Insulin Resistance and Environmental Pollutants: Experimental Evidence and Future Perspectives

Tine L.M. Hectors, Caroline Vanparys, Luc F. Van Gaal, Philippe G. Jorens, Adrian Covaci, and Ronny Blust

http://dx.doi.org/10.1289/ehp.1307082

Received: 14 May 2013
Accepted: 19 September 2013
Advance Publication: 20 September 2013
Insulin Resistance and Environmental Pollutants: Experimental Evidence and Future Perspectives

Tine L.M. Hectors,¹ Caroline Vanparys,¹ Luc F. Van Gaal,² Philippe G. Jorens,³ Adrian Covaci,⁴ and Ronny Blust¹

¹ Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
² Department of Diabetology, Metabolism and Clinical Nutrition, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
³ Department of Clinical Pharmacology/Toxicology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
⁴ Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium

Corresponding author:

Tine L.M. Hectors

University of Antwerp
Department of Biology
Systemic Physiological and Ecotoxicological Research (SPHERE)
Groenenborgerlaan 171
B-2020 Antwerp, Belgium

Email: tine.hectors@gmail.com
Tel ++/32/(0)3/265.35.33
Fax ++/32/(0)3/265.34.97
Running title: Insulin Resistance and Environmental Pollutants

Acknowledgements

T.L.M. Hectors and A. Covaci acknowledge financial support from the Scientific Research Foundation – Flanders (FWO - Flanders), Belgium. This study was financially supported by a concerted research action (GOA) of the University of Antwerp (FA020000/2/3565).

Competing financial interest declaration

The authors declare no conflict of interest.
Abstract

Background: The metabolic disruptor hypothesis postulates that environmental pollutants may be risk factors for metabolic diseases. Because insulin resistance is involved in most metabolic diseases and current health care prevention programs predominantly target insulin resistance or risk factors thereof, a critical analysis of the role of pollutants in insulin resistance might be important for future management of metabolic diseases.

Objectives: We aim at critically reviewing the available information linking pollutant exposure to insulin resistance and intend to open the discussion on future perspectives for metabolic disruptor identification and prioritization strategies.

Methods: PubMed and Web of Science were searched for experimental studies reporting on linkages between environmental pollutants and insulin resistance. A total of 23 studies were identified as the prime literature.

Discussion and conclusions: Recent studies specifically designed to investigate the effect of pollutants on insulin sensitivity show a potential causation of insulin resistance. Based on these studies, a table of viable test systems and endpoints can be composed which allows to gain insight into what is missing and what is needed to create a standardized insulin resistance toxicity testing strategy. It is clear that current research predominantly relies on top-down identification of insulin resistance-inducing metabolic disruptors and that one of the major future research needs is the development of dedicated *in vitro* or *ex vivo* screens to allow animal sparing and time- and cost-effective bottom-up screening.
Introduction

The worldwide prevalence of metabolic diseases has substantially increased in the last few decades and projections portend an even greater increase in the future (Finkelstein et al. 2012; Whiting et al. 2011). Although caloric consumption and sedentary lifestyle are surely major contributors to this rise, other non-traditional risk factors such as environmental chemicals, stress, an altered gut microbiome have been implied as well (Thayer et al. 2012). The potential involvement of ubiquitous environmental pollutants in metabolic disease etiology, also known as the “metabolic disruptor hypothesis” (Casals-Casas et al. 2008; Casals-Casas and Desvergne 2011), has caught the interest of the scientific community and has been subject of intensive research the last five to ten years. At present, many institutions (e.g. U.S. National Institutes of Health (NIH 2011), U.S. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK 2011)), acknowledge and emphasize the need to understand the role of environmental exposures in metabolic disease development in order to inform future prevention and research strategies. Current prevention programs (e.g. U.S. Diabetes Prevention Program (Diabetes Prevention Program Research Group 2002), the European “IMAGE” program (Paulweber et al. 2010)) are mainly aimed at lifestyle interventions, such as increasing physical activity and changing diet or, though less effective, pharmacological treatment (e.g. metformin, thiazolidinediones, and orlistat). One of the major effects of these interventions and treatments is management or improvement of insulin resistance (IR) (Nelson et al. 2013), a core pathophysiological process in the development of diabetes and a hallmark of most modern, metabolic diseases (e.g. metabolic syndrome, obesity, non-alcoholic fatty liver disease) (Samuel and Shulman 2012). Nevertheless, despite the central position of IR in metabolic diseases and in current prevention strategies, the particular role of environmental
chemicals in IR pathogenesis and the responsible molecular mechanisms have not been fully elucidated.

IR is defined as a state where normal concentrations of insulin evoke a less than normal biological response (Kahn 1978). It manifests itself in metabolically active tissues, such as skeletal muscle, adipose tissue (peripheral insulin resistance) and liver (hepatic insulin resistance). In skeletal muscle and adipose tissue, reduced sensitivity to insulin results in decreased insulin stimulated glucose uptake, together with a decline in glycogen synthesis in the former and impaired inhibition of lipolysis in the latter. Hepatic IR is characterized by its selectivity in that insulin fails to suppress glucose production, whereas fatty acid synthesis or lipogenesis is thought to remain intact or to be even hyperstimulated (Brown and Goldstein 2008). Thus, in the face of hyperinsulinemia in insulin resistant conditions, the liver continues to produce glucose, but also synthesizes large amounts of fatty acids and triglycerides, which accumulate in liver producing the pathological condition known as hepatic steatosis (Moon et al. 2012). Excess triglycerides are secreted via very low density lipoproteins, augmenting the levels of triglycerides in blood. The increased amount of fatty acids, derived from these triglycerides, is suggested to aggravate insulin resistance in muscle and adipose tissue and to contribute to β-cell dysfunction, ultimately leading to overt type 2 diabetes. As such, the triad of hypertriglyceridemia, hyperinsulinemia and hyperglycemia, characteristic for type 2 diabetes occurs (Brown and Goldstein 2008). Despite years of intensive research seeking to reveal the (molecular) pathogenesis underlying IR, the exact mechanisms are yet to be defined (Parker et al. 2011; Samuel and Shulman 2012).

