</td>
<td>0.14</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD11b</td>
<td>1</td>
<td>0.48</td>
<td>0.11</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>CD14</td>
<td>1</td>
<td>-0.16</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>1</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>TNFα</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Online Supplement Table 8. Pearson correlation coefficients between cell surface markers on neutrophils (%-data) and inflammatory markers IL-6 and TNFα.

<table>
<thead>
<tr>
<th>Cell surface marker</th>
<th>CD64</th>
<th>CD16</th>
<th>CD11b</th>
<th>CD14</th>
<th>IL-6</th>
<th>TNFα</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD64</td>
<td>1</td>
<td>-0.14</td>
<td>-0.04</td>
<td>-0.16</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>CD16</td>
<td>1</td>
<td>0.32</td>
<td>0.03</td>
<td>0.13</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>CD11b</td>
<td>1</td>
<td>-0.14</td>
<td>-0.07</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD14</td>
<td>1</td>
<td>-0.02</td>
<td></td>
<td>-0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>TNFα</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Online Supplement Table 9. Pearson correlation coefficients between cell surface markers on neutrophils (MFI-data) and inflammatory markers IL-6 and TNFα.

<table>
<thead>
<tr>
<th>Cell surface marker</th>
<th>CD64</th>
<th>CD16</th>
<th>CD11b</th>
<th>CD14</th>
<th>IL-6</th>
<th>TNFα</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD64</td>
<td>1</td>
<td>0.26</td>
<td>-0.05</td>
<td>0.12</td>
<td>-0.05</td>
<td>0.21</td>
</tr>
<tr>
<td>CD16</td>
<td>1</td>
<td>0.16</td>
<td>0.39</td>
<td>-0.10</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>CD11b</td>
<td>1</td>
<td>0.30</td>
<td>0.13</td>
<td>-0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD14</td>
<td>1</td>
<td>-0.02</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFα</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Online Supplement Figure 1. Subject-specific associations (random slopes) with a 10µg/m³ increment in PM$_{2.5}$ (lag of 2 and 3 days) for CD40 monocytes (MFI). Subjects 2 and 7 had to be excluded from the analysis as one declined venipuncture and for one the withdrawn blood amount was not enough for flow-cytometry analysis.
Online Supplement Figure 2. Subject-specific associations (random slopes) with a 10µg/m³ increment in PM$_{2.5}$ (lag of 2 and 3 days) for CD80 monocytes (MFI). Individuals 2 and 7 had to be excluded from the analysis as one declined venipuncture and for one the withdrawn blood amount was not enough for flow-cytometry analysis.
Online Supplement Figure 3. Subject-specific associations (random slopes) with a 10µg/m³ increment in PM$_{2.5}$ (lag of 4 days) for CD23 monocytes (MFI). Individuals 2 and 7 had to be excluded from the analysis as one declined venipuncture and for one the withdrawn blood amount was not enough for flow-cytometry analysis.
Online Supplement Figure 4. Effect estimates for IL-6 and TNFα with 95%-confidence intervals for immediate and delayed associations with PM$_{2.5}$ (Schneider et al. 2010).

Reference: