Supplemental Material

Ambient Temperature and the Risk of Preterm Birth in Guangzhou, China (2001–2011)

Jian-Rong He, Yu Liu, Xiao-Yan Xia, Wen-Jun Ma, Hua-Liang Lin, Hai-Dong Kan, Jin-Hua Lu, Qiong Feng, Wei-Jian Mo, Ping Wang, Hui-Min Xia, Xiu Qiu, and Louis J. Muglia

Table of Contents

Table S1. Hazard ratios (95% confidence intervals) of low and high temperature compared to the median temperature (24.4 °C) when the month of conception was included as a spline in the model.

Table S2. Cumulative effects of low and high temperatures using quasi-Poisson regression with distributed lag non-linear model.

Figure S1. Adjusted hazard ratios (solid line) and 95% confidence intervals (dashed lines) for preterm birth in association with weekly average temperature modeled as a time-dependent variable during 4 time windows after adjustment for PM10, SO2 and NO2 during 2006-2010: 1-week (A), 4-week (B), late pregnancy (C), and cumulative (D). Estimates are relative to the median temperature for the study area (24.4 °C). All values are based on Cox proportional hazards models with gestational age as the underlying time axis and adjusted for maternal age, education, parity, baby’s sex, year and month of conception, relative humidity and air pollutants (during the corresponding time window).

Figure S2. Relationship between mean temperature and preterm birth using quasi-Poisson regression with distributed lag non-linear model. Estimates are relative to the median temperature for the study area (24.4 °C). The following variables were adjusted for: relative
humidity (during the corresponding day), long-term trend and seasonality, day of the week, and daily expected count of preterm births on the corresponding day. Lags represents single-day lags (lag 0, representing temperature on the same day of preterm birth, up to 27-day lag).