To assess the relevance of the metabolic disruptor hypothesis for the human population, primary information can be derived from epidemiological studies. Given the increasing concern on the
potential involvement of pollutants in metabolic disease etiology, the U.S. National Institute of Environmental Health Sciences/National Toxicology Program (NIEHS/NTP) (NTP 2011) organized a workshop in 2011, which resulted in generation of a publically accessible database containing more than 200 human studies linking environmental pollutants to diabetes and obesity (NTP 2012). In the series of published papers following this workshop (Behl et al. 2013; Maull et al. 2012; Taylor et al. 2013; Thayer et al. 2012) and other reviews (Alonso-Magdalena et al. 2011; Hatch et al. 2010; Hectors et al. 2011; Neel and Sargis 2011; Tang-Péronard et al. 2011) the role of pollutants in diabetes and obesity was compelling. With regard to IR in particular, several studies have investigated the potential association between pollutants and markers of insulin sensitivity (e.g. Barregard et al. 2013; Chang et al. 2010, 2011; Chen et al. 2008; Dirinck et al. 2011; Færch et al. 2012; Kern et al. 2004; Lee et al. 2007, 2011; Nelson et al. 2010; Raafat et al. 2012; Wang et al. 2012). The most convincing evidence for a positive association of exposure to environmental pollutants and IR is with phthalates (James-Todd et al. 2012; Lind et al. 2012; Stahlhut et al. 2007) and air pollutants (Kelishadi et al. 2009; Kim and Hong 2012).

Although these reports show a potential role for environmental pollutants in metabolic diseases, all studies emphasize the need for experimental evidence providing proof of causation of IR, diabetes or obesity by pollutants and recommend the development of a standardized experimental testing strategy for this purpose (e.g. Taylor et al. 2013; Thayer et al. 2012).

Given the fact that IR is a key feature of diabetes and most other metabolic diseases and has a central position in current prevention strategies, the present report focuses on the role of environmental pollutants in IR pathogenesis and aims 1) to summarize experimental studies linking pollutants to IR and 2) to gather information on available IR test models to discuss their suitability in IR toxicity testing. The latter is a first important step to streamline future research.
on IR-inducing pollutants. In this regard, since metabolic disruptors are included in the group of endocrine disrupting compounds (EDCs) (Casals-Casas et al. 2008; Casals-Casas and Desvergne 2011), much of the rationale behind EDC screening and toxicity testing also applies to metabolic disruptors. EDC screening is currently based on a tiered approach combining in vitro screening assays, short-term in vivo as well as long-term in vivo assays (OECD 2012b; U.S. EPA 2013). To suggest how future testing strategies to evaluate the relationship between metabolic disruptors and IR may look like, we describe in vivo and in vitro endpoints that may be included in a comparable multilevel screening approach for the identification and prioritization of potential metabolic disruptors.

Materials and methods

Medical Subject Headings and keywords based on the search terms reported by Thayer et al. (2012) were used to screen the PubMed and Web of Science databases to identify experimental studies relating IR to environmental pollution. One difference from Thayer et al. (2012) was the elimination of medical heading terms related to obesity and specific focus on those with reference to IR. Studies reporting on developmental exposures and associations with the development of IR during adolescence or adulthood were not included. Throughout the literature on IR and environmental pollutants, a wide range of metabolic derangements related to IR are present (e.g. prediabetes, impaired glucose tolerance (IGT), impaired fasting glucose (IFG), insulin intolerance). To avoid misinterpretation, only studies specifically defining IR and discussing it as such were taken into account. All retrieved studies (n = 23) are summarized in Supplemental Material, Table S1.
State of the science – Experimental studies linking pollutants to IR

Experimental research currently available on the role of pollutants in the development of IR is summarized in Supplemental Material, Table S1. For arsenic (Maull et al. 2012; Navas-Acien et al. 2006; Paul et al. 2007), dioxins (Remillard and Bunce 2002) and organophosphorus pesticides (Rahimi and Abdollahi 2007), reported effects on IR have been reviewed elsewhere. In the studies included in the current paper, most compelling evidence for a potential link with IR pathophysiology is at hand for several persistent organic pollutants (POPs) (Hoppe and Carey 2007; Hsu et al. 2010; Ibrahim et al. 2011; Nishiumi et al. 2010; Ruzzin et al. 2010), phthalates (Rajesh et al. 2013; Srinivasan et al. 2011), bisphenol A (BPA) (Alonso-Magdalena et al. 2006; Batista et al. 2012) and air pollutants (Brook et al. 2013; Sun et al. 2009; Xu et al. 2011, 2012; Zheng et al. 2013). For phthalates and even more for air pollutants, epidemiological results (James-Todd et al. 2012; Kelishadi et al. 2009; Kim and Hong 2012; Lind et al. 2012; Stahlhut et al. 2007) are confirmed by experimental research. Mice exposed to air pollution, in all studies tested as the particulate matter fraction with diameter <2.5 µm (PM$_{2.5}$), showed either increased glucose intolerance (determined during intraperitoneal glucose tolerance tests (IPGTT)) (Sun et al. 2009; Xu et al. 2011; Zheng et al. 2013) or increased IR (based on homeostasis model assessment-insulin resistance (HOMA-IR), a validated insulin resistance index calculated by multiplying the fasting glucose with the fasting insulin level (Matthews et al. 1985)) (Brook et al. 2013; Sun et al. 2009; Xu et al. 2011, 2012; Zheng et al. 2013). To investigate the mechanisms underlying the observed IR, expression or phosphorylation status of different components of the insulin signaling cascade was studied in aortic segments, liver, adipose tissue or muscle (Sun et al. 2009; Xu et al. 2011; Zheng et al. 2013). The main conclusion of these studies was that air pollution seems to target all these tissues and the insulin receptor substrate 1/phosphatidylinositol
3-kinase/Akt (IRS-1/PI3K/Akt) signaling pathway, either by reducing the expression of related genes, or by reducing activating phosphorylation or inducing inactivating phosphorylation steps in this pathway. The most convincing proof of a direct role of PM$_{2.5}$ in IR development can be found in a study by Brook et al. (2013) in which 25 human volunteers were transported for 5 consecutive days from a region with background levels of PM$_{2.5}$ to a highly polluted area. Even for this relatively short exposure period, increased HOMA-IR, indicative for increased IR, was observed.

