Note to readers with disabilities: EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehponline@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Air Pollution and Deaths among Elderly Residents of São Paulo, Brazil: An Analysis of Mortality Displacement

Amine Farias Costa, Gerard Hoek, Bert Brunekreef, and Antônio CM Ponce de Leon

Table S1. Spearman correlations of PM10, CO and NO2 concentrations among monitoring sites.

Table S2. Percent of missing data of PM10, CO and NO2 among monitoring sites

Table S3. Details of models adjustment for trend, seasonality, temperature and relative humidity

Table S4. Cumulative percent change (95% confidence interval) in number of deaths associated with PM10 levels for different cumulative lag structures. Temporal trend sensitivity analysis

Table S5. Cumulative percent change (95% confidence interval) in number of deaths (all ages) associated with PM10 levels for different cumulative lag structures

Table S6. Cumulative percent change (95% confidence interval) in number of deaths associated with PM10 levels for different cumulative lag structures, adjusted by mean temperature until lag 10

Table S7. Comparison of single lag percent change (95% confidence interval) in number of total, circulatory, respiratory and cancer deaths among studies

Table S8. Comparison of cumulative percent change (95% confidence interval) by shorter lag structures in number of total, circulatory and respiratory deaths by 10 µg/m³ increase in particulate air pollution among studies
Figure S1. Single lag percent changea in number of deaths associated with air pollutant levels of lags 0-30 daysb. aAssociated with a 10 µg/m³ increase in PM10 and NO₂ and with a 1 ppm increase in CO. bResults from a Poisson generalized additive distributed lag model, constrained with a second degree polynomial, using single-day lag structures of lags 0-30 days for PM10, NO₂ and CO, adjusted by trend, seasonality, temperature, relative humidity, weekdays and holidays. The shadow area represents 95% CI.

References