Note to readers with disabilities: EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four U.S. Cities

Jenna R. Krall, James A. Mulholland, Armistead G. Russell, Sivaraman Balachandran, Andrea Winquist, Paige E. Tolbert, Lance A. Waller, and Stefanie Ebelt Sarnat

Table of Contents

Figure S1 Ensemble-based source profiles (EBSPs) for summer source-specific PM$_{2.5}$ corresponding to sources of primary PM$_{2.5}$ for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX. The EBSPs are unitless but can be roughly interpreted as the amount (in µg/m3) of each chemical species per µg/m3 of source-specific PM$_{2.5}$.

Figure S2 Ensemble-based source profiles (EBSPs) for winter source-specific PM$_{2.5}$ corresponding to sources of primary PM$_{2.5}$ for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX. The EBSPs are unitless but can be roughly interpreted as the amount (in µg/m3) of each chemical species per µg/m3 of source-specific PM$_{2.5}$.

Table S1 Mean (minimum, maximum) correlation between daily concentrations of PM$_{2.5}$ mass and source-specific PM$_{2.5}$ across Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX.

Table S2 Mean (standard deviation) number of daily emergency department visits for respiratory diseases and subcategories of respiratory disease for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX.
Table S3 Number of days of available data for selected tracer PM$_{2.5}$ chemical constituents for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX. Tracers were selected as potassium (K) for biomass burning PM$_{2.5}$, EC for diesel PM$_{2.5}$, zinc (Zn) for gasoline PM$_{2.5}$, silicon (Si) for dust PM$_{2.5}$, as well as OC for both mobile and burning PM$_{2.5}$.

Table S4 Average (standard deviation) concentration and median of city-specific interquartile ranges (IQR) in µg/m3 for selected tracer PM$_{2.5}$ chemical constituents in Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX. Tracers were selected as potassium (K) for biomass burning PM$_{2.5}$, EC for diesel PM$_{2.5}$, zinc (Zn) for gasoline PM$_{2.5}$, silicon (Si) for dust PM$_{2.5}$, as well as OC for both mobile and burning PM$_{2.5}$.

Table S5 Mean (minimum, maximum) correlation between daily concentrations of selected tracer PM$_{2.5}$ chemical constituents across for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX. Tracers were selected as potassium (K) for biomass burning PM$_{2.5}$, EC for diesel PM$_{2.5}$, zinc (Zn) for gasoline PM$_{2.5}$, silicon (Si) for dust PM$_{2.5}$, as well as OC for both mobile and burning PM$_{2.5}$.

Table S6 Mean (minimum, maximum) correlation between daily concentrations of PM$_{2.5}$ mass, source-specific PM$_{2.5}$, and selected tracer PM$_{2.5}$ chemical constituents across Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX. Tracers were selected as potassium (K) for biomass burning PM$_{2.5}$, EC for diesel PM$_{2.5}$, zinc (Zn) for gasoline PM$_{2.5}$, silicon (Si) for dust PM$_{2.5}$, as well as OC for both mobile and burning PM$_{2.5}$.

Figure S3 Estimated relative risks of pneumonia ED visits for interquartile range increases (IQR) in PM$_{2.5}$ mass and source-specific PM$_{2.5}$ using single day exposure lags 0 to 3 for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX.

Figure S4 Estimated relative risks of chronic obstructive pulmonary disease ED visits for interquartile range increases (IQR) in PM$_{2.5}$ mass and source-specific PM$_{2.5}$ using single day exposure lags 0 to 3 for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX.

Figure S5 Estimated relative risks of upper respiratory infection ED visits for interquartile range increases (IQR) in PM$_{2.5}$ mass and source-specific PM$_{2.5}$ using single day exposure lags 0 to 3 for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX.

Figure S6 Estimated relative risks of asthma/wheeze ED visits for interquartile range increases (IQR) in PM$_{2.5}$ mass and source-specific PM$_{2.5}$ using single day exposure lags 0 to 3 for Atlanta, GA; Birmingham, AL; St. Louis, MO; and Dallas, TX.