In opposition to the predominant single-compound studies listed in Supplemental Material Table S1, Ruzzin and co-workers tested relevant mixtures of POPs as they naturally occur in the food chain (fish) (Ibrahim et al. 2011; Ruzzin et al. 2010). In their studies, rodents were fed high fat diets containing POPs as part of fish oil (Ruzzin et al. 2010) and salmon fillets (Ibrahim et al. 2011). Chronic treatment resulted in severe impairment of whole body insulin action, with both attenuation of insulin stimulated glucose uptake in muscle and adipose tissue (peripheral IR) as well as reduced insulin-mediated suppression of hepatic glucose production (hepatic IR). These results were the first, strong indications for a causal role of low dose POPs in the development of IR. However, later reports from the same group showed some surprisingly opposite results (Ibrahim et al. 2012). In a study where mice were fed POP-containing whale meat, improved insulin sensitivity and glucose tolerance was observed compared to mice on isocaloric diets (Ibrahim et al. 2012). A proposed explanation is the dietary composition of the whale meat itself, which may counterbalance potential negative health effects of POPs (Hennig et al. 2012; Ibrahim et al. 2012). Furthermore, in comparison with the salmon-based POP studies, the levels of certain POPs present in epididymal adipose tissue were 10 to 15 times higher when administered via whale meat. It has been shown before that high concentrations of some POPs could improve
hyperglycemia, as reported by Fried et al. (2010) in a type 2 diabetic rat model exposed to high doses of dioxin (within 10-fold of a lethal dose). However, whether this hypoglycemic effect is directly caused by amelioration of insulin resistance or is the consequence of secondary effects due to other metabolic derangements (e.g. dioxins have been shown to inhibit gluconeogenesis directly (Zhang et al. 2012)) remains to be determined. Nevertheless, high doses of POPs may affect glucose homeostasis differently than low doses urging in-depth dose response characterization. The results of these studies highlight the complexity of interactions between environmental factors in the development of IR as dosing and the food matrix in which exposure occurs appear to greatly affect the outcome of a study.

Many more studies than those gathered in Table S1 (Supplemental Material) report on a potential association between pollutants and altered insulin sensitivity, but do not specifically refer to the development of IR or only indirectly show the potential involvement of pollutants in IR pathophysiology. These associations are either based on 1) altered glucose uptake by muscle or adipose tissue [e.g. bis(2-ethylhexyl) phthalate (DEHP) (Rajesh et al. 2013; Rengarajan et al. 2007); 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Kern et al. 2002); BPA (Sakurai et al. 2004); cadmium (Han et al. 2003)], 2) changed expression of components of the insulin signaling cascade [e.g. DEHP (Rengarajan et al. 2007)], 3) altered expression of insulin-regulated genes/proteins [e.g. TCDD (Liu and Matsumura 1995); BPA (Sakurai et al. 2004); cadmium (Han et al. 2003)], or 4) increased or decreased expression or synthesis of molecules which were previously causally related to IR. Examples for the latter are adipokines such as resistin (e.g. dichlorodiphenyldichloroethylene (DDE) (Howell III and Mangum 2011)), adiponectin [e.g. polychlorinated biphenyl-77 (PCB-77) (Arsenescu et al. 2008); BPA (Ben-Jonathan et al. 2009)] and leptin [e.g. DDE (Howell III and Mangum 2011)], and inflammatory mediators such as
tumor necrosis factor alpha (TNF-α) (e.g. TCDD (Kern et al. 2002); BPA (Ben-Jonathan et al. 2009)), interleukin 6 (IL-6) [e.g. BPA (Ben-Jonathan et al. 2009)]. Although these studies were not included in the present paper, they add to the knowledge base needed to assess the role of pollutants in IR specifically or metabolic diseases in general.

To summarize, most of the recent experimental studies which were intentionally designed to investigate pollutant effects on IR development (e.g. Batista et al. 2012; Lim et al. 2009; Ruzzin et al. 2010; Sargis et al. 2012) show convincing results and urge the need to accelerate and increase the efforts to investigate other ubiquitous pollutants within a uniformed testing scheme.

A metabolic disruptor testing scheme: What do we have and what are we heading for?

Lessons learned from EDC–testing: A battery of assays

Metabolic disruptors are a subset of EDCs (Casals-Casas and Desvergne 2011). As such, many of the necessary aspects included in EDC testing strategies to fully understand the mechanisms of action and effects of EDCs also apply to metabolic disruptors. For instance, many EDC effects describe non-monotonic dose response curves, occur at low doses (reviewed in Vandenberg et al. 2012) and are additive, synergistic or antagonistic when considered in mixtures (Kortenkamp 2007). This kind of response is described for metabolic disruptors as well. A prime example is BPA, which exerts non-monotonic and low dose effects on the release of adiponectin from mature adipocytes (Hugo et al. 2008) and on the insulin content and concomitant secretion from pancreatic isolated islets (Alonso-Magdalena et al. 2008). Furthermore, Ruzzin et al. (2010) and Ibrahim et al. (2011) clearly showed that low dose mixtures of POPs can induce insulin resistance, although in-depth knowledge of potential additive, synergistic or antagonistic effects is, as far as we are aware of, currently missing. Another previously encountered and much
debated issue with regard to EDC testing is the timing of exposure. In more classical EDC-oriented research (estrogenic, androgenic and thyroid hormone disruption) exposure during critical developmental periods has been linked to altered reproductive function later in life (reviewed in Diamanti-Kandarakis et al. 2009) and even transgenerational effects (Anway and Skinner 2006; Walker and Gore 2011). Accordingly, recent studies have shown the potential of metabolic disruptors to “program” the development of obesity (reviewed in Janesick and Blumberg 2011), IR or diabetes (Alonso-Magdalena et al. 2010) later in life following in utero or perinatal exposure, in some cases with lasting, transgenerational effects (Chamorro-García et al. 2013; Manikkam et al. 2013). Besides extensive dose response testing, mixture evaluations for additive, synergistic or antagonistic effects and effect assessment of exposures during sensitive life stages, different exposure lengths, gender specific effects, differences in species and/or strain sensitivities have all been discussed for EDCs (Diamanti-Kandarakis et al. 2009; Kortenkamp 2007) and are to be considered when designing metabolic disruptor testing strategies. For EDCs, development and refining of such a testing strategy has gradually evolved and has recently resulted in a “Conceptual Framework for endocrine disruptor testing” proposed by the Organisation for Economic Co-operation and Development (OECD) (OECD 2012b). This Conceptual Framework consists of standardized test guidelines to evaluate chemicals for endocrine disruption based on assays ranging from simple in vitro receptor binding assays, to physiological cellular assays, to whole animal testing and even lifecycle/multigenerational assays. Other EDC-screening programs also combine in vitro and in vivo assays to identify environmental chemicals with endocrine disruptor capacities in a tiered testing strategy [e.g. Endocrine Disruptor Screening Program (U.S. EPA 2013)]. For metabolic disruptors, similar
standardized testing schemes integrating *in vitro/in vivo* approaches are needed, but other endpoints than those currently present in EDC testing batteries are to be adopted.

One way to gain insight into the requirements for an IR toxicity testing strategy is to start from the assays and approaches used so far for identification of IR-inducing chemicals. For that purpose, we assigned the currently used assays derived from Table S1 (Supplemental Material) to a level of toxicity testing based on acquired information and/or relevance of the endpoint (Table 1), keeping the OECD Conceptual Framework for EDC screening (OECD 2012b) in mind. Furthermore, we added some existing test methods in IR research to Table 1 which have not been implemented yet in the evaluation of pollutant effects on IR pathogenesis. Because this field in toxicology is new, *in vivo* testing will be important to provide evidence of causality, and therefore streamlining *in vivo* assays deserves primary attention. However, in the prospect of an IR toxicity testing strategy, the combination with mechanistic pathway-based screening assays using *ex vivo* or *in vitro* models becomes more evident, as will be discussed in the final paragraph.

In vivo testing of metabolic disruptors – top-down approach

A uniform *in vivo* testing scheme in which all pollutants are tested similarly is necessary for identification and potency characterization of pollutants which may pose increased risk for IR development. In proposing such a streamlined testing scheme, previous studies can be used as a roadmap for the do’s and don’ts for future IR-pollutant research. In general, most of the studies firstly evaluated the presence of IR at organism level (Level 4) and then continued with in-depth analyses at organ or tissue level to provide a more physiologic or even mechanistic basis for the
observed effect (altered insulin sensitivity) (Level 2 or Level 1 assay), representing a top-down approach.

To determine IR at the organism level (Level 4; Table 1), the hyperinsulinemic-euglycemic clamp technology is generally considered as the gold standard (Mather 2009; Muniyappa et al. 2008). Although some studies draw the conclusion on induction of IR after pollutant exposure on this technique (Lim et al. 2009; Ruzzin et al. 2010), most of them use alternative measures. For instance, glucose tolerance tests (GTTs) (oral, intravenous or intraperitoneal) [e.g. Alonso-Magdalena et al. 2006; Batista et al. 2012; Khalil et al. 2010; Palacios et al. 2012 (see Supplemental Material, Table S1)] or HOMA-IR [e.g. Palacios et al. 2012; Ruzzin et al. 2010; Sun et al. 2009 (see Supplemental Material, Table S1)] were frequently performed or calculated to decide on insulin sensitivity. However, when using GTTs on their own, they are usually considered a measure of glucose (in)tolerance, more than a measure of insulin (in)sensitivity (Muniyappa et al. 2008). Furthermore, determination of IR based on surrogate indexes such as HOMA-IR, integrating fasting plasma glucose (FPG) and fasting plasma insulin (FPI) levels, should be considered as initial indication of changes in insulin sensitivity but can not be used to decide on the potential of a pollutant to induce IR (Muniyappa et al. 2008). If used as an indicator, HOMA-IR calculation should incorporate species-specific adjustments to avoid erroneous interpretations as discussed in Mather (2009). Thus standardization of the method to determine the degree of insulin sensitivity is a precondition to allow testing pollutant effects on IR. Because hyperinsulinemic-euglycemic clamping is not easy to deal with in terms of animal handling, and is time and labor intensive, GTTs (preferably intraperitoneal or intravenous) combined with insulin tolerance tests (ITTs) are an advisable alternative to explore pollutant effects on insulin sensitivity.
When IR is diagnosed using these techniques, more in-depth information is needed to evaluate the main impact and direct role of the pollutant in IR development. This is represented in Table 1 with the test methods of Level 3 and Level 2. One previously implemented approach exists in using glucose tracers to assess insulin-mediated suppression of glucose production (liver) or stimulation of glucose uptake (skeletal muscle) \textit{in vivo} (e.g. Ruzzin et al. 2010). Accordingly, use of fatty acid or glycerol traces may be useful to assess insulin-mediated suppression of lipolysis to determine adipose tissue insulin resistance, though not previously applied in a toxicity testing context (Jensen and Nielsen 2007; Stumvoll et al. 2001). Besides these tracer experiments, the pyruvate tolerance test has also been used (Batista et al. 2012) to determine hepatic IR.

Further support then comes from \textit{ex vivo} or \textit{in vitro} testing of the degree of insulin stimulated glucose uptake in isolated muscle and adipose tissue and insulin suppressed glucose production in liver to elucidate whether either peripheral or hepatic insulin sensitivity is targeted (Level 2; Table 1). In this regard, it is apparent that insulin stimulated glucose uptake assays both in adipose tissue (primary adipocytes or 3T3-L1 cell line) and skeletal muscle (\textit{ex vivo} testing on excised skeletal muscle segments) are quite popular (Barnes and Kircher 2005; Hsu et al. 2010; Ibrahim et al. 2011; Nishiumi et al. 2010; Ruzzin et al. 2010; Srinivasan et al. 2011), while assessment of hepatic IR via \textit{ex vivo} or \textit{in vitro} glucose production assays has not been included in research on pollutant-induced IR yet. This is quite surprising because many studies previously reported \textit{ex vivo} or \textit{in vitro} evaluation of hepatic insulin responsiveness based on measurement of glucose production (e.g. de Raemy-Schenk et al. 2006; Foretz et al. 2010; Okamoto et al. 2009; Watts et al. 2005; Zhou et al. 2005). Since HOMA-IR is considered to predominantly indicate hepatic IR (Muniyappa et al. 2008), POPs (Ruzzin et al. 2010), particulate matter (Sun et al.}
2009; Xu et al. 2011, 2012; Zheng et al. 2013), atrazine (Lim et al. 2009) and arsenic (reviewed in Maull et al. 2012; Palacios et al. 2012) may specifically target hepatic insulin sensitivity (see Supplemental Material, Table S1). As such, incorporation of a hepatic glucose production assay is crucial for assessing the physiologic mechanism underlying the observed systemic IR. Additional assays which may be performed in combination with these glucose production and glucose uptake assays are evaluation of insulin-stimulated glycogen production (mainly in liver and skeletal muscle) (e.g. Badin et al. 2011; Gao et al. 2010), or insulin-inhibited lipolysis (adipose tissue) (e.g. Lee and Fried 2012), not integrated in previous research on the impact of pollutants on insulin sensitivity.

In a last phase, some studies obtain mechanistic information (Level 1; Table 1) by investigation of the (gene or protein) expression and phosphorylation of key components of the insulin signaling pathway (e.g. insulin receptor, components of the PI3K/Akt pathway, glucose transporter 4 expression and translocation, etc.), comparing insulin stimulated and non-stimulated tissue fractions or isolated primary cells. The latter is important, because although in some cases lowered expression of intermediates of this pathway could be related to reduced insulin signaling and thus might be involved in IR, lack of insulin stimulation (e.g. Fang et al. 2012; Jubendradass et al. 2012; Zheng et al. 2013) does not provide solid and direct proof of decreased insulin sensitivity.

From top-down to bottom-up approaches: The need for mechanistic in vitro assays

At present, testing of pollutants to investigate their role in IR is mainly focused at the organism level, followed by physiological or mechanistic evaluations at lower (organ, tissue, or cell) levels. The need for such evaluations is demonstrated by the fact that IR may be caused by direct
effects of a pollutant on insulin sensitivity or because indirect mechanisms are triggered. Examples for the latter are increased synthesis and secretion of IR-inducing adipokines (e.g. resistin) (Howell III and Mangum 2011) or inflammatory mediators (e.g. TNF-α, IL-6) (Ben-Jonathan et al. 2009; Kern et al. 2002), or hypersecretion of insulin which may induce IR on the long-term (Alonso-Magdalena et al. 2006). As such, inclusion of the physiologic assays and mechanistic endpoints described above (e.g. glucose uptake, glucose production assays, expression of insulin signaling cascade) together with assays that allow the monitoring of changes in adipokine and insulin secretion, will improve our understanding on how pollutants may cause IR.

Besides knowledge on causality, pinpointing of mechanisms of metabolic disruption leading to IR will also be very important in the evaluation and development of dedicated mechanistic in vitro and ex vivo screens, making a bottom-up toxicity testing approach in the near future achievable. This bottom-up approach has not only a proven value in toxicity testing strategies for mechanism-based hazard identification, but is also inevitable when large numbers of pollutants need to be tested (Adler et al. 2011; Andersen and Krewski 2009; NRC 2007b): it allows rapid identification of potentially harmful pollutants, is cost-effective and reduces the number of animals needed to establish a first indication for the potential risk of IR development (ICCVAM 2004; Russell and Burch 1959).

In general, two types of in vitro assays are integrated in bottom-up toxicity testing strategies (Dix et al. 2007; Shukla et al. 2010): 1) target-based screens or single-endpoint assays which are used to investigate specific interactions with one defined target (e.g. receptor-binding, lactate dehydrogenase leakage, etc.) and 2) cellular pathway-based assays in which toxicity pathways
with adverse health events are modeled and perturbations of these pathways in response to a chemical can be measured.

Recent efforts to define and integrate target-based *in vitro* screens for metabolic disruptors emerged from an OECD report by the Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology (OECD 2012a). In this OECD review paper, increased awareness was expressed that current EDC test guidelines do not test for all aspects of endocrine disruption. The report therefore reviewed and described some new assays or novel endpoints to be incorporated in existing assays to expand the repertoire of endocrine signaling pathways with pathways suggested to be involved in metabolic diseases, neuro-developmental abnormalities, etc. For obesity, diabetes and the metabolic syndrome, the main suggested endocrine pathways are retinoid-X-receptor (RXR) and peroxisome proliferator-activated receptor (PPAR) signaling, with RXR and PPAR transactivation assays as major mechanistic anchors or target-based screens (OECD 2012a). Indeed the adverse obesogenic effect initiated by PPARγ activation is relatively well-described (Casals-Casas et al. 2008; Grün and Blumberg 2007), and for each of the different levels of the tiered OECD conceptual framework new assays or modified existing test guidelines have been suggested (e.g. 3T3-L1 differentiation as level 3 endpoint, weight gain as level 5 endpoint, etc.). Also for IR, pollutants that target PPARγ are interesting candidates for in-depth analyses, as PPARγ agonists (thiazolidinediones) are used to treat this condition (Cariou et al. 2012). Similarly, glucocorticoid receptor activation, another metabolic nuclear receptor recently proposed for integration in EDC testing frameworks (OECD 2012a), may be a valuable single-endpoint screen, since stimulation of this pathway is known to induce IR (Qi and Rodrigues 2007). Nevertheless, a mechanistic link between pollutant-induced PPARγ or glucocorticoid receptor activation or antagonism and the
development of IR has not been identified in previous studies, though for the former interactions
have been suggested with TCDD (Remillard and Bunce 2002). This lack of knowledge of
pollutant-specific mechanisms of action, limits, for now, the utility of these new metabolic
nuclear receptor assays to identify potential IR metabolic disruptors. An alternative single-
endpoint screen might include assays that allow to detect changes in insulin-regulated gene
expression. Interesting candidate genes in this regard are phosphoenolpyruvate carboxykinase
(PEPCK), fatty acid synthase and sterol regulatory element-binding protein (Mounier and Posner
2006), which are all directly transcriptionally regulated by insulin and are involved in key
metabolic processes. The utility of PEPCK based screening, for instance, has been proven by
Logie et al. (2010), who developed a cellular IR model and defined IR solely on insulin-
regulated PEPCK expression. Although single-gene expression assays may be a promising
alternative to deliver a first indication, as for all single-endpoint assays, they are often too
simplistic. Therefore, in general these single-endpoint based assays are not ideal to identify and
screen metabolic disruptors if used on a stand-alone basis.

In our opinion, identification of IR-metabolic disruptors is in the near future more achievable
when using the pathway-based approach, in line with the ongoing shift in toxicity testing
strategies from traditional adverse effect-based screening towards mechanism-based testing
(NRC 2007b). In this approach, pathways of toxicity (PoT) are central, defined as cellular
response pathways that, when sufficiently perturbed by an environmental agent, are expected to
result in adverse health effects (NRC 2007b).

For the development of screening systems for metabolic disruptors in a PoT-based toxicity
testing approach, the combination of relevant in vitro models of insulin sensitive tissues (liver,
skeletal muscle, adipose tissue) with an omics approach may be a first step ahead (Corvi et al.
2006; NRC 2007a). An example of how IR PoT’s may be developed, is illustrated in Figure 1. As pointed out before, IR is a multifactorial disease, which implies different mechanisms that lead to IR development. Moreover, at present, no explicit reference metabolic disruptors have been identified that induce IR. Therefore, it might be interesting to develop an assay looking at a robust endpoint that is reflective of IR, but independent of the mechanism of the inducing factor. One way to obtain such an endpoint is the generation of a general IR PoT, based on transcriptome profiles from cells in which insulin resistance was induced with multiple factors (e.g. inflammatory factors, inducers of oxidative stress, glucocorticoids, etc.), representing the different IR-inducing mechanisms.

Imagine that in Figure 1, inducer A, B and C render the used cellular model insulin resistant via three different mechanisms. The resulting toxicogenomics analysis is expected to produce a set of overlapping genes common to all three inducers (segment CG in Fig. 1) which is suspected to contain both general response genes (e.g. stress response pathways), genes related to the pathway of defense (PoD; Hartung and McBride 2011) as well as those genes that are decisive in the development of IR (PoT). Separating these stress response and PoD genes from the core insulin sensitivity determining genes requires an additional step. One plausible method, previously described by Hayward et al. (2011) and Konstantopoulos et al. (2011), would be to re-sensitize cells to insulin by exposing resistant cells to drugs commonly applied in the treatment of IR (e.g. biguanides (metformin), thiazolidinediones (pioglitazone), non-steroidal anti-inflammatory drugs). The strength of this approach lies within the coverage of the multifactorial nature of hepatic IR and selection of a common, inducer-aspecific PoT. Obviously, further validation of this gene set or PoT is needed before even considering potential application as a screening device for identification of IR-inducing pollutants.
Conclusions

Overall, our critical review of the currently available experimental studies reveals that the role of pollutants in IR still remains elusive. However, recent studies designed to investigate the impact of pollutants on IR development show a potential causative role which urges the need to accelerate and increase the efforts to investigate other ubiquitous pollutants with a uniform testing scheme. In suggesting such a testing scheme, a first important step was to extract a table of interesting test systems with indication of the respective endpoints presently used to study the effect of pollutants on IR pathogenesis. From the summary table, it is clear that most past, current and ongoing test strategies in the field of IR toxicity testing use a top-down approach, starting at organism level, followed by evaluation of mechanistic endpoints at lower (organ, tissue, or cell) levels. The complexity of metabolic processes undeniably requires in vivo testing to assess the integrated response of whole body energy homeostasis to pollutants. However, grounded on the rationale of EDC-screening frameworks, endeavors aiming at the development of target-based and pathway-based mechanistic in vitro assays should be stimulated to 1) deliver mechanistic support for the observed metabolic disruption, and 2) allow cost- and time-efficient screening and identification of potential IR-inducing pollutants. Dedicated single-endpoint in vitro assays to detect obesogenic compounds have recently emerged. However, target-based assays for IR are missing, mostly due to absence of clear description of molecular events preceding pollutant-induced IR development. Therefore, we hypothesize that, for now, the development of pathway-based in vitro screening approaches seems most feasible to allow mechanism-based identification and prioritization of potential IR-metabolic disruptors in the near future. With this paper we hope to emphasize the need for research on the link between
pollutants and IR, and to open thoughtful debate on how to generate a comprehensive testing strategy for metabolic disruptors.
References

Hsu HF, Tsou TC, Chao HR, Kuo YT, Tsai FY, Yeh SC. 2010. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells. J Hazard Mater 182:649-655.

Kim JH, Hong YC. 2012. GSTM1, GSTT-1, and GSTP1 polymorphisms and associations between air pollutants and markers of insulin resistance in elderly Koreans. Environ Health Perspect 120:1378-1384.

NTP (National Toxicology Program). 2012. Meta Data Viewer. Available:

Table 1. Summary of methods currently used to study pollutant effects on insulin sensitivity and suggested assays not adopted in IR toxicity testing at present. Level (L) 1 and 2 are tested with *in vitro* or *ex vivo* assays, level 3 and 4 with *in vivo* assays.

<table>
<thead>
<tr>
<th>Endpoints*</th>
<th>Method/Models</th>
<th>Context/Remarks</th>
<th>Source®</th>
</tr>
</thead>
<tbody>
<tr>
<td>**L1 Molecular event – in vitro/ex vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin signaling cascade (gene)</td>
<td>Real-time PCR, reverse transcriptase PCR and gel electrophoresis. 3T3-L1 adipocyte cell line, primary adipocytes, dissected tissues (adipose tissue, liver, muscle)</td>
<td>Permanent change of the expression of genes of the insulin signaling pathway may affect insulin sensitivity. Most commonly tested genes: IRS, IRec, and GLUT4.</td>
<td>Fang et al. 2012; Nishiumi et al. 2010; Rajesh et al. 2013; Sargis et al. 2012; Srinavasan et al. 2011</td>
</tr>
<tr>
<td>Insulin signaling cascade (protein)</td>
<td>Western Blot. L6 muscle cell line, 3T3-L1 adipocyte cell line, primary adipocytes, dissected tissues (aorta, adipose tissue, muscle, liver)</td>
<td>Most commonly used: pAkt/Akt ratio, IRec or pIRec, IRS-1 or pIRS-1. Insulin stimulation is necessary.</td>
<td>Batista et al. 2012; Fang et al. 2012; Ibrahim et al. 2011; Jubendradass et al. 2012; Lim et al. 2009; Nishiumi et al. 2010; Rajesh et al. 2013; Sargis et al. 2012; Srinavasan et al. 2011; Sun et al. 2009; Xu et al. 2011; Zheng et al. 2013</td>
</tr>
<tr>
<td>GLUT4 translocation</td>
<td>Separation of cytosolic and plasma membrane protein fractions (sucrose-gradient or sonication), followed by Western blot analysis of GLUT4 protein content. 3T3-L1 adipocyte cells, dissected tissues (adipose tissue, skeletal muscle)</td>
<td>Insulin stimulation necessary.</td>
<td>Barnes and Kircher 2005; Rajesh et al. 2013; Srinavasan et al. 2011</td>
</tr>
<tr>
<td>Insulin-responsive genes</td>
<td>Real-time PCR, reverse transcriptase PCR and gel electrophoresis. In vitro models and ex vivo segments of adipose tissue, liver and skeletal muscle</td>
<td>Insulin directly regulates expression of some genes. Examples of interesting targets: phosphoenolpyruvate carboxykinase (Logie et al. 2010); fatty acid synthase; sterol regulatory element-binding protein (Mounier and Posner 2006). Inability of insulin to stimulate/repress transcription of these genes may indicate IR. Insulin stimulation necessary.</td>
<td></td>
</tr>
<tr>
<td>**L2 Tissue level response – in vitro/ex vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose stimulated insulin secretion</td>
<td>ELISA, RIA. Isolated pancreatic islets</td>
<td>Chronic hyperinsulinemia may cause IR. For chronic exposures, insulin content may also be considered. May function as an indicator for indirect cause of IR.</td>
<td>Alonso-Magdalena et al. 2006; Batista et al. 2012</td>
</tr>
<tr>
<td>Glucose uptake</td>
<td>Addition of deoxyglucose followed by scintillation counting. 3T3-L1 adipocyte cell line, dissected tissues (adipose tissue, skeletal muscle)</td>
<td>Insulin stimulation necessary. Use of radiolabeled 2-deoxyglucose may affect the suitability of this assay in a screening context. Alternative approaches are to be stimulated.</td>
<td>Barnes and Kircher 2005; Hsu et al. 2010; Ibrahim et al. 2011, 2012; Nishiumi et al. 2010; Rajesh et al. 2013; Ruzzin et al. 2010; Srinavasan et al. 2011</td>
</tr>
<tr>
<td>Endpoints*</td>
<td>Method/Models</td>
<td>Context/Remarks</td>
<td>Source⁺</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Adipokine and inflammatory cytokine production</td>
<td>ELISA, RIA. 3T3-L1 cell line, primary adipocytes, dissected adipose tissue</td>
<td>Production of inflammatory cytokines such as TNF-α and IL-6 and some adipokines (e.g. resistin) is related to IR. Others (e.g. adiponectin) are suggested to improve IR. Important species differences have been reported (Arner 2003). May function as an indicator for indirect cause of IR. Some pollutants (e.g. TCDD, DDE, PCB-77, BPA) affect the production of these molecules (Arnesescu et al. 2008; Ben-Jonathan et al. 2009; Howell III and Mangum 2011; Kern et al. 2002).</td>
<td></td>
</tr>
<tr>
<td>Glucose production</td>
<td>Methods: see e.g. de Raemy-Schenk et al. 2006; Foretz et al. 2010; Okamoto et al. 2009; Watts et al. 2005; Zhou et al. 2005. H4IIE cell line, HepG2 cell line, primary hepatocytes, liver slices, dissected liver</td>
<td>To test for hepatic IR, assays can be used in which liver cells are stimulated to produce glucose (e.g. dexamethasone stimulation), followed by insulin treatment. The degree of insulin sensitivity will determine the extent to which glucose production is reduced.</td>
<td></td>
</tr>
<tr>
<td>Glycogen synthesis</td>
<td>Assessment of insulin-stimulated glycogen synthesis in liver and/or skeletal muscle. Cell lines, primary hepatocytes, liver slices, dissected liver, dissected skeletal muscle</td>
<td>Insulin-stimulated glycogen synthesis can be assessed in combination with attenuation of insulin-inhibited glucose production (liver) or insulin-stimulated glucose uptake (skeletal muscle).</td>
<td></td>
</tr>
<tr>
<td>Lipolysis</td>
<td>Assessment of insulin-mediated suppression of lipolysis in adipocytes. 3T3-L1 cells, primary adipocytes</td>
<td>Decreased insulin inhibited lipolysis increases circulating free fatty acid concentrations that contribute to both peripheral and hepatic IR by impairing insulin signaling pathways. In this way, induction of insulin IR in adipocytes may induce or aggravate IR in other tissues.</td>
<td></td>
</tr>
<tr>
<td>L3 Organ level response – in vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycogen content</td>
<td>Potassium hydroxide-based method followed by treatment with anthrone reagens or periodic-acid Schiff staining of glycogen. Dissected liver, adipose tissue and muscle</td>
<td></td>
<td>Fang et al. 2012; Rasjesh et al. 2013; Zheng et al. 2013</td>
</tr>
<tr>
<td>Pancreatic β-cell function</td>
<td>Measurement of plasma insulin levels shortly (e.g. 15 min) after injection of glucose with ELISA or RIA</td>
<td></td>
<td>Ibrahim et al. 2011, 2012</td>
</tr>
<tr>
<td>Skeletal muscle insulin sensitivity</td>
<td>Addition of glucose tracer during hyperinsulinemic-euglycemic clamp to calculate glucose disposal</td>
<td></td>
<td>Ruzzin et al. 2010</td>
</tr>
<tr>
<td>Hepatic insulin sensitivity</td>
<td>Addition of glucose tracer during hyperinsulinemic-euglycemic clamp to calculate hepatic glucose production or pyruvate tolerance test</td>
<td></td>
<td>Batista et al. 2012; Ruzzin et al. 2010</td>
</tr>
<tr>
<td>Adipose tissue insulin sensitivity</td>
<td>Fatty acid tracer addition during hyperinsulinemic-euglycemic clamp</td>
<td>Addition of fatty acid tracers allows to monitor changes in lipolysis.</td>
<td></td>
</tr>
<tr>
<td>Endpoints^a</td>
<td>Method/Models</td>
<td>Context/Remarks</td>
<td>Source^b</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>L4 Whole organism response – in vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole body insulin sensitivity</td>
<td>Hyperinsulinemic-euglycemic clamp</td>
<td>Alternatives: GTT + ITT. HOMA-IR = first line indication of IR, but can not be used on a stand-alone basis.</td>
<td>Alonso-Magdalena et al. 2006; Batista et al. 2012; Ibrahim et al. 2011; Lim et al. 2009; Ruzzin et al. 2010</td>
</tr>
</tbody>
</table>

Abbreviations: GLUT4, glucose transporter 4; IRec, insulin receptor; L, level; p, phosphorylated.

^aEndpoints with asterisks have not been adopted in IR toxicity testing at present.

^bOnly references (Supplemental Material, Table S1) which specifically investigated the role of pollutants in IR and used the corresponding endpoints to do so are included.
Figure Legend

Figure 1 Schematic representation of an example of how an “insulin resistance pathway of toxicity” (IR PoT) may be obtained. Steps 1-2: Exposure of in vitro models to three different inducers of IR followed by transcriptome analysis is expected to result in overlapping toxicogenomic profiles with “common genes” (CG) among the IR subtypes. This group of common genes is suggested to contain transcripts which are related to stress responses, to pathways of defense (PoD) as well as to the IR PoT. Steps 3-5: To separate the IR PoT genes from the rest, insulin resistant cells may be treated with a sensitizer mix (S) containing drugs which improve insulin sensitivity. Transcriptome analysis of re-sensitized cells is expected to reveal of which of the common genes among the IR subtypes expression is changed in the re-sensitized condition. It is anticipated that those genes represent or define insulin sensitivity/resistance and, as such, reflect the IR PoT. Step 6: Further evaluation and validation steps are needed to assess how representative the IR PoT is and whether or not it is able to predict potential adverse in vivo effects. Step 7-8: Whenever IR PoT-based cellular assays can be developed, they should be integrated in a conceptual framework such as that suggested in Table 1. Combined with single-endpoint or target-based assays, PoT-based cellular assays could be used as a mechanistic basis to identify and prioritize potential metabolic disruptors for further in-depth in vivo analysis. Abbreviations: IR, insulin resistance; PoD, pathway of defense; PoT, pathway of toxicity; S, sensitizer mix.
Figure 1